|
1.Wasinger, V.C., et al., Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. ELECTROPHORESIS, 1995. 16(1): p. 1090-1094. 2.Yates Iii, J.R., et al., Proteomics of organelles and large cellular structures. Nat Rev Mol Cell Biol, 2005. 6(9): p. 702-714. 3.Cravatt, B.F., G.M. Simon, and J.R. Yates Iii, The biological impact of mass-spectrometry-based proteomics. Nature, 2007. 450(7172): p. 991-1000. 4.Choudhary, C. and M. Mann, Decoding signalling networks by mass spectrometry-based proteomics. Nat Rev Mol Cell Biol, 2010. 11(6): p. 427-439. 5.Chaurand, P., F. Luetzenkirchen, and B. Spengler, Peptide and protein identification by matrix-assisted laser desorption ionization (MALDI) and MALDI-post-source decay time-of-flight mass spectrometry. Journal of the American Society for Mass Spectrometry, 1999. 10(2): p. 91-103. 6.Imamura, H., M. Wakabayashi, and Y. Ishihama, Analytical strategies for shotgun phosphoproteomics: Status and prospects. Seminars in Cell & Developmental Biology, 2012. 23(8): p. 836-842. 7.Gough, N.R. and J.F. Foley, Focus Issue: Systems Analysis of Protein Phosphorylation. Science Signaling, 2010. 3(137): p. eg6-eg6. 8.Laugesen, S., A. Bergoin, and M. Rossignol, Deciphering the plant phosphoproteome: tools and strategies for a challenging task. Plant Physiology and Biochemistry, 2004. 42(12): p. 929-936. 9.Krüger, M., et al., Dissection of the insulin signaling pathway via quantitative phosphoproteomics. Proc Natl Acad Sci U S A, 2008. 105(7): p. 2451-6. 10.Xu, L., et al., Specific recognition of tyrosine-phosphorylated peptides by epitope imprinting of phenylphosphonic acid. Journal of Chromatography A, 2013. 1293: p. 85-91. 11.Schlessinger, J., Cell Signaling by Receptor Tyrosine Kinases. Cell, 2000. 103(2): p. 211-225. 12.Cohen, P., The regulation of protein function by multisite phosphorylation – a 25 year update. Trends in Biochemical Sciences, 2000. 25(12): p. 596-601. 13.Mann, M., et al., Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends in Biotechnology, 2002. 20(6): p. 261-268. 14.Liu, H., et al., Hydrophilic modification of titania nanomaterials as a biofunctional adsorbent for selective enrichment of phosphopeptides. Analyst, 2015. 140(19): p. 6652-6659. 15.He, X.-M., et al., Hydrophilic Carboxyl Cotton Chelator for Titanium(IV) Immobilization and Its Application as Novel Fibrous Sorbent for Rapid Enrichment of Phosphopeptides. ACS Applied Materials & Interfaces, 2015. 7(31): p. 17356-17362. 16.Posewitz, M.C. and P. Tempst, Immobilized Gallium(III) Affinity Chromatography of Phosphopeptides. Analytical Chemistry, 1999. 71(14): p. 2883-2892. 17.Shen, F., et al., Ti4+-phosphate functionalized cellulose for phosphopeptides enrichment and its application in rice phosphoproteome analysis. Journal of Chromatography B, 2012. 902: p. 108-115. 18.Stensballe, A., S. Andersen, and O.N. Jensen, Characterization of phosphoproteins from electrophoretic gels by nanoscale Fe(III) affinity chromatography with off-line mass spectrometry analysis. PROTEOMICS, 2001. 1(2): p. 207-222. 19.Wijeratne, A.B., et al., Phosphopeptide Separation Using Radially Aligned Titania Nanotubes on Titanium Wire. ACS Applied Materials & Interfaces, 2015. 7(21): p. 11155-11164. 20.Arbab, A.S., et al., Characterization of Biophysical and Metabolic Properties of Cells Labeled with Superparamagnetic Iron Oxide Nanoparticles and Transfection Agent for Cellular MR Imaging. Radiology, 2003. 229(3): p. 838-846. 21.Chen, C.-T. and Y.-C. Chen, Fe3O4/TiO2 Core/Shell Nanoparticles as Affinity Probes for the Analysis of Phosphopeptides Using TiO2 Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. Analytical Chemistry, 2005. 77(18): p. 5912-5919. 22.Gupta, A.K. and M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005. 26(18): p. 3995-4021. 23.Tan, Y.-J., et al., Phosphopeptide Enrichment with TiO2-Modified Membranes and Investigation of Tau Protein Phosphorylation. Analytical Chemistry, 2013. 85(12): p. 5699-5706. 24.Yang, X. and Y. Xia, Selective enrichment and separation of phosphotyrosine peptides by thermosensitive molecularly imprinted polymers. Journal of Separation Science, 2016. 39(2): p. 419-426. 25.Yan, Y., X. Zhang, and C. Deng, Designed Synthesis of Titania Nanoparticles Coated Hierarchially Ordered Macro/Mesoporous Silica for Selective Enrichment of Phosphopeptides. ACS Applied Materials & Interfaces, 2014. 6(8): p. 5467-5471. 26.Olsen, J.V. and M. Mann, Status of Large-scale Analysis of Post-translational Modifications by Mass Spectrometry. Mol Cell Proteomics, 2013. 12(12): p. 3444-52. 27.Lu, A.-H., E.L. Salabas, and F. Schüth, Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angewandte Chemie International Edition, 2007. 46(8): p. 1222-1244. 28.Condina, M.R., et al., A sensitive magnetic bead method for the detection and identification of tyrosine phosphorylation in proteins by MALDI-TOF/TOF MS. PROTEOMICS, 2009. 9(11): p. 3047-3057. 29.Chatterjee, J., Y. Haik, and C.-J. Chen, Size dependent magnetic properties of iron oxide nanoparticles. Journal of Magnetism and Magnetic Materials, 2003. 257(1): p. 113-118. 30.Teja, A.S. and P.-Y. Koh, Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Progress in Crystal Growth and Characterization of Materials, 2009. 55(1): p. 22-45. 31.Verheyen, E., et al., Challenges for the effective molecular imprinting of proteins. Biomaterials, 2011. 32(11): p. 3008-3020. 32.Bedwell, T.S. and M.J. Whitcombe, Analytical applications of MIPs in diagnostic assays: future perspectives. Analytical and Bioanalytical Chemistry, 2016. 408(7): p. 1735-1751. 33.Emgenbroich, M., et al., A Phosphotyrosine-Imprinted Polymer Receptor for the Recognition of Tyrosine Phosphorylated Peptides. Chemistry – A European Journal, 2008. 14(31): p. 9516-9529. 34.Li, D.-Y., et al., A “turn-on” fluorescent receptor for detecting tyrosine phosphopeptide using the surface imprinting procedure and the epitope approach. Biosensors and Bioelectronics, 2015. 66: p. 224-230. 35.Chen, Y., et al., Coupling of Phosphate-Imprinted Mesoporous Silica Nanoparticles-Based Selective Enrichment with Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry for Highly Efficient Analysis of Protein Phosphorylation. Analytical Chemistry, 2016. 88(2): p. 1447-1454. 36.Li, Q., et al., One-pot synthesis of phenylphosphonic acid imprinted polymers for tyrosine phosphopeptides recognition in aqueous phase. Analytica Chimica Acta, 2013. 795: p. 82-87. 37.Gama, M.R. and C.B.G. Bottoli, Molecularly imprinted polymers for bioanalytical sample preparation. Journal of Chromatography B, 2017. 1043: p. 107-121. 38.Stults, J.T., Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Current Opinion in Structural Biology, 1995. 5(5): p. 691-698. 39.Zenobi, R. and R. Knochenmuss, Ion formation in MALDI mass spectrometry. Mass Spectrometry Reviews, 1998. 17(5): p. 337-366. 40.Zaluzec, E.J., D.A. Gage, and J.T. Watson, Matrix-Assisted Laser Desorption Ionization Mass Spectrometry: Applications in Peptide and Protein Characterization. Protein Expression and Purification, 1995. 6(2): p. 109-123. 41.Karas, M., D. Bachmann, and F. Hillenkamp, Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Analytical Chemistry, 1985. 57(14): p. 2935-2939. 42.Tanaka, K., et al., Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 1988. 2(8): p. 151-153. 43. Bruker,C. ultrafleXtreme 44 台灣質譜學會,質譜分析技術原理與應用.2015;vol. 10,pp184-185
|