跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/19 01:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:梁閔智
研究生(外文):Min-Chih Liang
論文名稱:漂流木與河床質之互動渠槽試驗
論文名稱(外文):A Channel Experiment on the Interaction Between Woody Debris and Mobile Bed
指導教授:陳樹群陳樹群引用關係
指導教授(外文):Su-Chin Chen
口試委員:賴悅仁賴進松郭鎮維
口試委員(外文):Yueh-Jen LaiJihn-sung LaiCheng-Wei Kuo
口試日期:2017-07-10
學位類別:碩士
校院名稱:國立中興大學
系所名稱:水土保持學系所
學門:農業科學學門
學類:水土保持學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:73
中文關鍵詞:漂流木漂流木運動動床淘刷
外文關鍵詞:woody debriswood entrainmentmoving bedscour
相關次數:
  • 被引用被引用:0
  • 點閱點閱:174
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
近年來台灣所發生之天然災害,從原本的單一災害轉為複合式天然災害,如單純之土砂災害中,若同時搬運大量的漂流木運動,漂流木移動會撞擊橋墩及破壞橋樑結構。因此了解漂流木堆積在河道之型態、特性及啟動條件,對於防治漂流木災害是很重要的關鍵。本研究為了瞭解漂流木在河道中的運動方式,利用渠槽試驗模擬單根漂流木在動床渠道之啟動情形,使用不同漂流木之長度、直徑及與水流方向夾角之條件,並探討漂流木與泥砂的互動關係、運動機制、表面流場和流速變化。
試驗結果顯示,漂流木啟動時會與泥砂發生互動,在漂流木擺放方向為θ=0°時,會有兩種運動方式,第一種是漂流木前端發生淘刷,會堆積成長條狀及V型堆積,進而增加漂流木的穩固性,使其以軸轉動方式啟動,第二種是漂流木的啟動流量較小時,對底床的淘刷現象較不明顯,使漂流木以滑動的方式啟動。在漂流木擺放方向為θ=45°與90°時,會有兩種運動方式,第一種是淘刷與堆積會發生在漂流木承受較大水力阻力之位置,而漂流木後方形成三角形堆積物,會使漂流木的運動方式為軸轉動與滑動同時進行,第二種是啟動流量小,以滾動方式啟動。漂流木的長度增加會提升水平方向漂流木的穩固性,而漂流木傾斜與垂直時,漂流木長度增加使淘刷深度與堆積高度有正向關係,但對淘刷堆積範圍和體積量則是負向關係。漂流木與水流方向平行、傾斜及垂直時,直徑是影響地形變化的重要因子。利用漂流木福祿數與漂流木浮力的比較,可以劃分出漂流木運動方式的條件,以說明本試驗的漂流木運動方式,本研究之結果可提供未來模擬漂流木在動床上對河道影響之參考依據。
In recent years, the occurrence of natural disasters in Taiwan has turned into compound disasters. For example, a landslide disaster combined with large woody debris could be conveyed by water flow to damage the piers of bridges. Therefore, to understand the patterns, characteristics and hydrological conditions of woody debris is key for preventing woody debris related disasters. In this research, the dynamics of wood debris is observed in a moveable bed channel using single logs. The interaction between woody debris, channel bed, movement mechanism, and surface flow fields are investigated. Wood debris were presented by logs of 3 different diameters, 4 lengths and 3 different orientations; parallel, oblique and perpendicular to flow. The results show wide variation on the woody debris-movable bed interaction. When the log is parallel to flow direction, two kinds of wood movements are observed. First, there is large channel bed scour in front of the log. The accumulation form into a strip and V-type, which increases the stability of the logs and the log move by pivoting. Secondly, the log is entrained by a small discharge, resulting to less significant scour and sliding movement. For logs oblique or vertical to flow direction, two kinds of movement are observed. First, the logs bear height hydraulic resistance, resulting to both scour and deposition. The log will simultaneously pivot and slide. Secondly, the logs at both angles are entrained by an even smaller discharge (when compared to logs parallel to flow), and roll downstream. When the log length increases, the stability of woody debris parallel to flow direction also increased. Moreover, in logs oblique and perpendicular to flow, length show poor correlation with stability. Log diameter on logs oriented oblique and perpendicular to flow is the key factor for bed variation. Furthermore, increasing log length on these orientations yielded more scour depth and more deposition, while scour area and volume decreased with length. Finally, from the studied logs, none moved by floating, only pivoting, sliding and rolling were observed. The results of this study can provide a reference basis for understanding the dynamics of logs in a moving bed channel.
摘要 i
Abstract ii
目錄 iv
圖目錄 vi
表目錄 viii
符號說明 ix
第一章前言 1
第二章文獻回顧 4
2.1 漂流木之定義 4
2.2 漂流木對河道形貌之影響 4
2.3 漂流木對泥砂運移之影響 6
2.4 漂流木之運移 9
2.5 漂流木之運動機制 10
第三章試驗設計與方法 15
3.1 試驗目的 15
3.2 試驗設計 15
3.2.1 試驗渠槽設計 15
3.2.2 漂流木設計 17
3.2.1 泥砂條件 19
3.2.2 水流條件 20
3.2.3 雷射地形掃描 21
3.2.4 測量表面流場及平均流速 23
3.2.5 座標轉換方法 25
3.3 試驗流程 27
第四章試驗結果與分析 31
4.1 漂流木之啟動方式 31
4.1.1 漂流木0°方向的啟動方式 32
4.1.2 漂流木45°方向的啟動方式 37
4.1.3 漂流木90°方向的啟動方式 42
4.2 漂流木對底床之影響 46
4.2.1 漂流木與水流方向夾角對底床變化之影響 47
4.2.2 漂流木長度對底床變化之影響 48
4.2.3 漂流木直徑對底床變化之影響 54
4.3 漂流木對表面流場及流速之影響 59
4.3.1 漂流木影響表面流場 59
4.3.2 漂流木影響表面流速 62
4.3.3 漂流木福祿數對漂流木運動方式之影響 64
第五章結論 66
參考文獻 68
附錄 1漂流木地形掃描結果 72
附錄 2漂流木周圍流速資料 73
1.陳樹群, 王啟榮, & 趙益群. (2012). 單根漂流木之初始起動理論模式. 中華水土保持學報, 43(1), 11-20.
2.魏曉華, & 代立民. (2006). 森林溪流倒木生態學研究發展. 植物生態學保報30(6), 1018-1029.
3.Andrus, R. D., & Stokoe, K. H. (1999). A liquefaction evaluation procedure based on shear velocity. Paper presented at the Technical memorandum of PWRI 3653 Proceedings, Tsukuba, Japan.
4.Bilby, R. E. (1984). Removal of woody debris may affect stream channel stability. J. Forestry, 82, 609.
5.Bilby, R. E., & Ward, J. W. (1991). Characteristics and Function of Large Woody Debris in Streams Draining Old-Growth, Clear-Cut, and Second-Growth Forests in Southwestern Washington. Canadian Journal of Fisheries and Aquatic Sciences, 48(12), 2499-2508.
6.Bisson, P. A., Bilby, R. E., Bryant, M. D., Dolloff, C. A., Grette, G. B., House, R. A., Sedell, J. R. (1987). Large woody debris in forested streams in the Pacific Northwest: Past, present, and future. In E. O. Salo & T. W. Cundy (Eds.), Streamside Management: Forestry and Fisheries Interactions (pp. 143– 190). Seattle, Washington.
7.Bocchiola, D., Rulli, M. C., & Rosso, R. (2006a). Flume experiments on wood entrainment in rivers. Advances in Water Resources, 29(8), 1182-1195.
8.Bocchiola, D., Rulli, M. C., & Rosso, R. (2006b). Transport of large woody debris in the presence of obstacles. Geomorphology, 76(1-2), 166-178.
9.Braudrick, C. A., & Grant, G. E. (2000). When do logs move in rivers? Water Resources Research, 36(2), 571-583.
10.Braudrick, C. A., & Grant, G. E. (2001). Transport and deposition of large woody debris in streams: a flume experiment. Geomorphology, 41(4), 263-283.
11.Braudrick, C. A., Grant, G. E., Ishikawa, Y., & Ikeda, H. (1997). Dynamics of wood transport in streams: A flume experiment. Earth Surface Processes and Landforms, 22(7), 669-683.

12.Buffington, J. M. (1999). The legend of A. F. Shields. Journal of Hydraulic Engineering-Asce, 125(4), 376-387. doi: Doi 10.1061/(Asce)0733-9429(1999)125:4(376)
13.Buffington, J. M., Lisle, T. E., Woodsmith, R. D., & Hilton, S. (2002). Controls on the size and occurrence of pools in coarse-grained forest rivers. River Research and Applications, 18(6), 507-531. doi: 10.1002/rra.693
14.Cadol, D., & Wohl, E. (2011). Coarse sediment movement in the vicinity of a logjam in a neotropical gravel-bed stream. Geomorphology, 128(3-4), 191-198. doi: 10.1016/j.geomorph.2011.01.007
15.Daniels, M. D. (2006a). Distribution and dynamics of large woody debris and organic matter in a low-energy meandering stream. Geomorphology, 77(3-4), 286-298. doi: 10.1016/j.geomorph.2006.01.011
16.Daniels, M. D. (2006b). Grain-size sorting in meander bends containing large woody debris. Physical Geography, 27(4), 348-362. doi: Doi 10.2747/0272-3646.27.4.348
17.Davidson, S. L., MacKenzie, L. G., & Eaton, B. C. (2015). Large wood transport and jam formation in a series of flume experiments. Water Resources Research, 51(12), 10065-10077.
18.Dudley, S. J., Fischenich, J. C., & Abt, S. R. (1998). Effect of woody debris entrapment on flow resistance. Journal of the American Water Resources Association, 34, 1189-1197.
19.Fisher, G. B., Magilligan, F. J., Kaste, J. M., & Nislow, K. H. (2010). Constraining the timescales of sediment sequestration associated with large woody debris using cosmogenic Be-7. Journal of Geophysical Research-Earth Surface, 115. doi: Artn F0101310.1029/2009jf001352
20.Gippel, C. J., Finlayson, B. L., & O'Neill, I. C. (1996). Distribution and hydraulic significance of large woody debris in a lowland Australian river. Hydrobiologia, 318(3), 179-194.
21.Gomi, T., Sidle, R. C., Bryant, M. D., & Woodsmith, R. D. (2001). The characteristics of woody debris and sediment distribution in headwater streams, southeastern Alaska. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 31(8), 1386-1399. doi: DOI 10.1139/cjfr-31-8-1386

22.Gurnell, A. M., Gregory, K. J., & Petts, G. E. (1995). The Role of Coarse Woody Debris in Forest Aquatic Habitats - Implications for Management. Aquatic Conservation-Marine and Freshwater Ecosystems, 5(2), 143-166. doi: DOI 10.1002/aqc.3270050206
23.Keller, E. A., & Swanson, F. J. (1979). Effects of large organic material on channel form and fluvial processes. Earth Surface Processes, 4(4), 361-380. doi: 10.1002/esp.3290040406
24.Keller, E. A., & Tally, T. (1979). Effects of large organic debris on channel form and fluvial processes in the coastal redwood environment. Paper presented at the Proceedings, Tenth Annual Geomorphology Symposium, State University of New York, Binghamton, Dubuque, Iowa.
25.Lisle, T. E. (1995). Effects of coarse woody debris and its removal on a channel affected by the 1980 eruption of Mount St. Helens, Washington. Water Resources Research, 31, 1797-1808.
26.Nakamura, F., & Swanson, F. J. (1993). Effects of coarse woody debris on morphology and sediment storage of a mountain stream system in western Oregon. Earth Surface Processes and Landforms, 18(1), 43-61.
27.Ruiz-Villanueva, V., Piégay, H., Gaertner, V., Perret, F., & Stoffel, M. (2016). Wood density and moisture sorption and its influence on large wood mobility in rivers. CATENA, 140, 182-194.
28.Shad, A., Adde, M., & Magrath, I. (1993). Results of Nci Protocol 77-04 for Treatment of Lymphoblastic Lymphoma in Children. Blood, 82(10), A387-A387.
29.Smith, R. D., Sidle, R. C., Porter, P. E., & Noel, J. R. (1993). Effects of Experimental Removal of Woody Debris on the Channel Morphology of a Forest, Gravel-Bed Stream. Journal of Hydrology, 152(1-4), 153-178. doi: Doi 10.1016/0022-1694(93)90144-X
30.Wallerstein, N., Alonso, C., Bennett, S., & Thorne, C. (2002). Surface Wave Forces Acting on Submerged Logs. Journal of Hydraulic Engineering, 128(3), 349-353.
31.Wallerstein, N. P., & Thorne, C. R. (2004). Influence of large woody debris on morphological evolution of incised, sand-bed channels. Geomorphology, 57(1-2), 53-73. doi: 10.1016/S0169-555x(03)00083-7

32.Warren, D. R., & Kraft, C. E. (2008). Dynamics of large wood in an eastern U.S. mountain stream. Forest Ecology and Management, 256(4), 808-814.
33.Wohl, E., & Beckman, N. (2014). Controls on the Longitudinal Distribution of Channel-Spanning Logjams in the Colorado Front Range, USA. River Research and Applications, 30(1), 112-131. doi: 10.1002/rra.2624
34.Wohl, E., & Scott, D. N. (2016). Wood and sediment storage and dynamics in river corridors. Earth Surface Processes and Landforms, n/a-n/a. doi: 10.1002/esp.3909
35.Wohl, E., & Scott, D. N. (2017). Wood and sediment storage and dynamics in river corridors. Earth Surface Processes and Landforms, 42(1), 5-23. doi: 10.1002/esp.3909
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top