跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/01/17 06:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉孟函
研究生(外文):Meng-Han Liu
論文名稱:應用磁性奈米粒子純化磷酸化酪胺酸之蛋白質
論文名稱(外文):Specific purification of phosphorylated tyrosine proteins with magnetic nanoparticles composite
指導教授:蕭鶴軒
口試委員:林泱蔚李茂榮
口試日期:2017-07-19
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:68
中文關鍵詞:磁性奈米粒子磷酸化酪胺酸蛋白質分子印模聚合物
外文關鍵詞:magnetic nanoparticlephosphorylated tyrosinemolecular imprinted polymers
相關次數:
  • 被引用被引用:0
  • 點閱點閱:154
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
蛋白質磷酸化在轉譯後修飾的領域中扮演很重要的角色,如細胞生長、代謝及訊息的傳遞,許多文獻指出,酪胺酸磷酸化的蛋白質癌細胞的生成有關。但由於蛋白質磷酸化含量低,過程不穩且可逆,磷酸修飾帶負電而質譜使用正電模式,所以較容易受到非磷酸化胜肽抑制,因此需開發一個有效率且靈敏具有特異性的純化技術,來得到此方面的更多資訊。本實驗利用共沉澱法合成四氧化三鐵再包覆上二氧化鈦利用功能性單體-3-氮基丙基三乙氧基矽烷和交聯劑-苯基三甲氧基矽烷與模板-苯基磷酸合成分子印模聚合物,再利用乙腈與氨水溶液將模板移除,並在5% 三氟乙酸的條件下鍵結目標分子。Fe3O4@TiO2磁性奈米粒子對模板的最大承載量為60 μg/mg,且有效的純化ß酪蛋白及磷酸化胜肽標準品,其磷酸化胜肽訊號分別為m/z 2061和3122,而標準品的部分其m/z 813,863,1368 和1448可被有效的純化並利用基質輔助雷射脫附飛行時間式質譜儀分析。本研究利用分子印模聚合物之方法成功合成一個簡單且便宜的材料且能有效純化的技術。
Protein phosphorylation is an important post-translational modification which plays a critical role in the regulation of many cellar processes, such as signal transduction, metabolic homeostasis, cell division and growth. Protein phosphorylation on tyrosine has emerged as a vital part in diagnosing and curing cancer due to commonly observed in tumor proteomics. However, the identification of tyrosine-phosphorylated protein remains a challenge due to poor ionization efficiency in mass spectrometer, ion suppression by non-phosphotyrosine peptides. Therefore, it is essential to develop a sensitive and selective method for the specific enrichment of tyrosine-phosphorylated proteins and peptides. The magnetic nanoparticles were coated by titanium butoxide. The functional monomer (3-Aminopropyl) triethoxysilane and crosslinker phenyltrimethoxysilane interacted with template molecules and formed co-polymerization. Subsequently, the template molecules were removed by adding ammonium hydroxide mixed acetonitrile solution to form the phosphotyrosine imprinting polymers. In 5% TFA under the condition, polymers binding to target. The maximum binding capacity of phenylphosphonic acid onto Fe3O4@TiO2 magnetic nanoparticles was 60 μg/mg. The β-casein digests was utilized for the enrichment of phosphopeptides. The signals of β-casein phosphopeptide at m/z 2061 and 3122 could be detected and the standard phosphopeptide at m/z 813, 863, 1368 and 1448 were be observed by MALDI-TOF MS (Matrix-Assisted Laser Desorption/ Ionization Time of Flight Mass Spectrometry). MIPs (Molecularly Imprinted Polymers) were successfully synthesized by using the epitope imprinting method which were inexpensive and effective technique.
謝誌 i
摘要 ii
Abstract iii
圖目錄 vii
表目錄 ix
第一章 緒論 1
1.1 蛋白質體學介紹 1
1.2 轉譯後修飾 2
1.3 磷酸化轉譯後修飾的分析 4
1.4 純化磷酸化蛋白質與磷酸化胜肽 5
1.5 奈米粒子 7
1.5.1小尺寸效應 (Small size effect) 7
1.5.2表面效應 8
1.5.3量子尺寸及量子穿隧效應 8
1.6 磁性奈米粒子 8
1.7 分子印模聚合物 11
1.7.1原理 11
1.7.2非共價鍵結 (non-covalent assembly) 11
1.7.3共價鍵結 (covalent modification) 13
1.7.4金屬螯合 (ligand exchange) 13
1.7.5功能性單體 (functional monomer) 14
1.7.6交聯劑 (crosslinker) 14
1.7.7起始劑 (initiator) 15
1.8 質譜儀簡介 15
1.8.1原理 15
1.8.2基質輔助雷射脫附飛行時間式串聯式質譜儀 16
1.8.3飛行時間質量分析器 (Time-of-fight,TOF) 19
1.9 高效液相層析法(High Performance Liquid Chromatography, HPLC) 20
1.10 紫外-可見分光吸收光度法(Ultraviolet–visible spectroscopy,UV-Vis) 23
1.11 研究目的 23
第二章 藥品器材與實驗流程 25
2.1 藥品 25
2.2 實驗器材 26
2.3 藥品前處理 27
2.3.1藥品配置 27
2.3.2牛血清蛋白水解 28
2.3.3 ß牛乳酪蛋白水解 28
2.4 分子印模聚合物合成 29
2.4.1磁性奈米粒子四氧化三鐵製備 29
2.4.2 Fe3O4@TiO2之合成 31
2.4.3甲酸溶解包覆不完全之Fe3O4 31
2.4.4 MIP (Molecular Imprinted Polymers) 與NIP (Non-Molecular Imprinted Polymers) 之合成 32
2.5 純化ß-牛乳酪蛋白之磷酸化胜肽 32
2.6 純化磷酸化胜肽標準品 33
2.7 HPLC-UV數據 34
2.8 模板鑑定 34
2.8.1傅立葉轉換紅外線光譜儀 34
2.8.2穿透式電子顯微鏡 37
2.8.3.超導量子干涉震動磁量儀 37
第三章 結果與討論 39
3.1 分子印模聚合物鑑定 39
3.1.1分子模板聚合物大小鑑定 39
3.1.2傅立葉轉換紅外線光譜儀鑑定 43
3.1.3奈米粒子磁性鑑定 47
3.2 條件探討 50
3.2.1 Fe3O4@TiO2磁性奈米粒子最大吸附量 50
3.2.2 Fe3O4@TiO2磁性奈米粒子吸附時間 52
3.2.4 MIP與NIP的elute量比較 54
3.2.5 MIP與standard phosphoeptide 反應時間 56
3.3 MALDI-TOF MS質譜圖分析 58
3.3.1純化ß-casein 58
3.3.2純化磷酸化胜肽標準品 60
3.3.3磷酸化胜肽標準品純化之層析質譜圖 62
第四章 結論 64
第五章 參考文獻 65






圖目錄
圖一、蛋白質體學分析流程圖 3
圖二、分析磷酸化蛋白質之流程圖6
圖三、合成分子印模聚合物流程圖12
圖四、飛行時間質量分析器內部及構造21
圖五、本研究合成分子印模聚合物流程圖30
圖六、磷酸化胜肽純化流程圖35
圖七、Fe3O4磁性奈米粒子之TEM圖40
圖八、不同Titanium(IV) butoxide反應劑量下的Fe3O4@TiO241
圖九、Molecularly imprinted polymers (MIPs) 之TEM圖42
圖十、Non-Molecularly Imprinted Polymers (NIPs) 之TEM圖42
圖十一、四氧化三鐵 (Fe3O4) 磁性奈米粒子之FT-IR圖44
圖十二、Fe3O4@TiO2磁性奈米粒子之FT-IR圖45
圖十三、分子印模聚合物之FT-IR圖46
圖十四、Fe3O4與銣鐵硼磁石圖48
圖十五、Fe3O4@TiO2與銣鐵硼磁石圖48
圖十六、Fe3O4與Fe3O4@TiO2磁滯曲線圖49
圖十七、Fe3O4、Fe3O4@TiO2與MIP、NIP磁滯曲線49
圖十八、Fe3O4@TiO2磁性奈米粒子最大吸附量圖51
圖十九、Fe3O4@TiO2磁性奈米粒子吸附時間0.5至8分鐘53
圖二十、不同沖提溶劑與MIP/NIP關係圖55
圖二十一、 MIP與standard phosphoeptide 反應時間57
圖二十二、ß-casein以Fe3O4@TiO2純化前後MALDI質譜圖59
圖二十三、磷酸化胜肽標準品以MIP純化前後MALDI-MS圖61
圖二十四、 磷酸化胜肽純化前後之層析質譜圖63







表目錄
表一、合成奈米粒子之方法比較10
表二、常見的MALDI基質18
表三、HPLC-UV沖堤梯度表36

1.Wasinger, V.C., et al., Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. ELECTROPHORESIS, 1995. 16(1): p. 1090-1094.
2.Yates Iii, J.R., et al., Proteomics of organelles and large cellular structures. Nat Rev Mol Cell Biol, 2005. 6(9): p. 702-714.
3.Cravatt, B.F., G.M. Simon, and J.R. Yates Iii, The biological impact of mass-spectrometry-based proteomics. Nature, 2007. 450(7172): p. 991-1000.
4.Choudhary, C. and M. Mann, Decoding signalling networks by mass spectrometry-based proteomics. Nat Rev Mol Cell Biol, 2010. 11(6): p. 427-439.
5.Chaurand, P., F. Luetzenkirchen, and B. Spengler, Peptide and protein identification by matrix-assisted laser desorption ionization (MALDI) and MALDI-post-source decay time-of-flight mass spectrometry. Journal of the American Society for Mass Spectrometry, 1999. 10(2): p. 91-103.
6.Imamura, H., M. Wakabayashi, and Y. Ishihama, Analytical strategies for shotgun phosphoproteomics: Status and prospects. Seminars in Cell & Developmental Biology, 2012. 23(8): p. 836-842.
7.Gough, N.R. and J.F. Foley, Focus Issue: Systems Analysis of Protein Phosphorylation. Science Signaling, 2010. 3(137): p. eg6-eg6.
8.Laugesen, S., A. Bergoin, and M. Rossignol, Deciphering the plant phosphoproteome: tools and strategies for a challenging task. Plant Physiology and Biochemistry, 2004. 42(12): p. 929-936.
9.Krüger, M., et al., Dissection of the insulin signaling pathway via quantitative phosphoproteomics. Proc Natl Acad Sci U S A, 2008. 105(7): p. 2451-6.
10.Xu, L., et al., Specific recognition of tyrosine-phosphorylated peptides by epitope imprinting of phenylphosphonic acid. Journal of Chromatography A, 2013. 1293: p. 85-91.
11.Schlessinger, J., Cell Signaling by Receptor Tyrosine Kinases. Cell, 2000. 103(2): p. 211-225.
12.Cohen, P., The regulation of protein function by multisite phosphorylation – a 25 year update. Trends in Biochemical Sciences, 2000. 25(12): p. 596-601.
13.Mann, M., et al., Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends in Biotechnology, 2002. 20(6): p. 261-268.
14.Liu, H., et al., Hydrophilic modification of titania nanomaterials as a biofunctional adsorbent for selective enrichment of phosphopeptides. Analyst, 2015. 140(19): p. 6652-6659.
15.He, X.-M., et al., Hydrophilic Carboxyl Cotton Chelator for Titanium(IV) Immobilization and Its Application as Novel Fibrous Sorbent for Rapid Enrichment of Phosphopeptides. ACS Applied Materials & Interfaces, 2015. 7(31): p. 17356-17362.
16.Posewitz, M.C. and P. Tempst, Immobilized Gallium(III) Affinity Chromatography of Phosphopeptides. Analytical Chemistry, 1999. 71(14): p. 2883-2892.
17.Shen, F., et al., Ti4+-phosphate functionalized cellulose for phosphopeptides enrichment and its application in rice phosphoproteome analysis. Journal of Chromatography B, 2012. 902: p. 108-115.
18.Stensballe, A., S. Andersen, and O.N. Jensen, Characterization of phosphoproteins from electrophoretic gels by nanoscale Fe(III) affinity chromatography with off-line mass spectrometry analysis. PROTEOMICS, 2001. 1(2): p. 207-222.
19.Wijeratne, A.B., et al., Phosphopeptide Separation Using Radially Aligned Titania Nanotubes on Titanium Wire. ACS Applied Materials & Interfaces, 2015. 7(21): p. 11155-11164.
20.Arbab, A.S., et al., Characterization of Biophysical and Metabolic Properties of Cells Labeled with Superparamagnetic Iron Oxide Nanoparticles and Transfection Agent for Cellular MR Imaging. Radiology, 2003. 229(3): p. 838-846.
21.Chen, C.-T. and Y.-C. Chen, Fe3O4/TiO2 Core/Shell Nanoparticles as Affinity Probes for the Analysis of Phosphopeptides Using TiO2 Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. Analytical Chemistry, 2005. 77(18): p. 5912-5919.
22.Gupta, A.K. and M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005. 26(18): p. 3995-4021.
23.Tan, Y.-J., et al., Phosphopeptide Enrichment with TiO2-Modified Membranes and Investigation of Tau Protein Phosphorylation. Analytical Chemistry, 2013. 85(12): p. 5699-5706.
24.Yang, X. and Y. Xia, Selective enrichment and separation of phosphotyrosine peptides by thermosensitive molecularly imprinted polymers. Journal of Separation Science, 2016. 39(2): p. 419-426.
25.Yan, Y., X. Zhang, and C. Deng, Designed Synthesis of Titania Nanoparticles Coated Hierarchially Ordered Macro/Mesoporous Silica for Selective Enrichment of Phosphopeptides. ACS Applied Materials & Interfaces, 2014. 6(8): p. 5467-5471.
26.Olsen, J.V. and M. Mann, Status of Large-scale Analysis of Post-translational Modifications by Mass Spectrometry. Mol Cell Proteomics, 2013. 12(12): p. 3444-52.
27.Lu, A.-H., E.L. Salabas, and F. Schüth, Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angewandte Chemie International Edition, 2007. 46(8): p. 1222-1244.
28.Condina, M.R., et al., A sensitive magnetic bead method for the detection and identification of tyrosine phosphorylation in proteins by MALDI-TOF/TOF MS. PROTEOMICS, 2009. 9(11): p. 3047-3057.
29.Chatterjee, J., Y. Haik, and C.-J. Chen, Size dependent magnetic properties of iron oxide nanoparticles. Journal of Magnetism and Magnetic Materials, 2003. 257(1): p. 113-118.
30.Teja, A.S. and P.-Y. Koh, Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Progress in Crystal Growth and Characterization of Materials, 2009. 55(1): p. 22-45.
31.Verheyen, E., et al., Challenges for the effective molecular imprinting of proteins. Biomaterials, 2011. 32(11): p. 3008-3020.
32.Bedwell, T.S. and M.J. Whitcombe, Analytical applications of MIPs in diagnostic assays: future perspectives. Analytical and Bioanalytical Chemistry, 2016. 408(7): p. 1735-1751.
33.Emgenbroich, M., et al., A Phosphotyrosine-Imprinted Polymer Receptor for the Recognition of Tyrosine Phosphorylated Peptides. Chemistry – A European Journal, 2008. 14(31): p. 9516-9529.
34.Li, D.-Y., et al., A “turn-on” fluorescent receptor for detecting tyrosine phosphopeptide using the surface imprinting procedure and the epitope approach. Biosensors and Bioelectronics, 2015. 66: p. 224-230.
35.Chen, Y., et al., Coupling of Phosphate-Imprinted Mesoporous Silica Nanoparticles-Based Selective Enrichment with Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry for Highly Efficient Analysis of Protein Phosphorylation. Analytical Chemistry, 2016. 88(2): p. 1447-1454.
36.Li, Q., et al., One-pot synthesis of phenylphosphonic acid imprinted polymers for tyrosine phosphopeptides recognition in aqueous phase. Analytica Chimica Acta, 2013. 795: p. 82-87.
37.Gama, M.R. and C.B.G. Bottoli, Molecularly imprinted polymers for bioanalytical sample preparation. Journal of Chromatography B, 2017. 1043: p. 107-121.
38.Stults, J.T., Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Current Opinion in Structural Biology, 1995. 5(5): p. 691-698.
39.Zenobi, R. and R. Knochenmuss, Ion formation in MALDI mass spectrometry. Mass Spectrometry Reviews, 1998. 17(5): p. 337-366.
40.Zaluzec, E.J., D.A. Gage, and J.T. Watson, Matrix-Assisted Laser Desorption Ionization Mass Spectrometry: Applications in Peptide and Protein Characterization. Protein Expression and Purification, 1995. 6(2): p. 109-123.
41.Karas, M., D. Bachmann, and F. Hillenkamp, Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Analytical Chemistry, 1985. 57(14): p. 2935-2939.
42.Tanaka, K., et al., Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 1988. 2(8): p. 151-153.
43. Bruker,C. ultrafleXtreme
44 台灣質譜學會,質譜分析技術原理與應用.2015;vol. 10,pp184-185
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top