|
1.Bauchop, T.; Elsden, S., The growth of micro-organisms in relation to their energy supply. Microbiol. 1960, 23, 457-469. 2.Seeberger, P. H.; Werz, D. B., Automated synthesis of oligosaccharides as a basis for drug discovery. Nat. Rev. Drug. Discov. 2005, 4, 751-63. 3.Bertozzi, C. R.; Kiessling, L. L., Chemical glycobiology. Science 2001, 291, 2357-2364. 4.Postma, P.; Lengeler, J.; Jacobson, G., Phosphoenolpyruvate: carbohydrate phosphotransferase systems of bacteria. Microbiol. Rev. 1993, 57, 543-594. 5.Feng, D.; Shaikh, A. S.; Wang, F., Recent Advance in Tumor-associated Carbohydrate Antigens (TACAs)-based Antitumor Vaccines. ACS Chem. Biol. 2016, 11, 850-63. 6.Zhu, X.; Schmidt, R. R., New principles for glycoside-bond formation. Angew. Chem. Int. Ed. 2009, 48, 1900-1934. 7.Yu, B.; Xie, J.; Deng, S.; Hui, Y., First synthesis of a bidesmosidic triterpene saponin by a highly efficient procedure. J. Am. Chem. Soc. 1999, 121, 12196-12197. 8.Wang, L. X.; Davis, B. G., Realizing the Promise of Chemical Glycobiology. Chem. Sci. 2013, 4, 3381-3394. 9.Furniss, B. S., Vogel''s textbook of practical organic chemistry. 5 ed.; Pearson Education India: 1989. 10.Tiwari, P.; Kumar, R.; Maulik, P. R.; Misra, A. K., Efficient Acetylation of Carbohydrates Promoted by Imidazole. Eur. J. Org. Chem. 2005, 20, 4265-4270. 11.Ch, R.; Tyagi, M.; Patil, P. R.; Ravindranathan Kartha, K. P., DABCO: an efficient promoter for the acetylation of carbohydrates and other substances under solvent-free conditions. Tetrahedron Lett. 2011, 52, 5841-5846. 12.Dasgupta, F.; Singh, P. P.; Srivastava, H. C., Acetylation of carbohydrates using ferric chloride in acetic anhydride. Carbohydr. Res. 1980, 80, 346-349. 13.Abbott, A. P.; Bell, T. J.; Handa, S.; Stoddart, B., O-Acetylation of cellulose and monosaccharides using a zinc based ionic liquid. Green Chem. 2005, 7, 705-707. 14.Tai, C.-A.; Kulkarni, S. S.; Hung, S.-C., Facile Cu(OTf)2-catalyzed preparation of per-O-acetylated hexopyranoses with stoichiometric acetic anhydride and sequential one-pot anomeric substitution to thioglycosides under solvent-free conditions. J. Org. Chem. 2003, 68, 8719-8722. 15.Bizier, N. P.; Atkins, S. R.; Helland, L. C.; Colvin, S. F.; Twitchell, J. R.; Cloninger, M. J., Indium triflate catalyzed peracetylation of carbohydrates. Carbohydr. Res. 2008, 343, 1814-1818. 16.Lee, J.-C.; Tai, C.-A.; Hung, S.-C., Sc(OTf)3-catalyzed acetolysis of 1, 6-anhydro-β-hexopyranoses and solvent-free per-acetylation of hexoses. Tetrahedron Lett. 2002, 43, 851-855. 17.Bartoli, G.; Dalpozzo, R.; De Nino, A.; Maiuolo, L.; Nardi, M.; Procopio, A.; Tagarelli, A., Per-O-acetylation of sugars catalyzed by Ce(OTf)3. Green Chem. 2004, 6, 191-192. 18.Lu, K.-C.; Hsieh, S.-Y.; Patkar, L. N.; Chen, C.-T.; Lin, C.-C., Simple and efficient per-O-acetylation of carbohydrates by lithium perchlorate catalyst. Tetrahedron 2004, 60, 8967-8973. 19.Chen, C.-T.; Kuo, J.-H.; Li, C.-H.; Barhate, N.; Hon, S.-W.; Li, T.-W.; Chao, S.-D.; Liu, C.-C.; Li, Y.-C.; Chang, I.-H., Catalytic nucleophilic acyl substitution of anhydrides by amphoteric vanadyl triflate. Org. Lett. 2001, 3, 3729-3732. 20.Agnihotri, G.; Tiwari, P.; Misra, A. K., One-pot synthesis of per-O-acetylated thioglycosides from unprotected reducing sugars. Carbohydr. Res. 2005, 340, 1393-1396. 21.Chatterjee, D.; Paul, A.; Rajkamal, R.; Yadav, S., Cu(ClO4)2.6H2O catalyzed solvent free per-O-acetylation and sequential one-pot conversions of sugars to thioglycosides. RSC Adv. 2015, 5, 29669–29674. 22.Lin, T.-W.; Adak, A. K.; Lin, H.-J.; Das, A.; Hsiao, W.-C.; Kuan, T.-C.; Lin, C.-C., Tetranuclear zinc cluster: a dual purpose catalyst for per-O-acetylation and de-O-acetylation of carbohydrates. RSC Adv. 2016, 6, 58749-58754. 23.Binch, H.; Stangier, K.; Thiem, J., Chemical synthesis of GDP-L-galactose and analogues. Carbohydr. Res. 1998, 306, 409-419. 24.Hyatt, J.; Tindall, G., The intermediacy of sulfate esters in sulfuric acid catalyzed acetylation of carbohydrates. Heterocycles 1993, 35, 227-234. 25.Chao, C. S.; Chen, M. C.; Lin, S. C.; Mong, K. K., Versatile acetylation of carbohydrate substrates with bench-top sulfonic acids and application to one-pot syntheses of peracetylated thioglycosides. Carbohydr. Res. 2008, 343, 957-964. 26.Li, A.-X.; Li, T.-S.; Ding, T.-H., Montmorillonite K-10 and KSF as remarkable acetylationcatalysts. Chem. Commun. 1997, 15, 1389-1390. 27.Bhaskar, P. M.; Loganathan, D., H-Beta zeolite as an efficient catalyst for per-O-acetylation of mono-and disaccharides. Synlett 1999, 1, 129-131. 28.Curini, M.; Epifano, F.; Marcotullio, M. C.; Rosati, O.; Rossi, M., Heterogeneous Catalysis in Acetylation of Alcohols and Phenols Promoted by Zirconium Sulfophenyl Phosphonate. Synth. Commun. 2007, 30, 1319-1329. 29.Wu, L.; Yin, Z., Sulfonic acid functionalized nano gamma-Al2O3 catalyzed per-O-acetylated of carbohydrates. Carbohydr. Res. 2013, 365, 14-19. 30.Cai, L.; Rufty, C.; Liquois, M., Solvent-Free Per-O-acetylation of Carbohydrates. Asian J. Chem. 2014, 26, 4367-4369. 31.Forsyth, S. A.; MacFarlane, D. R.; Thomson, R. J.; von Itzstein, M., Rapid, clean, and mild O-acetylation of alcohols and carbohydrates in an ionic liquid. Chem. Commun. 2002, 7, 714-715. 32.Murugesan, S.; Karst, N.; Islam, T.; Wiencek, J. M.; Linhardt, R. J., Dialkyl imidazolium benzoates-room temperature ionic liquids useful in the peracetylation and perbenzoylation of simple and sulfated saccharides. Synlett. 2003, 9, 1283-1286. 33.Dasgupta‡, S.; Rajput‡, V. K.; Roy, B.; Mukhopadhyay, B., Lanthanum Trifluoromethane-sulfonate‐Catalyzed Facile Synthesis of Per‐O-acetylated Sugars and Their One‐Pot Conversion to S‐Aryl and O‐Alkyl/Aryl Glycosides†. J. Carbohydr. Chem. 2007, 26, 91-106. 34.Dmitriev, B. A.; Knirel, Y. A.; Kochetkov, N. K., Selective cleavage of glycosidic linkages: studies with the O-specific polysaccharide from Shigella dysenteriae type 3. Carbohydr. Res. 1975, 40, 365-372. 35.Nudelman, A.; Herzig, J.; Gottlieb, H. E.; Keinan, E.; Sterling, J., Selective deacetylation of anomeric sugar acetates with tin alkoxides. Carbohydr. Res. 1987, 162, 145-152. 36.Banaszek, A.; Cornet, X. B.; Zamojski, A., A new, efficient method for hydrolysis of the anomeric acetyl group in substituted hexopyranoses. Carbohydr. Res. 1985, 144, 342-345. 37.Dilhas, A.; Bonnaffé, D., PhBCl2 promoted reductive opening of 2'',4''-O-p-methoxybenzylidene: new regioselective differentiation of position 2'' and 4'' of α-l-iduronyl moieties in disaccharide building blocks. Tetrahedron Lett. 2004, 45, 3643-3645. 38.Kaya, E.; Sonmez, F.; Kucukislamoglu, M.; Nebioglu, M., Selective anomeric deacetylation using zinc acetate as catalyst. Chem. Pap. 2012, 66, 312-315. 39.Tiwari, P.; Misra, A. K., Selective removal of anomeric O-acetate groups in carbohydrates using HClO4–SiO2. Tetrahedron Lett. 2006, 47, 3573-3576. 40.Wei, G.; Zhang, L.; Cai, C.; Cheng, S.; Du, Y., Selective cleavage of sugar anomeric O-acyl groups using FeCl3•6H2O. Tetrahedron Lett. 2008, 49, 5488-5491. 41.Tran, A. T.; Deydier, S.; Bonnaffé, D.; Le Narvor, C., Regioselective green anomeric deacetylation catalyzed by lanthanide triflates. Tetrahedron Lett. 2008, 49, 2163-2165. 42.Andersen, S. M.; Heuckendorff, M.; Jensen, H. H., 3-(Dimethylamino)-1-propylamine: a cheap and versatile reagent for removal of byproducts in carbohydrate chemistry. Org. Lett. 2015, 17, 944-947. 43.Cai, T. B.; Lu, D.; Tang, X.; Zhang, Y.; Landerholm, M.; Wang, P. G., New glycosidase activated nitric oxide donors: glycose and 3-morphorlinosydnonimine conjugates. J. Org. Chem. 2005, 70, 3518-3524. 44.Holmberg, R. J.; Kuo, C.-J.; Gabidullin, B.; Wang, C.-W.; Clérac, R.; Murugesu, M.; Lin, P.-H., A propeller-shaped μ 4-carbonate hexanuclear dysprosium complex with a high energetic barrier to magnetisation relaxation. Dalton Trans. 2016, 45, 16769-16773. 45.Pinho, S. S.; Reis, C. A., Glycosylation in cancer: mechanisms and clinical implications. Nat. Rev. Cancer. 2015, 15, 540-555. 46.Monzavi-Karbassi, B.; Pashov, A.; Kieber-Emmons, T., Tumor-Associated Glycans and Immune Surveillance. Vaccines 2013, 1, 174-203. 47.Restifo, N. P.; Dudley, M. E.; Rosenberg, S. A., Adoptive immunotherapy for cancer: harnessing the T cell response. Nat. Rev. Immunol. 2012, 12, 269-281. 48.Slovin, S.; Ragupathi, G.; Adluri, S.; Ungers, G.; Terry, K.; Kim, S.; Spassova, M.; Bornmann, W.; Fazzari, M.; Dantis, L., Carbohydrate vaccines in cancer: immunogenicity of a fully synthetic globo H hexasaccharide conjugate in man. PNAS 1999, 96, 5710-5715. 49.Ravindranath, M. H.; Muthugounder, S.; Presser, N.; Ye, X.; Brosman, S.; Morton, D. L., Endogenous immune response to gangliosides in patients with confined prostate cancer. Int. J. Cancer 2005, 116, 368-377. 50.Schelhaas, M.; Waldmann, H., Protecting group strategies in organic synthesis. Angew. Chem. Int. Ed. 1996, 35, 2056-2083. 51.Ágoston, K.; Streicher, H.; Fügedi, P., Orthogonal protecting group strategies in carbohydrate chemistry. Tetrahedron: Asymmetry 2016, 27, 707-728. 52.Kusumoto, S.; Sakai, K.; Shiba, T., 4-Azidobutyryl group for temporary protection of hydroxyl functions. Bull. Chem. Soc. Jpn. 1986, 59, 1296-1298. 53.Xu, J.; Guo, Z., (2-Azidomethyl) phenylacetyl as a new, reductively cleavable protecting group for hydroxyl groups in carbohydrate synthesis. Carbohydr. Res. 2002, 337, 87-91. 54.Li, Y.; Liu, X., Tunable acid-sensitive ester protecting groups in oligosaccharide synthesis. Chem. Commun. 2014, 50, 3155-3158. 55.Ali, A.; van den Berg, R. J. B. H. N.; Overkleeft, H. S.; Filippov, D. V.; van der Marel, G. A.; Codée, J. D. C., Methylsulfonylethoxycarbonyl (Msc) and fluorous propylsulfonylethoxycarbonyl (FPsc) as hydroxy-protecting groups in carbohydrate chemistry. Tetrahedron Lett. 2009, 50, 2185-2188. 56.Akai, S.; Tanaka, R.; Hoshi, H.; Sato, K., Selective deprotection method of N-phenylcarbamoyl group. J. Org. Chem. 2013, 78, 8802-8808. 57.Sridhar, P. R.; Chandrasekaran, S., Propargyloxycarbonyl (Poc) as a protective group for the hydroxyl function in carbohydrate synthesis. Org. Lett. 2002, 4, 4731-4733. 58.Crich, D.; Li, L.; Shirai, M., The 4-(tert-Butyldiphenylsiloxy)-3-fluorobenzyl Group: A New Alcohol Protecting Group, Fully Orthogonal with the p-Methoxybenzyl Group and Removable under Desilylation Conditions. J. Org. Chem. 2009, 74, 2486-2493. 59.Muramatsu, W.; Mishiro, K.; Ueda, Y.; Furuta, T.; Kawabata, T., Perfectly Regioselective and Sequential Protection of Glucopyranosides. Eur. J. Org. Chem. 2010, 5, 827-831. 60.Castelli, R.; Overkleeft, H. S.; van der Marel, G. A.; Codée, J. D., 2, 2-Dimethyl-4-(4-methoxy-phenoxy) butanoate and 2, 2-Dimethyl-4-azido Butanoate: Two New Pivaloate-ester-like Protecting Groups. Org. Lett. 2013, 15, 2270-2273. 61.Zeng, N.; Niu, Y.; Ye, X.-S., 3-Butenyloxycarbonyl as a new hydroxyl protecting group in carbohydrate synthesis. Tetrahedron Lett. 2016, 57, 2935-2938. 62.Daragics, K.; Fügedi, P. t., (2-Nitrophenyl) acetyl: A New, Selectively Removable Hydroxyl Protecting Group. Org. Lett. 2010, 12, 2076-2079.
|