跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/09 17:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蕭兆妤
研究生(外文):Chao-Yu Hsiao
論文名稱:修飾表位印跡於磁性奈米粒子備製分子生物模板以純化目標蛋白質
論文名稱(外文):Fabrication of epitope imprinting polymers on magnetic nanoparticles for the specific purification of targeted proteins
指導教授:蕭鶴軒
口試委員:李茂榮林泱蔚
口試日期:2017-07-19
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:79
中文關鍵詞:表位印跡磁性奈米粒子分子生物模板
外文關鍵詞:Epitope imprintingmagnetic nanoparticlemolecularly imprinting polymer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:158
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
複雜基質往往是在分析鑑定生物樣品時最大的阻礙,所以擁有有利且實用的純化工具是非常重要的。具有選擇性、快速且簡單合成特性的分子生物模板,顯然能成為現代生物化學純化的最佳利器之一。其中抗原決定基 (表位) 印跡法 (Epitope imprinting) 為現代研究大分子蛋白質常見的方法,其運用抗原-抗體通過一小段活化位點進行專一性辨識的概念,結合分子生物模板純化欲分析之目標蛋白質。
本研究合成分子生物模板於Fe3O4奈米粒子上,藉以純化人類血清白蛋白,經由十二烷基硫酸鈉聚丙烯醯胺凝膠電泳 和MALDI-TOF MS (Matrix-assisted laser desorption/ionization time of flight mass spectrometry) 進行純化鑑定。本實驗Fe3O4奈米粒子是藉由共沉澱法合成,在奈米粒子表面修飾TEOS (Tetraethoxysilane) 避免Fe3O4氧化,再修飾具有-NH2官能基的APTES ((3-Aminopropyl)triethoxysilane),讓Lomant's Reagent能將磁性奈米粒子與模板分子Human Serum Albumin胜肽鍵結在一起,並以高分子包覆聚合,再使用DTT (Dithiothreitol) 水溶液將模板分子移除後,形成最終的分子生物模板。磁性模板分子能快速地吸附蛋白質標準品及真實樣品中的目標蛋白質,並能藉由其磁力迅速的分離模板和溶液,藉由SDS-PAGE和MALDI-TOF MS證實此技術之可行性。
Biological samples are usually accompanied with complex matrices, which cause a huge obstacle in the identification of biological analytes. For the reason, a convenience and useful tool for the selective purification of targeted analytes is necessary. Molecularly imprinting polymers possess several advantages, including selectivity, simple for preparation and rapid for purification, which become one of appropriate implements for purification and extraction of targeted analytes. Epitope imprinting has been used for the purification of large macromolecule protein. The principle is similar with the interaction between antibodies and antigens, which need a small portion of antigen to bind with antibody. In this study, a small exposed peptide of protein was used as the template to formation of Fe3O4@MIP, which could be able to recognize the targeted protein.
Fe3O4 magnetic nanoparticles were synthesized by the use of co-precipitation method and subsequently coated with TEOS and APTES. The primary amines on magnetic nanoparticles and targeted peptide were reacted with Lomant's Reagent to form stable amide bonds. Targeted specific recognition shells, which the size, shape and functional groups corresponding to peptide template, were formed by polymerization with functional monomers. The peptide template could be removed by utilizing dithiothreitol and the resulting MIPs were employed to purify the targeted proteins. The resulting magnetic molecularly imprinting polymers absorbed targeted protein rapidly, which could be separated easily from complex matrix sample with a magnet. The absorption of targeted protein could be analyzed and confirmed by SDS-PAGE and MALDI-TOF MS.
摘要 I
ABSTRACT II
第一章、 緒論 1
1.1. 蛋白質體學 1
1.2. 磁性奈米粒子 2
1.2.1. 磁性奈米簡介 2
1.2.2. 磁性奈米粒子穩定化反應 7
1.3. 分子生物模板之簡介 9
1.3.1. 分子印跡合成技術 10
1.3.1.1. 共價型分子印跡 10
1.3.1.2. 非共價型分子印跡 10
1.3.2. 分子印跡聚合物的製備方法 11
1.3.2.1. 整體印跡法 (Bulking imprinting) 11
1.3.2.1.1.本體聚合法 12
1.3.2.1.2.沉澱聚合法 12
1.3.2.1.3.懸浮聚合法 12
1.3.2.2. 表面印跡法 (Surface imprinting) 13
1.3.2.3. 抗原決定基法 (Epitope approach) 13
1.3.3. 分子印跡技術基本原理 14
1.3.3.1. 功能性單體 (Functional monomer) 14
1.3.3.2. 起始劑 (Initiator) 17
1.3.3.3. 目標分子 (Targeted template) 17
1.3.3.4. 交聯劑 (Cross-linker) 17
1.4. 質譜儀 20
1.4.1. 質譜儀簡介及其原理 20
1.4.2. 基質輔助雷射脫附游離飛行時間串聯式質譜 (Matrix-Assisted Laser Desorption Ionization) 20
1.4.3. 飛行時間質量分析器 (Time-of-Flight, TOF) 21
1.4.4. 基質輔助雷射脫附游離化機制[73] 22
1.4.5. 基質 24
1.4.6. MALDI樣品盤 (MALDI plate) 25
1.4.7. 儀器構造 27
1.5. 研究動機 29
第二章、 實驗藥品、儀器及步驟 32
2.1. 實驗藥品 32
2.2. 實驗器材 34
2.3. 藥品配置 35
2.4. 實驗步驟 36
2.4.1. Fe3O4磁性奈米粒子製備 36
2.4.2. Fe3O4@SiO2磁性奈米粒子製備 36
2.4.3. Fe3O4@SiO2@NH2 磁性奈米粒子製備 37
2.4.4. Fe3O4@SiO2@NH-DTSP-HSA製備 37
2.4.5. Fe3O4@SiO2@NH-DTSP-HSA@Silane製備 38
2.4.6. Fe3O4@MIP 製備 38
2.4.7. HSA peptide 吸附測試 38
2.4.8. HSA peptide 脫附測試 39
2.4.9. Standard HSA protein 吸附測試 39
2.4.10. Standard HSA protein 脫附測試 40
2.4.11. Real sample 部分 40
2.4.11.1.人類血清之取得方法 40
2.4.11.2.Real sample 吸附測試 41
2.4.11.3.Real sample 脫附測試 41
2.4.12. 逆相高效能液相層析儀 (RP-HPLC) 參數 42
2.4.13. MALDI參數 42
第三章、 結果與討論 46
3.1. 磁性奈米粒子鑑定 46
3.1.1. 運用TEM觀測磁性奈米粒子粒徑大小 46
3.1.2. 運用FT-IR觀測磁性奈米粒子特定官能基 46
3.1.3. 運用DLS觀測磁性分子生物模板粒徑大小 51
3.1.4. 運用VSM鑑定Fe3O4磁性奈米粒子之磁力 51
3.2. 條件探討 54
3.2.1. 溶劑是否除水之選擇 54
3.2.2. Fe3O4是否要包覆SiO2 56
3.3. 反應量優化 56
3.3.1. 優化藥品DTSP及HSA的反應量 56
3.3.2. 優化藥品APTES的反應量 59
3.4. 反應時間 59
3.5. 功能性膠體厚度 62
3.6. 吸附效率之測試 62
3.6.1. 胜肽測試 62
3.6.2. 標準品測試 65
3.6.2.1. 標準品 65
3.6.2.2. 標準品之還原雙硫鍵 65
3.6.2.3. 標準品之還原雙硫鍵與烷化硫基 68
3.6.2.4. 標準品之還原雙硫鍵與烷化硫基與過濾 68
第四章、 結論 73
第五章、 參考資料 74
1.Wasinger, V.C., et al., Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. ELECTROPHORESIS, 1995. 16(1): p. 1090-1094.
2.溫明鏡, 氧化鐵磁性奈米粒子之合成與特性研究. 嘉義: 國立中正大學物理研究所碩士論文, 2003.
3.Pankhurst, Q.A., et al., Applications of magnetic nanoparticles in biomedicine. Journal of physics D: Applied physics, 2003. 36(13): p. R167.
4.Kamat, P.V., M. Flumiani, and A. Dawson, Metal–metal and metal–semiconductor composite nanoclusters. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002. 202(2): p. 269-279.
5.Wahajuddin and S. Arora, Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. International Journal of Nanomedicine, 2012. 7: p. 3445-3471.
6.Veiseh, O., J. Gunn, and M. Zhang, Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Advanced drug delivery reviews, 2010. 62(3): p. 284-304.
7.Willner, I., B. Basnar, and B. Willner, Nanoparticle–enzyme hybrid systems for nanobiotechnology. FEBS Journal, 2007. 274(2): p. 302-309.
8.Katz, E. and I. Willner, Integrated Nanoparticle–Biomolecule Hybrid Systems: Synthesis, Properties, and Applications. Angewandte Chemie International Edition, 2004. 43(45): p. 6042-6108.
9.Chen, H., et al., A Facile Synthesis Approach to C8-Functionalized Magnetic Carbonaceous Polysaccharide Microspheres for the Highly Efficient and Rapid Enrichment of Peptides and Direct MALDI-TOF-MS Analysis. Advanced Materials, 2009. 21(21): p. 2200-2205.
10.Chen, H., et al., Facile synthesis of C8-functionalized magnetic silica microspheres for enrichment of low-concentration peptides for direct MALDI-TOF MS analysis. PROTEOMICS, 2008. 8(14): p. 2778-2784.
11.Alexiou, C., et al., Targeting cancer cells: magnetic nanoparticles as drug carriers. European Biophysics Journal, 2006. 35(5): p. 446-450.
12.Alexiou, C., et al., Magnetic Drug Targeting—Biodistribution of the Magnetic Carrier and the Chemotherapeutic agent Mitoxantrone after Locoregional Cancer Treatment. Journal of Drug Targeting, 2003. 11(3): p. 139-149.
13.Pan, J. and Q. Yang, Antibody-functionalized magnetic nanoparticles for the detection of carcinoembryonic antigen using a flow-injection electrochemical device. Analytical and Bioanalytical Chemistry, 2007. 388(1): p. 279-286.
14.Campelo, J.M., et al., Sustainable Preparation of Supported Metal Nanoparticles and Their Applications in Catalysis. ChemSusChem, 2009. 2(1): p. 18-45.
15.Kruis, F.E., H. Fissan, and A. Peled, Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications—a review. Journal of Aerosol Science, 1998. 29(5): p. 511-535.
16.Rajput, N., Methods of preparation of nanoparticles-A review. International Journal Of Advances In Engineering & Technology, 2015. 7(6): p. 1806.
17.Gijs, M.A., F. Lacharme, and U. Lehmann, Microfluidic applications of magnetic particles for biological analysis and catalysis. Chemical reviews, 2009. 110(3): p. 1518-1563.
18.Fievet, F., et al., Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles. Solid State Ionics, 1989. 32: p. 198-205.
19.Wu, W., Q. He, and C. Jiang, Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies. Nanoscale Research Letters, 2008. 3(11): p. 397-415.
20.Wan, J., et al., A soft-template-assisted hydrothermal approach to single-crystal Fe3O4 nanorods. Journal of Crystal Growth, 2005. 276(3): p. 571-576.
21.Reetz, M.T. and W. Helbig, Size-Selective Synthesis of Nanostructured Transition Metal Clusters. Journal of the American Chemical Society, 1994. 116(16): p. 7401-7402.
22.Gupta, A.K. and M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005. 26(18): p. 3995-4021.
23.He, J., et al., Magnetic separation techniques in sample preparation for biological analysis: a review. Journal of pharmaceutical and biomedical analysis, 2014. 101: p. 84-101.
24.Bonnemain, B., Superparamagnetic agents in magnetic resonance imaging: physicochemical characteristics and clinical applications a review. Journal of drug targeting, 1998. 6(3): p. 167-174.
25.Yang, C., J. Wu, and Y. Hou, Fe 3 O 4 nanostructures: synthesis, growth mechanism, properties and applications. Chemical Communications, 2011. 47(18): p. 5130-5141.
26.Morrison, S.A., et al., Atomic engineering of mixed ferrite and core–shell nanoparticles. Journal of nanoscience and nanotechnology, 2005. 5(9): p. 1323-1344.
27.De Cuyper, M. and M. Joniau, Mechanistic aspects of the adsorption of phospholipids onto lauric acid stabilized magnetite nanocolloids. Langmuir, 1991. 7(4): p. 647-652.
28.Nikitenko, S.I., et al., Synthesis of Highly Magnetic, Air-Stable Iron–Iron Carbide Nanocrystalline Particles by Using Power Ultrasound. Angewandte Chemie International Edition, 2001. 40(23): p. 4447-4449.
29.Morel, A.-L., et al., Sonochemical Approach to the Synthesis of Fe3O4@SiO2 cxCore−Shell Nanoparticles with Tunable Properties. ACS Nano, 2008. 2(5): p. 847-856.
30.Verma, A. and G.M. Murray, A Path to Soluble Molecularly Imprinted Polymers. Journal of Functional Biomaterials, 2012. 3(1): p. 1-22.
31.Vlatakis, G., et al., Drug assay using antibody mimics made by molecular imprinting. Nature, 1993. 361(6413): p. 645-647.
32.Hoshino, Y., et al., Peptide Imprinted Polymer Nanoparticles: A Plastic Antibody. Journal of the American Chemical Society, 2008. 130(46): p. 15242-15243.
33.Lofgreen, J.E. and G.A. Ozin, Controlling morphology and porosity to improve performance of molecularly imprinted sol–gel silica. Chemical Society Reviews, 2014. 43(3): p. 911-933.
34.Tokonami, S., H. Shiigi, and T. Nagaoka, Micro-and nanosized molecularly imprinted polymers for high-throughput analytical applications. Analytica chimica acta, 2009. 641(1): p. 7-13.
35.Kryscio, D.R. and N.A. Peppas, Critical review and perspective of macromolecularly imprinted polymers. Acta Biomaterialia, 2012. 8(2): p. 461-473.
36.Ren, K. and R.N. Zare, Chemical recognition in cell-imprinted polymers. ACS nano, 2012. 6(5): p. 4314-4318.
37.Puoci, F., et al., Molecularly imprinted polymers in drug delivery: state of art and future perspectives. Expert opinion on drug delivery, 2011. 8(10): p. 1379-1393.
38.Kempe, M., M. Glad, and K. Mosbach, An approach towards surface imprinting using the enzyme ribonuclease A. Journal of molecular recognition, 1995. 8(1‐2): p. 35-39.
39.Rachkov, A. and N. Minoura, Towards molecularly imprinted polymers selective to peptides and proteins. The epitope approach. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 2001. 1544(1): p. 255-266.
40.Nishino, H., C.-S. Huang, and K.J. Shea, Selective Protein Capture by Epitope Imprinting. Angewandte Chemie International Edition, 2006. 45(15): p. 2392-2396.
41.Glad, M., et al., Use of silane monomers for molecular imprinting and enzyme entrapment in polysiloxane-coated porous silica. Journal of Chromatography A, 1985. 347: p. 11-23.
42.Wulff, G., Biorecognition in molecularly imprinted polymers, in Molecular interactions in bioseparations. 1993, Springer US. p. 363-381.
43.Wulff, G., Enzyme-like catalysis by molecularly imprinted polymers. Chemical reviews, 2002. 102(1): p. 1-28.
44.Wulff, G., Molecular imprinting in cross‐linked materials with the aid of molecular templates—a way towards artificial antibodies. Angewandte Chemie International Edition, 1995. 34(17): p. 1812-1832.
45.Andersson, L., B. Sellergren, and K. Mosbach, Imprinting of amino acid derivatives in macroporous polymers. Tetrahedron Letters, 1984. 25(45): p. 5211-5214.
46.Vlatakis, G., et al., Drug assay using antibody mimics made by molecular imprinting. Nature, 1993. 361(6413): p. 645-647.
47.Sellergren, B. and L. Andersson, Molecular recognition in macroporous polymers prepared by a substrate analog imprinting strategy. The Journal of Organic Chemistry, 1990. 55(10): p. 3381-3383.
48.Ye, L., P.A. Cormack, and K. Mosbach, Molecular imprinting on microgel spheres. Analytica Chimica Acta, 2001. 435(1): p. 187-196.
49.Mayes, A.G. and K. Mosbach, Molecularly imprinted polymer beads: suspension polymerization using a liquid perfluorocarbon as the dispersing phase. Analytical Chemistry, 1996. 68(21): p. 3769-3774.
50.Defreese, J.L. and A. Katz, Synthesis of a confined class of chiral organic catalysts via bulk imprinting of silica. Chemistry of materials, 2005. 17(26): p. 6503-6506.
51.Venton, D.L. and E. Gudipati, Influence of protein on polysiloxane polymer formation: evidence for induction of complementary protein-polymer interactions. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1995. 1250(2): p. 126-136.
52.Bossi, A., et al., ‘Gate effect’in templated polyacrylamide membranes influences the electrotransport of proteins and finds applications in proteome analysis. Analytical and bioanalytical chemistry, 2007. 389(2): p. 447-454.
53.Strikovsky, A.G., et al., Catalytic molecularly imprinted polymers using conventional bulk polymerization or suspension polymerization: selective hydrolysis of diphenyl carbonate and diphenyl carbamate. Journal of the American Chemical Society, 2000. 122(26): p. 6295-6296.
54.Katz, A. and M.E. Davis, Molecular imprinting of bulk, microporous silica. Nature, 2000. 403(6767): p. 286-289.
55.Wang, Z., et al., An ionic liquid-modified graphene based molecular imprinting electrochemical sensor for sensitive detection of bovine hemoglobin. Biosensors and Bioelectronics, 2014. 61: p. 391-396.
56.Li, F., J. Li, and S. Zhang, Molecularly imprinted polymer grafted on polysaccharide microsphere surface by the sol–gel process for protein recognition. Talanta, 2008. 74(5): p. 1247-1255.
57.Ouyang, R., J. Lei, and H. Ju, Surface molecularly imprinted nanowire for protein specific recognition. Chemical Communications, 2008(44): p. 5761-5763.
58.Shi, H., et al., Template-imprinted nanostructured surfaces for protein recognition. Nature, 1999. 398(6728): p. 593-597.
59.Li, Y., et al., Protein recognition via surface molecularly imprinted polymer nanowires. Analytical chemistry, 2006. 78(1): p. 317-320.
60.Zhao, X.-L., et al., An epitope imprinting method on the surface of magnetic nanoparticles for specific recognition of bovine serum album. Journal of Materials Chemistry B, 2014. 2(43): p. 7575-7582.
61.Wang, Y.-Z., et al., Epitope imprinted polymer nanoparticles containing fluorescent quantum dots for specific recognition of human serum albumin. Microchimica Acta, 2015. 182(7-8): p. 1465-1472.
62.Ju, H., Z. Qiu, and S. Ding, Bio-Analytical Chemistry. 2007, Beijing: Science Press.
63.Mayes, A.G. and M.J. Whitcombe, Synthetic strategies for the generation of molecularly imprinted organic polymers. Advanced Drug Delivery Reviews, 2005. 57(12): p. 1742-1778.
64.Andersson, L.I., et al., Mimics of the binding sites of opioid receptors obtained by molecular imprinting of enkephalin and morphine. Proceedings of the National Academy of Sciences, 1995. 92(11): p. 4788-4792.
65.Ariffin, M.M., et al., Molecularly imprinted solid-phase extraction of diazepam and its metabolites from hair samples. Analytical chemistry, 2007. 79(1): p. 256-262.
66.Deng, D.-L., et al., Monolithic molecular imprinted polymer fiber for recognition and solid phase microextraction of ephedrine and pseudoephedrine in biological samples prior to capillary electrophoresis analysis. Journal of Chromatography A, 2012. 1219: p. 195-200.
67.Matsui, J., K. Fujiwara, and T. Takeuchi, Atrazine-selective polymers prepared by molecular imprinting of trialkylmelamines as dummy template species of atrazine. Analytical chemistry, 2000. 72(8): p. 1810-1813.
68.Karas, M., D. Bachmann, and F. Hillenkamp, Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Analytical Chemistry, 1985. 57(14): p. 2935-2939.
69.Tanaka, K., et al., Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 1988. 2(8): p. 151-153.
70.Wiley, W. and I.H. McLaren, Time‐of‐flight mass spectrometer with improved resolution. Review of Scientific Instruments, 1955. 26(12): p. 1150-1157.
71.Wolff, M. and W. Stephens, A pulsed mass spectrometer with time dispersion. Review of Scientific Instruments, 1953. 24(8): p. 616-617.
72.Mamyrin, B., et al., The massreflect ron, a new non-magnetic time-of-flight mass spectrometer with high resolution. Zh. Eksp. Teor. Fiz, 1973. 64: p. 82-89.
73.Zenobi, R. and R. Knochenmuss, Ion formation in MALDI mass spectrometry. Mass Spectrometry Reviews, 1998. 17(5): p. 337-366.
74.Ehring, H., M. Karas, and F. Hillenkamp, Role of photoionization and photochemistry in ionization processes of organic molecules and relevance for matrix‐assisted laser desorption lonization mass spectrometry. Journal of Mass Spectrometry, 1992. 27(4): p. 472-480.
75.Karas, M. and R. Krüger, Ion formation in MALDI: the cluster ionization mechanism. Chemical reviews, 2003. 103(2): p. 427-440.
76.Hunt, D.F. and F.W. Crow, Electron capture negative ion chemical ionization mass spectrometry. Analytical Chemistry, 1978. 50(13): p. 1781-1784.
77.Gobom, J., et al., α-Cyano-4-hydroxycinnamic acid affinity sample preparation. A protocol for MALDI-MS peptide analysis in proteomics. Analytical Chemistry, 2001. 73(3): p. 434-438.
78.Thomas, H., et al., Dried‐droplet probe preparation on AnchorChip™ targets for navigating the acquisition of matrix‐assisted laser desorption/ionization time‐of‐flight spectra by fluorescence of matrix/analyte crystals. Rapid communications in mass spectrometry, 2004. 18(9): p. 923-930.
79.Zhang, X., et al., An improved method of sample preparation on AnchorChip™ targets for MALDI‐MS and MS/MS and its application in the liver proteome project. Proteomics, 2007. 7(14): p. 2340-2349.
80.Caprioli, R.M., T.B. Farmer, and J. Gile, Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Analytical chemistry, 1997. 69(23): p. 4751-4760.
81.Nesvizhskii, A.I., et al., A statistical model for identifying proteins by tandem mass spectrometry. Analytical chemistry, 2003. 75(17): p. 4646-4658.
82.McLafferty, F.W., Tandem mass spectrometry. New York, 1983.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊