|
[1] G.J. Fisher, Y. Shao, T. He, Z. Qin, D. Perry, J.J. Voorhees, T. Quan, Reduction of fibroblast size or mechanical force down-regulates TGF-beta receptor: implications for human skin aging, Aging Cell 15 (2016) 67-76. [2] A.K. GHOSH, Factors Involved in the Regulation of Type I collagen gene expression: Implication in Fibrosis, Society for Experimental Biology and Medicine (2002). [3] A. Kammeyer, R.M. Luiten, Oxidation events and skin aging, Ageing Res Rev 21 (2015) 16-29. [4] T. Quan, F. Wang, Y. Shao, L. Rittie, W. Xia, J.S. Orringer, J.J. Voorhees, G.J. Fisher, Enhancing structural support of the dermal microenvironment activates fibroblasts, endothelial cells, and keratinocytes in aged human skin in vivo, The Journal of investigative dermatology 133(3) (2013) 658-67. [5] R. Kalluri, M. Zeisberg, Fibroblasts in cancer, Nat Rev Cancer 6(5) (2006) 392-401. [6] Endogenous growth factors as cosmeceuticals, Dermatologic Therapy 20 (2007) 350–359. [7] E.J. Bradley, C.E. Griffiths, M.J. Sherratt, M. Bell, R.E. Watson, Over-the-counter anti-ageing topical agents and their ability to protect and repair photoaged skin, Maturitas 80(3) (2015) 265-72. [8] M. Sardy, Role of matrix metalloproteinases in skin ageing, Connect Tissue Res 50(2) (2009) 132-8. [9] H. Piao, N. Kamiya, F. Cui, M. Goto, Preparation of a solid-in-oil nanosuspension containing L-ascorbic acid as a novel long-term stable topical formulation, Int J Pharm 420(1) (2011) 156-60. [10] M. Ooe, T. Seki, T. Miura, A. Takada, Comparative evaluation of wrinkle treatments, Aesthetic Plast Surg 37(2) (2013) 424-33. [11] H.H. Chan, D. Manstein, C.S. Yu, S. Shek, T. Kono, W.I. Wei, The prevalence and risk factors of post-inflammatory hyperpigmentation after fractional resurfacing in Asians, Lasers Surg Med 39(5) (2007) 381-5. [12] P. Bjerring, M. Clement, L. Heickendorff, H. Egevist, M. Kiernan, Selective non-ablative wrinkle reduction by laser, Journal of cutaneous laser therapy (2000) 9-15. [13] Trends in the Use of Neurotoxins and Dermal Fillers by US Physicians, J Clin Aesthet Dermatol 7(9) (2014) 14-19. [14] A. Tezel, G.H. Fredrickson, The science of hyaluronic acid dermal fillers, J Cosmet Laser Ther 10(1) (2008) 35-42. [15] J. Carruthers, A. Carruthers, S. Humphrey, Introduction to Fillers, Plast Reconstr Surg 136(5 Suppl) (2015) 120S-131S. [16] J. Kablik, G.D. Monheit, L. Yu, G. Chang, J. Gershkovich, Comparative physical properties of hyaluronic acid dermal fillers, Dermatol Surg 35 Suppl 1 (2009) 302-12. [17] J. Yeom, S.H. Bhang, B.-S. Kim, M.S. Seo, E.J. Hwang, I.H. Cho, J.K. Park, S.K. Hahn, Effect of Cross-Linking Reagents for Hyaluronic Acid Hydrogel Dermal fillers on tissue augmentation and regeneration, Bioconjugate Chem. 21 (2010) 240-247. [18] F. Wang, L.A. Garza, S. Kang, et al., IN vivo stimulation of de novo collagen production caused by cross-linked hyaluronic acid dermal filler injections in photodamaged human skin, Archives of Dermatology 143(2) (2007) 155-163. [19] M. DANNY VLEGGAAR, Facial Volumetric Correction with Injectable Poly-L-Lactic Acid, Dermatol Surg 31 (2005) 1511-1518. [20] C. Courderot-Masuyer, S. Robin, H. Tauzin, P. Humbert, Evaluation of the Behaviour of Wrinkles Fibroblasts and Normal Aged Fibroblasts in the Presence of Poly-L-Lactic Acid, Journal of Cosmetics, Dermatological Sciences and Applications 02(01) (2012) 20-27. [21] P. Carol Courderot-Masuyer, P. Sophie Robin, P. Helene Tauzin, M. Philippe Humbert, PhD, Evaluation of lifting and antiwrinkle effects of calcium hydroxylapatite filler. In vitro quantification of contractile forces of human wrinkle and normal aged fibroblasts treated with calcium hydroxylapatite, Journal of Cosmetic Dermatology (2016). [22] A. Berlin, J.L. Cohen, D.J. Goldberg, Calcium hydroxylapatite for facial rejuvenation, Semin Cutan Med Surg 25(3) (2006) 132-7. [23] M. Vera B. Morhenn, M. Gottfried Lemperle, PhD, M. Richard L. Gallo, PhD, phagocytosis of different particulate dermal filler substances by human macrophages and skin cells, Dermatologic Surgery 28 (2002) 484-490. [24] V. Bertucci, C.B. Lynde, Current Concepts in the Use of Small-Particle Hyaluronic Acid, Plast Reconstr Surg 136(5 Suppl) (2015) 132S-138S. [25] K.M. Chan, R.H. Li, J.W. Chapman, E.M. Trac, J.B. Kobler, S.M. Zeitels, R. Langer, S.S. Karajanagi, Functionalizable hydrogel microparticles of tunable size and stiffness for soft-tissue filler applications, Acta biomaterialia 10(6) (2014) 2563-73. [26] M. Kawata, K. Azuma, H. Izawa, M. Morimoto, H. Saimoto, S. Ifuku, Biomineralization of calcium phosphate crystals on chitin nanofiber hydrogel for bone regeneration material, Carbohydrate polymers 136 (2016) 964-9. [27] S.H. Jeong, Y.F. Fan, J.U. Baek, J. Song, T.H. Choi, S.W. Kim, H.E. Kim, Long-lasting and bioactive hyaluronic acid-hydroxyapatite composite hydrogels for injectable dermal fillers: Physical properties and in vivo durability, J Biomater Appl 31(3) (2016) 464-74. [28] N. SAHINER, X. JIA, One-Step Synthesis of Hyaluronic Acid-Based (sub)micron hydrogel particles-optimization and preliminary characterization, Turk J Chem 32 (2008) 397-409. [29] A. La Gatta, C. Schiraldi, A. Papa, M. De Rosa, Comparative analysis of commercial dermal fillers based on crosslinked hyaluronan: Physical characterization and in vitro enzymatic degradation, Polymer Degradation and Stability 96(4) (2011) 630-636. [30] N. Volpi, F. Galeotti, B. Yang, R.J. Linhardt, Analysis of glycosaminoglycan-derived, precolumn, 2-aminoacridone-labeled disaccharides with LC-fluorescence and LC-MS detection, Nat Protoc 9(3) (2014) 541-58. [31] A.T. Hillel, Z. Nahas, S. Unterman, B. Reid, J. Axelman, D. Sutton, C. Matheson, J. Petsche, J.H. Elisseeff, Validation of a small animal model for soft tissue filler characterization, Dermatol Surg 38(3) (2012) 471-8. [32] S. Paliwal, S. Fagien, X. Sun, T. Holt, T. Kim, C.K. Hee, D. Van Epps, D.J. Messina, Skin extracellular matrix stimulation following injection of a hyaluronic acid-based dermal filler in a rat model, Plast Reconstr Surg 134(6) (2014) 1224-33. [33] V.R. Girardi, J.J. Silber, N. Mariano Correa, R. Darío Falcone, The use of two non-toxic lipophilic oils to generate environmentally friendly anionic reverse micelles without cosurfactant. Comparison with the behavior found for traditional organic non-polar solvents, Colloids and Surfaces A: Physicochemical and Engineering Aspects 457 (2014) 354-362. [34] A.A. Shimojo, A. Pires, R. Lichy, M.H. Santana, The performance of crosslinking with divinyl sulfone as controlled by the interplay between the chemical modification and conformation of hyaluronic acid, Journal of the Brazilian Chemical Society 26(3) (2015) 506-512. [35] B. Baruah, J.M. Roden, M. Sedgwick, N.M. Correa, D.C. Crans, N.E. Levinger, When Is Water Not Water? Exploring Water Confined in Large Reverse Micelles Using a Highly Charged Inorganic Molecular Probe, Journal of the american chemical society 128(39) (2006) 12758–12765. [36] A.A. Shimojo, A.M. Pires, R. Lichy, A.A. Rodrigues, M.H. Santana, The crosslinking degree controls the mechanical, rheological, and swelling properties of hyaluronic acid microparticles, Journal of biomedical materials research. Part A 103(2) (2015) 730-7. [37] R.A. Surmenev, M.A. Surmeneva, A.A. Ivanova, Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis--a review, Acta biomaterialia 10(2) (2014) 557-79. [38] W.M. Li, S.Y. Chen, D.M. Liu, In situ doxorubicin-CaP shell formation on amphiphilic gelatin-iron oxide core as a multifunctional drug delivery system with improved cytocompatibility, pH-responsive drug release and MR imaging, Acta biomaterialia 9(2) (2013) 5360-8. [39] S.-Y. Han, H.S. Han, S.C. Lee, Y.M. Kang, I.-S. Kim, J.H. Park, Mineralized hyaluronic acid nanoparticles as a robust drug carrier, Journal of Materials Chemistry 21(22) (2011) 7996. [40] B.Q. Lu, Y.J. Zhu, F. Chen, C. Qi, X.Y. Zhao, J. Zhao, Core-shell hollow microspheres of magnetic iron oxide@amorphous calcium phosphate: synthesis using adenosine 5'-triphosphate and application in pH-responsive drug delivery, Chem Asian J 9(10) (2014) 2908-14. [41] Q. Wang, P. Liu, Y. Sun, T. Gong, M. Zhu, X. Sun, Z. Zhang, Y. Duan, Preparation and properties of biocompatible PS-PEG/calcium phosphate nanospheres, Nanotoxicology 9(2) (2015) 190-200. [42] Assembly of Aqueous-Cored Calcium Phosphate Nanoparticles for Drug Delivery, Chem. Mater. (2004) 4942-4947. [43] J. Redepenning, T. Schlessinger, S. Burnham, L. Lippiello, J. Miyano, Characterization of electrolytically prepared brushite and hydroxyapatite coatings on orthopedic alloys, Journal of Biomedical Materials Research Part A 30(3) (1996) 287-294. [44] J. Buschmann, L. Härter, S. Gao, S. Hemmi, M. Welti, N. Hild, O.D. Schneider, W.J. Stark, N. Lindenblatt, C.M. Werner, Tissue engineered bone grafts based on biomimetic nanocomposite PLGA/amorphous calcium phosphate scaffold and human adipose-derived stem cells, Injury 43(10) (2012) 1689-1697. [45] N. Sahiner, C. Silan, S. Sagbas, P. Ilgin, S. Butun, H. Erdugan, R.S. Ayyala, Porous and modified HA particles as potential drug delivery systems, Microporous and Mesoporous Materials 155 (2012) 124-130. [46] L. Sun, L.C. Chow, S.A. Frukhtbeyn, Preparation and Properties of Nanoparticles of Calcium Phosphates With Various Ca/P Ratios, J. Res. Natl. Inst. Stand. Technol. 115(4) (2010) 243-255. [47] S.H. Jeong, Y.H. Koh, S.W. Kim, J.U. Park, H.E. Kim, J. Song, Strong and Biostable Hyaluronic Acid-Calcium Phosphate Nanocomposite Hydrogel via in Situ Precipitation Process, Biomacromolecules 17(3) (2016) 841-51. [48] Hyaluronidase from sheep testes Type II. [49] S. Park, K.Y. Park, I.K. Yeo, S.Y. Cho, Y.C. Ah, H.J. Koh, W.S. Park, B.J. Kim, Investigation of the Degradation-Retarding Effect Caused by the Low Swelling Capacity of a Novel Hyaluronic Acid Filler Developed by Solid-Phase Crosslinking Technology, Ann Dermatol 26(3) (2014) 357-362. [50] J. Alijotas-Reig, M.T. Fernandez-Figueras, L. Puig, Late-onset inflammatory adverse reactions related to soft tissue filler injections, Clin Rev Allergy Immunol 45(1) (2013) 97-108. [51] F. Duranti, G. Salti, B. Bovani, M. Calandra, M.L. Rosati, Injectable hyaluronic acid gel for soft tissue augmentation, Dermatologic surgery 24(12) (1998) 1317-1325. [52] S. SHUSTER, M. M.BLACK, E. McVITIE, The influence of age and sex on skin thickness, skin collagen and density, British Journal of Dermatology (1975) 639-643. [53] D.Y. Ji, T.F. Kuo, H.D. Wu, J.C. Yang, S.Y. Lee, A novel injectable chitosan/polyglutamate polyelectrolyte complex hydrogel with hydroxyapatite for soft-tissue augmentation, Carbohydrate polymers 89(4) (2012) 1123-30. [54] F. Grinnell, Fibroblast biology in three-dimensional collagen matrices, Trends in Cell Biology 13(5) (2003) 264-269.
|