1.Wasinger, V.C., et al., Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. ELECTROPHORESIS, 1995. 16(1): p. 1090-1094.
2.溫明鏡, 氧化鐵磁性奈米粒子之合成與特性研究. 嘉義: 國立中正大學物理研究所碩士論文, 2003.3.Pankhurst, Q.A., et al., Applications of magnetic nanoparticles in biomedicine. Journal of physics D: Applied physics, 2003. 36(13): p. R167.
4.Kamat, P.V., M. Flumiani, and A. Dawson, Metal–metal and metal–semiconductor composite nanoclusters. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002. 202(2): p. 269-279.
5.Wahajuddin and S. Arora, Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. International Journal of Nanomedicine, 2012. 7: p. 3445-3471.
6.Veiseh, O., J. Gunn, and M. Zhang, Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Advanced drug delivery reviews, 2010. 62(3): p. 284-304.
7.Willner, I., B. Basnar, and B. Willner, Nanoparticle–enzyme hybrid systems for nanobiotechnology. FEBS Journal, 2007. 274(2): p. 302-309.
8.Katz, E. and I. Willner, Integrated Nanoparticle–Biomolecule Hybrid Systems: Synthesis, Properties, and Applications. Angewandte Chemie International Edition, 2004. 43(45): p. 6042-6108.
9.Chen, H., et al., A Facile Synthesis Approach to C8-Functionalized Magnetic Carbonaceous Polysaccharide Microspheres for the Highly Efficient and Rapid Enrichment of Peptides and Direct MALDI-TOF-MS Analysis. Advanced Materials, 2009. 21(21): p. 2200-2205.
10.Chen, H., et al., Facile synthesis of C8-functionalized magnetic silica microspheres for enrichment of low-concentration peptides for direct MALDI-TOF MS analysis. PROTEOMICS, 2008. 8(14): p. 2778-2784.
11.Alexiou, C., et al., Targeting cancer cells: magnetic nanoparticles as drug carriers. European Biophysics Journal, 2006. 35(5): p. 446-450.
12.Alexiou, C., et al., Magnetic Drug Targeting—Biodistribution of the Magnetic Carrier and the Chemotherapeutic agent Mitoxantrone after Locoregional Cancer Treatment. Journal of Drug Targeting, 2003. 11(3): p. 139-149.
13.Pan, J. and Q. Yang, Antibody-functionalized magnetic nanoparticles for the detection of carcinoembryonic antigen using a flow-injection electrochemical device. Analytical and Bioanalytical Chemistry, 2007. 388(1): p. 279-286.
14.Campelo, J.M., et al., Sustainable Preparation of Supported Metal Nanoparticles and Their Applications in Catalysis. ChemSusChem, 2009. 2(1): p. 18-45.
15.Kruis, F.E., H. Fissan, and A. Peled, Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications—a review. Journal of Aerosol Science, 1998. 29(5): p. 511-535.
16.Rajput, N., Methods of preparation of nanoparticles-A review. International Journal Of Advances In Engineering & Technology, 2015. 7(6): p. 1806.
17.Gijs, M.A., F. Lacharme, and U. Lehmann, Microfluidic applications of magnetic particles for biological analysis and catalysis. Chemical reviews, 2009. 110(3): p. 1518-1563.
18.Fievet, F., et al., Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles. Solid State Ionics, 1989. 32: p. 198-205.
19.Wu, W., Q. He, and C. Jiang, Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies. Nanoscale Research Letters, 2008. 3(11): p. 397-415.
20.Wan, J., et al., A soft-template-assisted hydrothermal approach to single-crystal Fe3O4 nanorods. Journal of Crystal Growth, 2005. 276(3): p. 571-576.
21.Reetz, M.T. and W. Helbig, Size-Selective Synthesis of Nanostructured Transition Metal Clusters. Journal of the American Chemical Society, 1994. 116(16): p. 7401-7402.
22.Gupta, A.K. and M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005. 26(18): p. 3995-4021.
23.He, J., et al., Magnetic separation techniques in sample preparation for biological analysis: a review. Journal of pharmaceutical and biomedical analysis, 2014. 101: p. 84-101.
24.Bonnemain, B., Superparamagnetic agents in magnetic resonance imaging: physicochemical characteristics and clinical applications a review. Journal of drug targeting, 1998. 6(3): p. 167-174.
25.Yang, C., J. Wu, and Y. Hou, Fe 3 O 4 nanostructures: synthesis, growth mechanism, properties and applications. Chemical Communications, 2011. 47(18): p. 5130-5141.
26.Morrison, S.A., et al., Atomic engineering of mixed ferrite and core–shell nanoparticles. Journal of nanoscience and nanotechnology, 2005. 5(9): p. 1323-1344.
27.De Cuyper, M. and M. Joniau, Mechanistic aspects of the adsorption of phospholipids onto lauric acid stabilized magnetite nanocolloids. Langmuir, 1991. 7(4): p. 647-652.
28.Nikitenko, S.I., et al., Synthesis of Highly Magnetic, Air-Stable Iron–Iron Carbide Nanocrystalline Particles by Using Power Ultrasound. Angewandte Chemie International Edition, 2001. 40(23): p. 4447-4449.
29.Morel, A.-L., et al., Sonochemical Approach to the Synthesis of Fe3O4@SiO2 cxCore−Shell Nanoparticles with Tunable Properties. ACS Nano, 2008. 2(5): p. 847-856.
30.Verma, A. and G.M. Murray, A Path to Soluble Molecularly Imprinted Polymers. Journal of Functional Biomaterials, 2012. 3(1): p. 1-22.
31.Vlatakis, G., et al., Drug assay using antibody mimics made by molecular imprinting. Nature, 1993. 361(6413): p. 645-647.
32.Hoshino, Y., et al., Peptide Imprinted Polymer Nanoparticles: A Plastic Antibody. Journal of the American Chemical Society, 2008. 130(46): p. 15242-15243.
33.Lofgreen, J.E. and G.A. Ozin, Controlling morphology and porosity to improve performance of molecularly imprinted sol–gel silica. Chemical Society Reviews, 2014. 43(3): p. 911-933.
34.Tokonami, S., H. Shiigi, and T. Nagaoka, Micro-and nanosized molecularly imprinted polymers for high-throughput analytical applications. Analytica chimica acta, 2009. 641(1): p. 7-13.
35.Kryscio, D.R. and N.A. Peppas, Critical review and perspective of macromolecularly imprinted polymers. Acta Biomaterialia, 2012. 8(2): p. 461-473.
36.Ren, K. and R.N. Zare, Chemical recognition in cell-imprinted polymers. ACS nano, 2012. 6(5): p. 4314-4318.
37.Puoci, F., et al., Molecularly imprinted polymers in drug delivery: state of art and future perspectives. Expert opinion on drug delivery, 2011. 8(10): p. 1379-1393.
38.Kempe, M., M. Glad, and K. Mosbach, An approach towards surface imprinting using the enzyme ribonuclease A. Journal of molecular recognition, 1995. 8(1‐2): p. 35-39.
39.Rachkov, A. and N. Minoura, Towards molecularly imprinted polymers selective to peptides and proteins. The epitope approach. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 2001. 1544(1): p. 255-266.
40.Nishino, H., C.-S. Huang, and K.J. Shea, Selective Protein Capture by Epitope Imprinting. Angewandte Chemie International Edition, 2006. 45(15): p. 2392-2396.
41.Glad, M., et al., Use of silane monomers for molecular imprinting and enzyme entrapment in polysiloxane-coated porous silica. Journal of Chromatography A, 1985. 347: p. 11-23.
42.Wulff, G., Biorecognition in molecularly imprinted polymers, in Molecular interactions in bioseparations. 1993, Springer US. p. 363-381.
43.Wulff, G., Enzyme-like catalysis by molecularly imprinted polymers. Chemical reviews, 2002. 102(1): p. 1-28.
44.Wulff, G., Molecular imprinting in cross‐linked materials with the aid of molecular templates—a way towards artificial antibodies. Angewandte Chemie International Edition, 1995. 34(17): p. 1812-1832.
45.Andersson, L., B. Sellergren, and K. Mosbach, Imprinting of amino acid derivatives in macroporous polymers. Tetrahedron Letters, 1984. 25(45): p. 5211-5214.
46.Vlatakis, G., et al., Drug assay using antibody mimics made by molecular imprinting. Nature, 1993. 361(6413): p. 645-647.
47.Sellergren, B. and L. Andersson, Molecular recognition in macroporous polymers prepared by a substrate analog imprinting strategy. The Journal of Organic Chemistry, 1990. 55(10): p. 3381-3383.
48.Ye, L., P.A. Cormack, and K. Mosbach, Molecular imprinting on microgel spheres. Analytica Chimica Acta, 2001. 435(1): p. 187-196.
49.Mayes, A.G. and K. Mosbach, Molecularly imprinted polymer beads: suspension polymerization using a liquid perfluorocarbon as the dispersing phase. Analytical Chemistry, 1996. 68(21): p. 3769-3774.
50.Defreese, J.L. and A. Katz, Synthesis of a confined class of chiral organic catalysts via bulk imprinting of silica. Chemistry of materials, 2005. 17(26): p. 6503-6506.
51.Venton, D.L. and E. Gudipati, Influence of protein on polysiloxane polymer formation: evidence for induction of complementary protein-polymer interactions. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1995. 1250(2): p. 126-136.
52.Bossi, A., et al., ‘Gate effect’in templated polyacrylamide membranes influences the electrotransport of proteins and finds applications in proteome analysis. Analytical and bioanalytical chemistry, 2007. 389(2): p. 447-454.
53.Strikovsky, A.G., et al., Catalytic molecularly imprinted polymers using conventional bulk polymerization or suspension polymerization: selective hydrolysis of diphenyl carbonate and diphenyl carbamate. Journal of the American Chemical Society, 2000. 122(26): p. 6295-6296.
54.Katz, A. and M.E. Davis, Molecular imprinting of bulk, microporous silica. Nature, 2000. 403(6767): p. 286-289.
55.Wang, Z., et al., An ionic liquid-modified graphene based molecular imprinting electrochemical sensor for sensitive detection of bovine hemoglobin. Biosensors and Bioelectronics, 2014. 61: p. 391-396.
56.Li, F., J. Li, and S. Zhang, Molecularly imprinted polymer grafted on polysaccharide microsphere surface by the sol–gel process for protein recognition. Talanta, 2008. 74(5): p. 1247-1255.
57.Ouyang, R., J. Lei, and H. Ju, Surface molecularly imprinted nanowire for protein specific recognition. Chemical Communications, 2008(44): p. 5761-5763.
58.Shi, H., et al., Template-imprinted nanostructured surfaces for protein recognition. Nature, 1999. 398(6728): p. 593-597.
59.Li, Y., et al., Protein recognition via surface molecularly imprinted polymer nanowires. Analytical chemistry, 2006. 78(1): p. 317-320.
60.Zhao, X.-L., et al., An epitope imprinting method on the surface of magnetic nanoparticles for specific recognition of bovine serum album. Journal of Materials Chemistry B, 2014. 2(43): p. 7575-7582.
61.Wang, Y.-Z., et al., Epitope imprinted polymer nanoparticles containing fluorescent quantum dots for specific recognition of human serum albumin. Microchimica Acta, 2015. 182(7-8): p. 1465-1472.
62.Ju, H., Z. Qiu, and S. Ding, Bio-Analytical Chemistry. 2007, Beijing: Science Press.
63.Mayes, A.G. and M.J. Whitcombe, Synthetic strategies for the generation of molecularly imprinted organic polymers. Advanced Drug Delivery Reviews, 2005. 57(12): p. 1742-1778.
64.Andersson, L.I., et al., Mimics of the binding sites of opioid receptors obtained by molecular imprinting of enkephalin and morphine. Proceedings of the National Academy of Sciences, 1995. 92(11): p. 4788-4792.
65.Ariffin, M.M., et al., Molecularly imprinted solid-phase extraction of diazepam and its metabolites from hair samples. Analytical chemistry, 2007. 79(1): p. 256-262.
66.Deng, D.-L., et al., Monolithic molecular imprinted polymer fiber for recognition and solid phase microextraction of ephedrine and pseudoephedrine in biological samples prior to capillary electrophoresis analysis. Journal of Chromatography A, 2012. 1219: p. 195-200.
67.Matsui, J., K. Fujiwara, and T. Takeuchi, Atrazine-selective polymers prepared by molecular imprinting of trialkylmelamines as dummy template species of atrazine. Analytical chemistry, 2000. 72(8): p. 1810-1813.
68.Karas, M., D. Bachmann, and F. Hillenkamp, Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Analytical Chemistry, 1985. 57(14): p. 2935-2939.
69.Tanaka, K., et al., Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 1988. 2(8): p. 151-153.
70.Wiley, W. and I.H. McLaren, Time‐of‐flight mass spectrometer with improved resolution. Review of Scientific Instruments, 1955. 26(12): p. 1150-1157.
71.Wolff, M. and W. Stephens, A pulsed mass spectrometer with time dispersion. Review of Scientific Instruments, 1953. 24(8): p. 616-617.
72.Mamyrin, B., et al., The massreflect ron, a new non-magnetic time-of-flight mass spectrometer with high resolution. Zh. Eksp. Teor. Fiz, 1973. 64: p. 82-89.
73.Zenobi, R. and R. Knochenmuss, Ion formation in MALDI mass spectrometry. Mass Spectrometry Reviews, 1998. 17(5): p. 337-366.
74.Ehring, H., M. Karas, and F. Hillenkamp, Role of photoionization and photochemistry in ionization processes of organic molecules and relevance for matrix‐assisted laser desorption lonization mass spectrometry. Journal of Mass Spectrometry, 1992. 27(4): p. 472-480.
75.Karas, M. and R. Krüger, Ion formation in MALDI: the cluster ionization mechanism. Chemical reviews, 2003. 103(2): p. 427-440.
76.Hunt, D.F. and F.W. Crow, Electron capture negative ion chemical ionization mass spectrometry. Analytical Chemistry, 1978. 50(13): p. 1781-1784.
77.Gobom, J., et al., α-Cyano-4-hydroxycinnamic acid affinity sample preparation. A protocol for MALDI-MS peptide analysis in proteomics. Analytical Chemistry, 2001. 73(3): p. 434-438.
78.Thomas, H., et al., Dried‐droplet probe preparation on AnchorChip™ targets for navigating the acquisition of matrix‐assisted laser desorption/ionization time‐of‐flight spectra by fluorescence of matrix/analyte crystals. Rapid communications in mass spectrometry, 2004. 18(9): p. 923-930.
79.Zhang, X., et al., An improved method of sample preparation on AnchorChip™ targets for MALDI‐MS and MS/MS and its application in the liver proteome project. Proteomics, 2007. 7(14): p. 2340-2349.
80.Caprioli, R.M., T.B. Farmer, and J. Gile, Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Analytical chemistry, 1997. 69(23): p. 4751-4760.
81.Nesvizhskii, A.I., et al., A statistical model for identifying proteins by tandem mass spectrometry. Analytical chemistry, 2003. 75(17): p. 4646-4658.
82.McLafferty, F.W., Tandem mass spectrometry. New York, 1983.