1.Gupta, V. K. and Suhas, Application of low-cost adsorbents for dye removal--a review. J Environ Manage, 2009. 90(8): 2313-42.
2.Jaafar, S. N. H. , et al., Natural dyes as TIO2 sensitizers with membranes for photoelectrochemical water splitting: An overview. Renewable and Sustainable Energy Reviews, 2017. 78: 698-709.
3.Forgacs, E. , T. Cserhati, and G. Oros, Removal of synthetic dyes from wastewaters: a review. Environ Int, 2004. 30(7): 953-71.
4.李碩文,以Cu-TiO2結合ITO光觸媒電極降解羅丹明B及產電可行性之研究,碩士論文,國立中興大學環境工程學系,2016。5.Hu, L. , et al., Deposition of CdS nanoparticles on MIL-53(Fe) metal-organic framework with enhanced photocatalytic degradation of RhB under visible light irradiation. Applied Surface Science, 2017. 410: 401-413.
6.Zhong, J. S. , et al., Highly efficient photoelectrocatalytic removal of RhB and Cr(VI) by Cu nanoparticles sensitized TiO2 nanotube arrays. Applied Surface Science, 2016. 367: 342-346.
7.Ghasemi, Z. , Younesi H. , and Zinatizadeh A. A. , Preparation, characterization and photocatalytic application of TiO2/Fe-ZSM-5 nanocomposite for the treatment of petroleum refinery wastewater: Optimization of process parameters by response surface methodology. Chemosphere, 2016. 159: 552-564.
8.盧泓,二氧化鈦光觸媒之應用,國立中正大學化學工程學系,2013。
9.Gomez, S. , et al., Preparation and characterization of TiO2/HZSM-11 zeolite for photodegradation of dichlorvos in aqueous solution. J Hazard Mater, 2013. 258-259: 19-26.
10.Mohamad, M. , et al., A density functional study of structural, electronic and optical properties of titanium dioxide: Characterization of rutile, anatase and brookite polymorphs. Materials Science in Semiconductor Processing, 2015. 31: 405-414.
11.Khataee, A. R. and Kasiri, M. B. , Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: Influence of the chemical structure of dyes. Journal of Molecular Catalysis A: Chemical, 2010. 328(1-2): 8-26.
12.王志祺,可被可見光激發之半導體材料製備,碩士論文,國立清華大學化學工程學系,2009。13.Wongkalasin, P. , S. Chavadej, and Sreethawong, T. , Photocatalytic degradation of mixed azo dyes in aqueous wastewater using mesoporous-assembled TiO2 nanocrystal synthesized by a modified sol–gel process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011. 384(1-3): 519-528.
14.Rauf, M. A. , Meetani, M. A. and Hisaindee, S. , An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination, 2011. 276(1-3): 13-27.
15.Ilinoiu, E. C. , et al., Photocatalytic activity of a nitrogen-doped TiO2 modified zeolite in the degradation of Reactive Yellow 125 azo dye. Journal of the Taiwan Institute of Chemical Engineers, 2013. 44(2): 270-278.
16.Nešić, J. , et al., Preparation, characterization and photocatalytic activity of lanthanum and vanadium co-doped mesoporous TiO2 for azo-dye degradation. Journal of Molecular Catalysis A: Chemical, 2013. 378: 67-75.
17.Sun, J. , et al., Photocatalytic degradation pathway for azo dye in TiO2/UV/O3 system: Hydroxyl radical versus hole. Journal of Molecular Catalysis A: Chemical, 2013. 367: 31-37.
18.Niu, P. and J. Hao, Efficient degradation of organic dyes by titanium dioxide–silicotungstic acid nanocomposite films: Influence of inorganic salts and surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014. 443: 501-507.
19.Woszuk, A. , et al., Effect of zeolite properties on asphalt foaming. Construction and Building Materials, 2017. 139: 247-255.
20.Wang, Q. , et al., Enhanced photocatalytic performance of Bi2O3/H-ZSM-5 composite for rhodamine B degradation under UV light irradiation. Applied Surface Science, 2014. 289: 224-229.
21.Chen. J. , L. E. , Cooper H. L. , Pathways of phenol and benzene photooxidation using TiO2 supported on a zeolite. 2002.
22.Patarin J. , K. H. , and J. L. G. , Iron distribution in iron MFI-type zeolite samples synthesized in fluoride medium: Influence of the synthesis procedure. 1990.
23.Gallastegi-Villa, M. , et al., Metal-loaded ZSM5 zeolites for catalytic purification of dioxin/furans and NOx containing exhaust gases from MWI plants: Effect of different metal cations. Applied Catalysis B: Environmental, 2016. 184: 238-245.
24.Piazzesi, G. , et al., Isocyanic acid hydrolysis over Fe-ZSM5 in urea-SCR. Catalysis Communications, 2006. 7(8): 600-603.
25.van Eck, E. R. , J. A. Pieterse, and A. P. Kentgens, Framework and extra-framework aluminium in wet ion exchanged Fe-ZSM5 and the effect of steam during the decomposition of N2O. Solid State Nucl Magn Reson, 2011. 39(3-4): 99-105.
26.Koekkoek, A. J. J. , et al., Hierarchically structured Fe/ZSM-5 as catalysts for the oxidation of benzene to phenol. Microporous and Mesoporous Materials, 2011. 145(1-3): 172-181.
27.Perezramirez, J. , et al., Evolution of isomorphously substituted iron zeolites during activation: comparison of Fe-beta and Fe-ZSM-5. Journal of Catalysis, 2005. 232(2): 318-334.
28.Yan, G. , et al., A primary study on the photocatalytic properties of HZSM-5 zeolite. Catalysis Today, 2004. 93-95: 851-856.
29.Salaeh, S. , et al., Reuse of TiO2 -based catalyst for solar driven water treatment; thermal and chemical reactivation. Journal of Photochemistry and Photobiology A: Chemistry, 2017. 333: 117-129.
30.Durgakumaria, V. , et al., An easy and efficient use of TiO2 supported HZSM-5 and TiO2 +HZSM-5 zeolite combinate in the photodegradation of aqueous phenol and p-chlorophenol. 2002.
31.Alwash, A. H. , A. Z. Abdullah, and N. Ismail, Zeolite Y encapsulated with Fe-TiO2 for ultrasound-assisted degradation of amaranth dye in water. J Hazard Mater, 2012. 233-234: 184-93.
32.黃教程,光觸媒於環境污染物降解的應用,國立台灣大學環境工程研究所, 2015。
33.Putri, L. K. , et al., Heteroatom doped graphene in photocatalysis: A review. Applied Surface Science, 2015. 358: 2-14.
34.Dider R. , S. M. , Solar photocatalysis: a clean process for water detoxification. 2002.
35.Akpan, U. G. and Hameed, B. H. , Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J Hazard Mater, 2009. 170(2-3): 520-9.
36.Wang, D. , et al., Preparation of morphology-controlled TiO2 nanocrystals for the excellent photocatalytic activity under simulated solar irradiation. Materials Research Bulletin, 2017. 94: 38-44.
37.朱鈞,光與光強度,科學農業,2001。38.Zhang, W. , et al., Phosphoric acid treating of ZSM-5 zeolite for the enhanced photocatalytic activity of TiO2/HZSM-5. Journal of Molecular Catalysis A: Chemical, 2013. 372: 6-12.
39.Kim, M. S. , et al., Oxidation of ammonia to nitrogen over Pt/Fe/ZSM5 catalyst: influence of catalyst support on the low temperature activity. J Hazard Mater, 2012. 237-238: 153-60.
40.Nagaraja, R. , et al., Photocatalytic degradation of Rhodamine B dye under UV/solar light using ZnO nanopowder synthesized by solution combustion route. Powder Technology, 2012. 215-216: 91-97.
41.Zhu, H. , et al., Effective photocatalytic decolorization of methyl orange utilizing TiO2/ZnO/chitosan nanocomposite films under simulated solar irradiation. Desalination, 2012. 286: 41-48.
42.Salaeh, S. , et al., Diclofenac removal by simulated solar assisted photocatalysis using TiO2-based zeolite catalyst; mechanisms, pathways and environmental aspects. Chemical Engineering Journal, 2016. 304: 289-302.
43.Li, S. , et al., The surface engineering of CdS nanocrystal for photocatalytic reaction: A strategy of modulating the trapping states and radicals generation towards RhB degradation. Applied Surface Science, 2016. 371: 164-171.