(3.237.97.64) 您好!臺灣時間:2021/03/03 07:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林祐丞
研究生(外文):Yu Cheng Lin
論文名稱:降雨截蓄與葉面積指數回歸分析-以一個低地熱帶雨林為例
論文名稱(外文):Regression analysis for rainfall interception and leaf area index-a case study in a lowland tropical rainforest.
指導教授:宋國彰
口試委員:陸象豫林政道吳俊毅
口試日期:2017-07-13
學位類別:碩士
校院名稱:國立中興大學
系所名稱:水土保持學系所
學門:農業科學學門
學類:水土保持學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:67
中文關鍵詞:森林水文循環半球面攝影樹冠雨量筒
外文關鍵詞:Forest hydrological cyclehemispherical photographycanopyrain gauge
相關次數:
  • 被引用被引用:1
  • 點閱點閱:107
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究內容為探討天然闊葉林葉面積指數與截蓄率間的相關性與影響截蓄率的可能因子。研究樣區位於墾丁國家公園南仁山森林動態樣區,為台灣唯一一個熱帶雨林生態樣區。研究時間為2016年1月至2017年5月,林內雨測量是在2.1ha(140mx150m)的樣區內,設置1組傾斗式雨量計,並以20公尺為取樣間隔,設置了30組自製雨量筒。林外雨則是收集中央氣象局檳榔測站(距樣區約2公里) (22°04''40"N,120°49''43"E)的降雨資料,也在距樣區1.6公里處的南仁山工作站屋頂(22°05''04"N,120°50''07"E),設置1組傾斗式雨量計測量林外雨。樹冠截蓄=總降雨量(林外雨)-林內雨-樹幹流,因多數研究顯示樹幹流僅佔總降雨量細微部分,故本研究忽略樹幹流的量。公式變為樹冠截蓄=總降雨量(林外雨)-林內雨,而樹冠截蓄率則等於(林外雨-林內雨)/林外雨。葉面積指數則使用半球面攝影來估算。透過Hemisfer程式,以與天頂夾角45°、60°、75°、90°來分析出樹冠照片中的葉面積指數。
結果顯示,樣區平均降雨截蓄率為50.9%,平均葉面積指數為3.55。比較四種天頂夾角所得到的葉面積指數與截蓄率的相關性,發現60∘葉面積指數的相關性最高 (R²=0.152),這是因為60∘天頂夾角能比 45∘含括更多上方的樹冠,又比75∘及90∘更能排除周遭地形的影響。且二次迴歸公式比線性公式更能呈現出葉面積指數與截蓄率的相關關係。資料收集的時間間隔愈短,葉面積指數與降雨截蓄率相關性會提高。整體而言,整個樣區平均葉面積指數與平均降雨截蓄率間的相關性偏低。截蓄率與雨量筒附近樹高超過6m及超過3m的植株密度並無顯著相關。
在樣區內系統設置數十組樣點,可以有效測量極端值所造成的誤差。因此系統取樣方式設置雨量筒,適合用來測量大面積植被的平均截蓄率。要將半球面攝影應用在森林水文相關研究時,除了估算葉面積指數時,應該使用較小的天頂夾角,也要以以下兩個作法來提高研究的精準度:1)針對葉面積指數的大小去取樣樣點,讓整個研究中葉面積指數的變化越大越好,2)針對單場降雨事件的方式測量降雨與葉面積指數。
The aim of this study is to explore the relationships between leaf area index and interception rate of a natural broad-leaved forest, and possible factors affecting the interception rate. The study plot was the Nanjenshan Forest Dynamic Plots located in the Kenting National Park, the only tropical rainforest plots in Taiwan. The study was conducted from January 2016 to March 2017. Throughfall was measured in a 2.1 ha (140m X 150m) plot with 30 sets of hand-made rain gauges laid out in an interval of 20m. Gross rainfall was collected from the Binlang weather station (22°04''40"N,120°49''43"E) ,about two kilometers away from the study plot, managed by the Central Weather Bureau. An automatic gauge was also set up to measure gross rainfall at the roof of the Nanjenshan research station (22°05''04"N,120°50''07"E) about 1.6 km away from the study plot. Canopy interception = gross rainfall - throughfall - stemflow. This study ignored the amount of stemflow because many studies showed that stemflow only accounts for a small fraction of gross rainfall. As a result, the formula was modified into canopy interception= gross rainfall - throughfall. Therefore, interception rate is equal to (gross rainfall - throughfall)/ gross rainfall. Leaf area index was estimated with hemispherical photography. To acquire leaf area index, Hemisfer program was used to analyze canopy photographs with the view angle of 45°, 60°, 75°, and 90°to the zenith.
Results showed that the average interception rate was 50.9% and the average leaf area index was 3.55. Comparing the relationship between leaf area index and interception rate with the varying view angle to the zenith, it was found that the relationship was highest (R² = 0.152) when the varying view angle was 60°. This was attributed to that photographs analyzed with 60° of view angle can cover more overarching canopies than does 45∘view angle and exclude more unwanted impacts of the surrounding terrain than do 75∘and 90∘view angle. The quadratic regression models can describe the relationship between leaf area index and interception rate better than do the linear models. The shorter the time interval for data collection, the higher the correlation between leaf area index and interception rates. In general, the relationship between the average leaf area index and the average interception rate is not strong. There is no significant relationship between interception rate and the stem density for trees nearby with height of more than 6m and 3m.
Systematically setting up dozens of rain gauges across study sites can effectively reduce errors caused by extreme values. Consequently, systematic sampling methods are suitable for measuring average interception rate for large areas. To apply hemispherical photography to forest hydrological studies, in addition to estimating the leaf area index with a smaller view angle, the two following approaches should also be carried out: 1) To sample locations for rain gauges based on the magnitude of the leaf area index. It is better have the variance of leaf area index as great as possible. 2) To measure the rainfall (gross rainfall, throughfall) and leaf area index for single rainfall events.
摘要 i
Abstract iii
目錄 v
圖目錄 vii
表目錄 ix
1. 緒論 1
1.1前言 1
1.2研究動機 6
2. 研究材料與方法 8
2.1 研究區域及試區環境基礎資料 8
2.2 研究方法 9
2.2.1葉面積指數測量 11
2.2.2林外雨、林內雨降雨測量 14
2.2.3傾斗式雨量計&自製雨量筒比較: 16
2.2.4葉面積指數與樹冠截蓄關係 19
3.結果與討論 23
3.1傾斗式雨量計與自製雨量筒比較 23
3.2葉面積指數與樹冠截蓄關係 27
4.結論 41
5.參考文獻 42
6.附錄 51
1.A.M. Sato, A.D.S. Avelar and A.L.C. Netto (2011). "Spatial variability and temporal stability of throughfall in a eucalyptus plantation in the hilly lowlands of southeastern Brazil." Hydrological Processes 25(12): 1910-1923.

2.A.P. Dykes (1997). "Rainfall interception from a lowland tropical rainforest in Brunei." Journal of Hydrology 200(1-4): 260-279.

3.A.S. Rao (1987). "Interception losses of rainfall from Cashew trees." Journal of Hydrology 90(3-4): 293-301.

4.A. Thimonier, I. Sedivy and P. Schleppi (2010). "Estimating leaf area index in different types of mature forest stands in Switzerland: a comparison of methods." European Journal of Forest Research 129(4): 543-562.

5.B.B. Stout and R.J. Mcmahon (1961). "Throughfall variation under tree crowns." Journal of Geophysical Research 66(6): 1837-1843.

6.C. Asdak, P.G. Jarvis, P.V. Gardingen and A. Fraser (1998). "Rainfall interception loss in unlogged and logged forest areas of Central Kalimantan, Indonesia." Journal of Hydrology 206(3-4): 237-244.

7.C.B.K. Hansen and P. Gundersen (1993). "Spatial variability of throughfall fluxes in a spruce forest." Environmental Pollution 81(3): 257-267.

8.C.R. Lloyd, J.H.C. Gash and W.J. Shuttleworth (1988). "The measurement and modelling of rainfall interception by Amazonian rain forest." Agricultural and Forest Meteorology 43(3-4): 277-294.

9.C.T. Marin, W. Bouten and J. Sevink (2000). "Gross rainfall and its partitioning into throughfall, stemflow and evaporation of intercepted water in four forest ecosystems in w ester n Amazonia." Journal of Hydrology 237(1-2): 40-57.

10.D.A. Abrahamson, P.M. Dougherty and S.J. Zarnoch (1998). "Hydrological components of a young loblolly pine plantation on a sandy soil with estimates of water use and loss." Water Resources Research 34(12): 3503-3513.

11.E.D. Ford. and J.D. Deans (1978). "The Effects of Canopy Structure on Stemflow, Throughfall and Interception Loss in a Young Sitka Spruce Plantation." Journal of Applied Ecology 15(3): 905-917.

12.F.N. Scatena (1990). "Watershed scale rainfall interception on two forested watersheds in the Luquillo Mountains of Puerto Rico." Journal of Hydrology 113(1-4): 89-102.

13.G. Aussenac (1970). "Action du couvert forestier sur la distribution au sol des précipitations." Annals of Forest Science 27(4): 383-399.

14.G.G. Parker (1983). "Throughfall and Stemflow in the Forest Nutrient Cycle." Advances in Ecological Research 13: 57-133.

15.G.K. Voigt (1960). "Distribution of rainfall under forest stands." Forest Science 6(1): 2-10.

16.G.M. Lovett and W.A. Reiners (1986). "Canopy structure and cloud water deposition in subalpine coniferous forests." Tellus 38B(5): 319-327.

17.I.J. Jackson (1975). "Relationships between rainfall parameters and interception by tropical forest." Journal of Hydrology 24(3-4): 215-238.

18.J. Schellekens, F.N Scatena, L.A. Bruijnzeel and A.J. Wickel (1999). "Modelling rainfall interception by a lowland tropical rain forest in northeastern Puerto Rico." Journal of Hydrology 225(3-4): 168-184.
19.J. Seiler and E. Matzner (1995). "Spatial variability of throughfall chemistry and selected soil properties as influenced by stem distance in a mature Norway spruce (Picea abies, Karst.) stand." Plant and Soil 176(1): 139-147.

20.J.M. Welles and J.M. Norman (1991). "Instrument for Indirect Measurement of Canopy Architecture." Agronomy journal 83(5): 818-825.

21.J.S. Eaton, G.E. Likens and F.H. Bormann (1973). "Throughfall and Stemflow Chemistry in a Northern Hardwood Forest." Journal of Ecology 61(2): 495-508.

22.J.W. Chason, D.D. Baldocchi and M. Huston (1991). "A comparison of direct and indirect methods for estimating forest canopy leaf area." Agricultural and Forest Meteorology 57(1-3): 107-128.

23.M.R. Abas (1992). "Fluxes of ions in precipitation, throughfall and stemflow in an urban forest in Kuala Lumpur, Malaysia." Environmental Pollution 75(2): 209-213.

24.P. H. Nye (1960). "Organic matter and nutrient cycles under moist tropical forest." Plant and Soil 13(4): 333-346.

25.P.J. Edwards (1977). "Studies of Mineral Cycling in a Montane Rain Forest in New Guinea." Journal of Ecology 65(3): 971-992.

26.P.M. Rich (1990). "Characterizing Plant Canopies with Hemispherical Photographs." Remote Sensing Reviews 5(1): 13-29.

27.R.C. Johnson (1990). "The interception, throughfall and stemflow in a forest in Highland Scotland and the comparison with other upland forests in the U.K." Journal of Hydrology 118(1-4): 281-287.

28.R.F. Keim, A.E. Skaugset and M. Weiler (2005). "Temporal persistence of spatial patterns in throughfall." Journal of Hydrology 314(1-4): 263-274.

29.S.R. Herwitz (1987). "Raindrop impact and water flow on the vegetative surfaces of trees and the effects on stemflow and throughfall generation." Earth Surface Processes and Landforms 12(4): 425-432.

30.U.S. Department of Agriculture (1978). "Predicting Rainfall Erosion Losses: A Guide to Conservation Planning. Agriculture Handbook No. 537."

31.W.H. Wischmeier and D.D. Smith (1958). "Rainfall energy and its relationship to soil loss." Transactions American Geophysics Union 39(2): 285-291.

32.Y. Zhang, J.M. Chen and J.R. Miller (2005). "Determining digital hemispherical photograph exposure for leaf area index estimation." Agricultural and Forest Meteorology 133(1-4): 166-181.

33.Y.Q. Zhang, J.M. Chen and J.R. Miller (2005). "Determining digital hemispherical photograph exposure for leaf area index estimation." Agricultural and Forest Meteorology 133(1-4): 166-181.

34.王文,諸葛緒霞與周炫 (2010) "植物截留觀測方法綜述" 河海大學學報(自然科學版) 38(5): 495-504

35.吳文統 (1994) "溪頭柳杉人工林降雨截留之研究" 台大森林學研究所碩士論文: 1-42

36.沈哲緯與曹鼎志 (2009) "邊坡防護工程中植物根系固土機制與穩定分析初探" 水保技術 4(1): 47-55

37.周展名 (2015) "傾斗式雨量計之力學分析" 國立台灣大學工學院土木工程學系碩士論文: 1-60

38.林信輝 (2006) "「水土保持植物解說系列— 坡地植生草類與綠肥植物" 行政院農業委員會水土保持局 南投

39.林務局 (2015) "第4次全國森林資源調查成果" 第4次全國森林資源調查成果 台北

40.林國銓 (1989) "葉面積與林木生長及其環境" 生態原則下的森林經營研討會論文集: 127-135

41.林登秋與江智民 (2002) "半球面影像在森林生態研究的應用" 台灣林業科學 17(3): 387-400

42.林登秋,夏禹九與金恆鑣 (1996) "臺灣東北部天然闊葉林林內降雨及林冠截留之研究" 臺灣林業科學 11(4): 393-400

43.邱永和 (1972) "柳杉及台灣杉林分之降雨截留研究及其應用" 台大森林學研究所碩士論文: 1-64

44.洪富文,夏禹九與唐凱軍 (1986) "蓮華池次生暖溫帶山地雨林地上部生物量及葉面積之估算" 林業試驗所試驗報告第 465號

45.張一平,王馨與劉文杰 (2004) "熱帶森林林冠對降水再分配作用的研究綜述" 福建林學院學報 3: 274-282

46.郭明春,于澎濤,王彥輝,沈振西,時忠杰,杜阿朋與何常清 (2005) "林冠截持降雨模型的初步研究" 應用生態學報 16(9): 1633-1637

47.張振生,許祐昇,黃敬倫與陳明杰 (2014) "溪頭地區柳杉人工林穿落水與截留之研究" 台大實驗林研究報告 28(2): 81-95

48.陳朝圳與余蘭君 (2003) "南仁山次生林葉面積指數之季節性變化" 林業研究季刊 25(4): 75-82

49.陸象豫 (1996) "森林在水土資源保育上之功能" 台灣林業科學 11(3): 333-347

50.陸象豫與唐凱軍 (1995) "臺灣中部地區天然闊葉林降雨截流量之探討" 林業試驗所研究報告季刊10(4): 447-457

51.曾慶波 (1994) "海南島尖峰嶺熱帶林生態系統的水分循環研究" 中國森林生態系統定位研究: 413-429.

52.塚本良則 (1992) "森林水文学" 文永堂 東京

53.葉信富,陳進發與李振誥 (2005) "降雨入滲對坡地穩定影響之研究" 中華水土保持學報 36(2): 145-158

54.趙偉村 (2013) "南仁山動態樣區複查計畫" 「南仁山動態樣區複查計畫」期末報告 林務局

55.潘家聲 (1964) "杉木林份樹冠對於降雨截流量之關係試驗" 林業試驗所研究報告94號: 1-15

56.潘家聲 (1965) "台灣櫸林分樹冠對於降雨截留量之關係試驗" 林業試驗所研究報告114號: 1-17

57.賴彥任,魏聰輝,陳信雄與賴鴻寬 (2007) "塔塔加地區台灣雲杉天然林冠層截留與林內降雨之研究" 中華水土保持學報 38(2): 135-146

58.錢憲和 (1998) "台灣的自然災害與基礎地質研究之關連的初步研究" 行政院國家科學委員會專題研究計畫成果報告

59.謝金德 (2009) "台灣山坡地土砂災害之防治" 中華防災學刊 1(1): 29-37

60.魏聰輝,陳信雄與劉維 (2009) "塔塔加地區台灣鐵杉天然林冠層截留量之研究" 中華水土保持學報 40(1): 105-11
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關點閱論文
 
系統版面圖檔 系統版面圖檔