跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2025/01/26 03:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林芳羽
研究生(外文):Fang-Yu Lin
論文名稱:TiO2/Fe-ZSM5太陽光反應光催化降解之應用
論文名稱(外文):TiO2/Fe-ZSM5 for sunlight-responsive photodegradation applications
指導教授:謝永旭謝永旭引用關係
口試委員:陳佳吟吳志超
口試日期:2017-06-29
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:77
中文關鍵詞:TiO2/Fe-ZSM5光催化反應光催化劑羅丹明B
外文關鍵詞:TiO2/Fe-ZSM5photocatalytic reactionphotocatalystRhodamine B
相關次數:
  • 被引用被引用:0
  • 點閱點閱:183
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
由於其寬帶結構、長期穩定性、水溶性極低、無毒性和低成本,TiO2已經成為各種應用中最有潛力的光催化劑之一。在不同礦物形式的TiO2中,銳鈦礦是實際廢水處理中最活躍的半導體。使用TiO2的光催化降解過程提供了優點,包括不形成污泥,將污染物完全轉化為相對無害的最終產物。
染料在許多行業中的使用量日益增加,導致大量染料廢水處理量的增加。紡織行業染料污染物處理不當造成嚴重的環境問題和公眾健康問題。據估計,染色和整理過程中染料的約15 %會丟失,隨後作為廢水釋放。隨著氧化降解的大量發展,各種先進的氧化技術,包括光催化、臭氧分解、聲催化光芬頓、光電芬頓技術等已經成為破壞頑固化合物的技術之一。
迄今為止,已經深入研究了各種預期應用中的TiO2光催化性能的研究,即摻雜劑添加、合成技術改性和異質複合材料結構。在本研究中,TiO2/Fe-ZSM5複合材料的光催化活性將成為光催化劑,並且將確定最佳操作參數。
本實驗在pH值為9,RhB濃度為5 ppm,光強度為538 w/m2,TiO2/Fe-ZSM5添加量為0.5 g/L時,有最佳降解效率。
TiO2 has served as one of the most promising photocatalysts for various applications due to its wide band structure, long-term stability, very low aqueous solubility, nontoxicity and low cost features. Among different mineral forms of TiO2, anatase is the most active semiconductor for practical wastewater treatment. Photocatalytic degradation process using TiO2 offers advantages including no formation of sludge, complete conversion of contaminants to relatively harmless end products, reuse availability, and simultaneous removal of both organic and inorganic pollutants.
The increasing usage of dyes in numerous industries has led to a rise in the disposal of large amounts of dye wastewater. Improperly disposal of dye pollutants from textile industries poses serious environmental problems and public health concerns. It is estimated that around 15% of the dye is lost during dyeing and finishing processes and subsequently released as wastewaters. Along with massive development in the oxidative degradation, various advanced oxidation processes including photocatalysis, ozonolysis, sonocatalysis, photo-Fenton, photo electro-Fenton processes etc. have emerged as popular techniques to destroy recalcitrant compounds from wastewater.
To date, strategies tailing TiO2 photocatalytic performance for various intended applications have been intensively studied, namely, dopants addition, synthetic technique modification, and heterogeneous composite construction. In the present study, the photodcatalytic activity of TiO2/Fe-ZSM5 composites will be systematic accessed and the optimum operating parameters (e.g., dye concentration, pH, catalyst loading, and dopant ratio, etc.) will be identified.
The optimum degradation condition was obtained at pH 9, the concentration of RhB at 5 ppm, the light intensity at 538 w/m2, and catalyst loading (TiO2/Fe-ZSM5) at 0.5 g/L.
摘要 i
Abstract ii
目 錄 iii
表目錄 vi
圖目錄 vii
第一章 緒論 1
第二章 文獻回顧 3
2-1染整廢水概述 3
2-2羅丹明B概述 7
2-3 半導體概述 9
2-3-1 半導體性質與分類 9
2-3-2 半導體之選擇 10
2-4二氧化鈦概述 11
2-4-1 二氧化鈦晶體結構與特性 11
2-4-2 二氧化鈦光催化降解染料相關文獻 12
2-4-3 二氧化鈦改質 13
2-5沸石概述 14
2-5-1 沸石特性與分類 14
2-6 ZSM-5概述 16
2-6-1 ZSM-5之改質 17
2-7光催化反應 19
2-7-1 光催化反應原理 19
2-7-2 光催化反應之應用 19
2-7-3 二氧化鈦光催化反應機制 22
第三章 研究架構與方法 24
3-1研究架構 24
3-2實驗藥品 27
3-3實驗設備及分析儀器 28
3-4實驗流程 29
3-4-1 光觸媒製備 29
3-4-2 光催化實驗 32
3-5分析項目與方法 34
3-5-1 表面特性分析儀器 34
3-5-2 樣品分析儀器 35
第四章 結果與討論 37
4-1 光觸媒之特性分析 37
4-1-1 場發射掃描式電子顯微鏡分析 37
4-1-2 高解析X光繞射儀分析 48
4-1-3 傅立葉轉換紅外光線光譜儀分析 51
4-1-4 紫外光可見光分光光譜儀分析 53
4-2 光催化實驗 54
4-2-1背景實驗 54
4-2-2 不同初始pH值 55
4-2-3 不同Fe含量 58
4-2-4 不同TiO2/Fe-ZSM5光觸媒添加量 60
4-2-5 不同初始濃度 62
4-2-6 不同觸媒 64
4-2-7 不同光強度 66
4-2-8 光觸媒之穩定性 68
4-3羅丹明B降解之紫外光可見光光譜 69
4-4羅丹明B光催化降解機制 71
第五章 結論與建議 72
5-1結論 72
5-2建議 73
參考文獻 74
1.Gupta, V. K. and Suhas, Application of low-cost adsorbents for dye removal--a review. J Environ Manage, 2009. 90(8): 2313-42.
2.Jaafar, S. N. H. , et al., Natural dyes as TIO2 sensitizers with membranes for photoelectrochemical water splitting: An overview. Renewable and Sustainable Energy Reviews, 2017. 78: 698-709.
3.Forgacs, E. , T. Cserhati, and G. Oros, Removal of synthetic dyes from wastewaters: a review. Environ Int, 2004. 30(7): 953-71.
4.李碩文,以Cu-TiO2結合ITO光觸媒電極降解羅丹明B及產電可行性之研究,碩士論文,國立中興大學環境工程學系,2016。
5.Hu, L. , et al., Deposition of CdS nanoparticles on MIL-53(Fe) metal-organic framework with enhanced photocatalytic degradation of RhB under visible light irradiation. Applied Surface Science, 2017. 410: 401-413.
6.Zhong, J. S. , et al., Highly efficient photoelectrocatalytic removal of RhB and Cr(VI) by Cu nanoparticles sensitized TiO2 nanotube arrays. Applied Surface Science, 2016. 367: 342-346.
7.Ghasemi, Z. , Younesi H. , and Zinatizadeh A. A. , Preparation, characterization and photocatalytic application of TiO2/Fe-ZSM-5 nanocomposite for the treatment of petroleum refinery wastewater: Optimization of process parameters by response surface methodology. Chemosphere, 2016. 159: 552-564.
8.盧泓,二氧化鈦光觸媒之應用,國立中正大學化學工程學系,2013。
9.Gomez, S. , et al., Preparation and characterization of TiO2/HZSM-11 zeolite for photodegradation of dichlorvos in aqueous solution. J Hazard Mater, 2013. 258-259: 19-26.
10.Mohamad, M. , et al., A density functional study of structural, electronic and optical properties of titanium dioxide: Characterization of rutile, anatase and brookite polymorphs. Materials Science in Semiconductor Processing, 2015. 31: 405-414.
11.Khataee, A. R. and Kasiri, M. B. , Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: Influence of the chemical structure of dyes. Journal of Molecular Catalysis A: Chemical, 2010. 328(1-2): 8-26.
12.王志祺,可被可見光激發之半導體材料製備,碩士論文,國立清華大學化學工程學系,2009。
13.Wongkalasin, P. , S. Chavadej, and Sreethawong, T. , Photocatalytic degradation of mixed azo dyes in aqueous wastewater using mesoporous-assembled TiO2 nanocrystal synthesized by a modified sol–gel process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011. 384(1-3): 519-528.
14.Rauf, M. A. , Meetani, M. A. and Hisaindee, S. , An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination, 2011. 276(1-3): 13-27.
15.Ilinoiu, E. C. , et al., Photocatalytic activity of a nitrogen-doped TiO2 modified zeolite in the degradation of Reactive Yellow 125 azo dye. Journal of the Taiwan Institute of Chemical Engineers, 2013. 44(2): 270-278.
16.Nešić, J. , et al., Preparation, characterization and photocatalytic activity of lanthanum and vanadium co-doped mesoporous TiO2 for azo-dye degradation. Journal of Molecular Catalysis A: Chemical, 2013. 378: 67-75.
17.Sun, J. , et al., Photocatalytic degradation pathway for azo dye in TiO2/UV/O3 system: Hydroxyl radical versus hole. Journal of Molecular Catalysis A: Chemical, 2013. 367: 31-37.
18.Niu, P. and J. Hao, Efficient degradation of organic dyes by titanium dioxide–silicotungstic acid nanocomposite films: Influence of inorganic salts and surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014. 443: 501-507.
19.Woszuk, A. , et al., Effect of zeolite properties on asphalt foaming. Construction and Building Materials, 2017. 139: 247-255.
20.Wang, Q. , et al., Enhanced photocatalytic performance of Bi2O3/H-ZSM-5 composite for rhodamine B degradation under UV light irradiation. Applied Surface Science, 2014. 289: 224-229.
21.Chen. J. , L. E. , Cooper H. L. , Pathways of phenol and benzene photooxidation using TiO2 supported on a zeolite. 2002.
22.Patarin J. , K. H. , and J. L. G. , Iron distribution in iron MFI-type zeolite samples synthesized in fluoride medium: Influence of the synthesis procedure. 1990.
23.Gallastegi-Villa, M. , et al., Metal-loaded ZSM5 zeolites for catalytic purification of dioxin/furans and NOx containing exhaust gases from MWI plants: Effect of different metal cations. Applied Catalysis B: Environmental, 2016. 184: 238-245.
24.Piazzesi, G. , et al., Isocyanic acid hydrolysis over Fe-ZSM5 in urea-SCR. Catalysis Communications, 2006. 7(8): 600-603.
25.van Eck, E. R. , J. A. Pieterse, and A. P. Kentgens, Framework and extra-framework aluminium in wet ion exchanged Fe-ZSM5 and the effect of steam during the decomposition of N2O. Solid State Nucl Magn Reson, 2011. 39(3-4): 99-105.
26.Koekkoek, A. J. J. , et al., Hierarchically structured Fe/ZSM-5 as catalysts for the oxidation of benzene to phenol. Microporous and Mesoporous Materials, 2011. 145(1-3): 172-181.
27.Perezramirez, J. , et al., Evolution of isomorphously substituted iron zeolites during activation: comparison of Fe-beta and Fe-ZSM-5. Journal of Catalysis, 2005. 232(2): 318-334.
28.Yan, G. , et al., A primary study on the photocatalytic properties of HZSM-5 zeolite. Catalysis Today, 2004. 93-95: 851-856.
29.Salaeh, S. , et al., Reuse of TiO2 -based catalyst for solar driven water treatment; thermal and chemical reactivation. Journal of Photochemistry and Photobiology A: Chemistry, 2017. 333: 117-129.
30.Durgakumaria, V. , et al., An easy and efficient use of TiO2 supported HZSM-5 and TiO2 +HZSM-5 zeolite combinate in the photodegradation of aqueous phenol and p-chlorophenol. 2002.
31.Alwash, A. H. , A. Z. Abdullah, and N. Ismail, Zeolite Y encapsulated with Fe-TiO2 for ultrasound-assisted degradation of amaranth dye in water. J Hazard Mater, 2012. 233-234: 184-93.
32.黃教程,光觸媒於環境污染物降解的應用,國立台灣大學環境工程研究所, 2015。
33.Putri, L. K. , et al., Heteroatom doped graphene in photocatalysis: A review. Applied Surface Science, 2015. 358: 2-14.
34.Dider R. , S. M. , Solar photocatalysis: a clean process for water detoxification. 2002.
35.Akpan, U. G. and Hameed, B. H. , Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J Hazard Mater, 2009. 170(2-3): 520-9.
36.Wang, D. , et al., Preparation of morphology-controlled TiO2 nanocrystals for the excellent photocatalytic activity under simulated solar irradiation. Materials Research Bulletin, 2017. 94: 38-44.
37.朱鈞,光與光強度,科學農業,2001。
38.Zhang, W. , et al., Phosphoric acid treating of ZSM-5 zeolite for the enhanced photocatalytic activity of TiO2/HZSM-5. Journal of Molecular Catalysis A: Chemical, 2013. 372: 6-12.
39.Kim, M. S. , et al., Oxidation of ammonia to nitrogen over Pt/Fe/ZSM5 catalyst: influence of catalyst support on the low temperature activity. J Hazard Mater, 2012. 237-238: 153-60.
40.Nagaraja, R. , et al., Photocatalytic degradation of Rhodamine B dye under UV/solar light using ZnO nanopowder synthesized by solution combustion route. Powder Technology, 2012. 215-216: 91-97.
41.Zhu, H. , et al., Effective photocatalytic decolorization of methyl orange utilizing TiO2/ZnO/chitosan nanocomposite films under simulated solar irradiation. Desalination, 2012. 286: 41-48.
42.Salaeh, S. , et al., Diclofenac removal by simulated solar assisted photocatalysis using TiO2-based zeolite catalyst; mechanisms, pathways and environmental aspects. Chemical Engineering Journal, 2016. 304: 289-302.
43.Li, S. , et al., The surface engineering of CdS nanocrystal for photocatalytic reaction: A strategy of modulating the trapping states and radicals generation towards RhB degradation. Applied Surface Science, 2016. 371: 164-171.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top