跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 12:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張沛喬
研究生(外文):Pei-Chiao Chang
論文名稱:氧化石墨烯吸附水中鉬之研究
論文名稱(外文):Adsorption of molybdenum from aqueous solution by Graphene oxide
指導教授:盧重興盧重興引用關係
指導教授(外文):Chung-Sying Lu
口試委員:羅金翔望熙榮
口試委員(外文):Chin-Hsiang LuoShi-Zoom Wang
口試日期:2017-07-28
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:61
中文關鍵詞:吸附氧化石墨烯次氯酸鈉
外文關鍵詞:adsorptionmolybdenumgrapheme oxidesodium hypochlorite
相關次數:
  • 被引用被引用:2
  • 點閱點閱:514
  • 評分評分:
  • 下載下載:58
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討氧化石墨烯(Graphene oxide, GO)吸附水中鉬元素(Molybdenum, Mo)之可行性。經次氯酸鈉(NaOCl)氧化改質之石墨烯,表面含氧官能基與負電荷大幅增加,親水性相對增加且提供更多吸附位置,改質後對Mo吸附量提升近三倍。透過表面特性分析與吸附量多寡,研判本次吸附實驗主要機制應為吸附劑表面的官能基與水中鉬酸根間的配位化合物交換作用。
在不同操作條件下求得吸附劑與含鉬水溶液的固/液比、攪拌速度、吸附劑接觸時間、離子強度與pH值等條件。吸附動力實驗結果較符合擬二階吸附動力模式(r2>0.99),透過迴歸計算其吸附量亦接近實驗值;動力學探討可發現初始濃度較高者所需活化能較小。等溫吸附實驗結果較符合Langmuir model等溫吸附模式(r2>0.96),藉由熱力學計算結果,本研究吸附實驗屬於自發性的吸熱反應,且固/液介面親和力良好之反應。
在脫附再生實驗中,以NaOCl及HNO3為脫附劑的脫附再生效率,分別為89及88%;脫附劑NaOCl對GO(NaOCl)進行的十次吸脫附重量損失約43%,再生效率72.3%。以上研究結果顯示,經次氯酸鈉氧化改質後的石墨烯在處理水溶液中重金屬鉬有良好的應用潛力,其具重複使用之特性,可降低其經濟成本。
GO(NaOCl) 在工廠實際廢水中也有良好吸附表現,鉬的去除率可達70%,平衡吸附量可達到31.6 mg/g,並可在4~6小時達到吸附平衡。
This study investigated the feasibility of adsorbing molybdenum (Mo) in water by graphene oxide (GO). The GO oxidized by sodium hypochlorite (NaOCl) has the surface containing oxygen functional bases and the negative charge increased significantly. Therefore, the hydrophilic of GO is relatively increased and provides more adsorption sites. Both of them have devoted to the effect that the Mo adsorption capacity of GO is increased nearly three times of original one. By the surface characteristic analysis and adsorption capacity experimental result, we can make a conclusion that the main mechanism of the adsorption experiment should be the exchange effect between the functional bases on the surface of the adsorbent and the molybdate compound in the water.
The solid/liquid ratio, the stirring speed, the contact time of the adsorbent, the ionic strength and the pH value can be determined under different operating conditions. The results of adsorption experiments are in good agreement with the quasi-second-order adsorption dynamic model (r2>0.99), and the adsorption capacity solved by Regression Analysis is close to the experimental value. By kinetic energy study, it can be found that the higher initial concentration adsorbent needs activation energy less than the lower one. The results of isothermal adsorption are correspondent to Langmuir model isothermal adsorption (r2>0.96). And the results of thermodynamics show that the adsorption reaction is spontaneous endothermic reaction and the solid/liquid interface affinity is good.
In the adsorption/desorption experiment, the desorption efficiency of NaOCl and HNO3 was 89 and 88%, respectively. The weight loss of GO(NaOCl) was about 43%, and regeneration efficiency was 72.3% after 10 cycles of operation. The above results show that the GO(NaOCl) have the repeated availability performance of Mo adsorption to reduce the cost for the replacement of adsorbents.
GO (NaOCl) also shows a good potential for Mo in real wastewater treatment. The Mo removal rate is up to 70% with the qe of 31.6 mg/g, and the adsorption equilibrium can be reached during 4~6 hours of operation.
摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vi
第一章、 前言 1
第二章、 文獻回顧 3
2.1 環境與重金屬 3
2.1.1 來源及其危害特性 3
2.1.2 水中鉬存在形式與pH值關係 4
2.1.3 鉬吸附文獻 4
2.2 吸附作用 5
2.3 吸附模式理論 6
2.3.1 等溫吸附模式 6
2.3.2 動力吸附模式 8
2.4 石墨烯簡介 9
2.4.1 石墨烯發展歷史 9
2.4.2 石墨烯的結構 9
2.4.3 石墨烯的特性 10
2.4.4 石墨烯吸附 10
第三章、 研究材料與方法 11
3.1 實驗材料與試藥 11
3.1.1 實驗試藥與材料 11
3.1.2 吸附材料 11
3.2 儀器設備 12
3.3表面特性分析方法 12
3.3.1 比表面積分析儀 12
3.3.2 熱重量分析儀 14
3.3.3 界達電位分析儀 14
3.3.4 表面含氧官能基定量分析 15
3.3.5 傅立葉轉換紅外光譜儀 16
3.4 重金屬分析方法 17
3.5 研究架構 18
3.5.1 研究概述 19
3.6 實驗方法程序 20
3.6.1 氧化石墨烯實驗 20
3.6.2 不同吸附劑的比較 23
3.6.3 劑量及震盪頻率之吸附實驗 23
3.6.4 離子強度與pH值之吸附實驗 24
3.6.5 不同溫度之吸附動力實驗 25
3.6.6 不同溫度之等溫吸附實驗 25
3.6.7 脫附再生實驗 26
3.6.8 實廠廢水吸附實驗 26
第四章、 結果與討論 28
4.1 不同氧化劑吸附Mo的比較 28
4.2 石墨烯改質前後物化特性分析 29
4.2.1 比表面積分析 29
4.2.2 表面含氧官能基定量分析 29
4.2.3 熱重量分析 30
4.2.4 傅立葉轉換紅外線光譜分析 31
4.2.5 界達電位分析儀 33
4.3 吸附機制 34
4.4 批次吸附實驗 35
4.4.1 石墨烯劑量及震盪頻率影響之實驗 35
4.4.2 離子強度影響與不同pH值之吸附平衡實驗 37
4.4.3 不同溫度之吸附動力實驗與動力學 39
4.4.4 不同溫度之等溫吸附實驗與熱力學 42
4.5 脫附再生實驗 45
4.5.1 脫附劑濃度對再生效率之影響 45
4.5.2 脫附時間對再生效率之影響 47
4.5.3 多次吸脫附實驗之探討 47
4.6 實際廢水吸附實驗 50
4.7經濟效益分析 53
五、結論與建議 56
5.1 結論 56
5.2 建議 57
參考文獻 58
行政院環保署,產業廢水污染調查及管制措施研擬計畫期末報告 (2010)。
洪偉修(2010) 世界上最薄的材料-石墨烯,康熙文化事業股份有限公司。
陳映竹(2012) 改質多壁奈米碳管吸附水中鉬之研究,國立中興大學環境工程研究所碩士論文。
蘇清源(2013) 石墨烯量產技術與產業應用,光連雙月刊,108。

Abotsit, M.K.G., Scaroni, A.W., (1990). Reaction of carbons with ammonia: effects on the surface charge and molybdenum adsorption. Carbon 28, 1, 79-84.

Adewunmi, C.O., Becker, W., Kuehnast, O., Oluwole, F., (1996).Accumulation of copper, lead and cadmium in freshwater snails in southwestern Nigeria. Sci. Total Environm. 193, 69-73.

Al-Dalama, K., Aravind, B., Stanislaus, A., (2005). Influence of complexing agents on the adsorption of molybdate and nickel ions on alumina. Applied Catalysis. A: General 296, 49-53.

Aveston, J., Anacker, E.W., Johnson, J.S., (1964). Hydrolysis of molybdenum (VI). Ultracentrifugation, acidity measurements, and Raman spectra of polymolybdates. Inorg. Chem. 3, 735-746.

Barceloux, D.G., (1999). Molybdenum. Clin. Toxicol. 37, 2, 231-237.


Boehm, H.P., (1994). Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32, 759-769.

Busey, R.H., Keller, O.L., (1964). Structure of the aqueous pertechnetate ion by Raman and infrared spectroscopy. Raman and infrared spectra of crystalline KTcO4, KReO4, Na2MoO4, Na2WO4, Na2MoO4⋅2H2O, and Na2WO4⋅2H2O. J. Chem. Phys. 41, 215­225.

Coughlan, M.P., (1983). The role of molybdenum in human biology. J. Inherit. Metab. Dis. 6, 70-77.

Furuy, E.G., Chang, H.T., Miura, Y., Noll, K.E., (1997). A fundamental analysis of the isotherm for the adsorption of phenolic compounds on activated carbon. Sep. Purif. Technol. 11, 69-78.

Goldberg, S., Forster, H.S., Godfrey, C.L., (1996). Molybdenum adsorption on oxides, clay minerals, and soils. Soil Sci. Soc. Am. J. 60, 2, 425-432.

Gregg, S.J., Sing, K.S.W., (1982). Adsorption, Surface Area and Porosity. Academic Press. New York.

Ho, Y.S., McKay, G., (1998). Sorption of dye from aqueous solution by peat. Chem. Eng. J. 70, 115-124.

Ho, Y.S., John Wase, D.A., Forster, C.F., (1995). Batch nickel removal from aqueous solution by sphagnum moss peat. Water Res. 29, 1327-1332.

Iijima, S., (1991). Helical microtubules of graphitic carbon. Nature 354, 56-58.

Kadirvelu, K., Thamaraiselvi, K., Namasivayam, C., (2001). Adsorption of nickel (II) from aqueous solution onto activated carbon prepared from coirpith. Sep. Purif. Technol. 24, 497-505.

Lu, C., Chiu, H., (2006). Adsorption of zinc (II) from water with purified carbon nanotubes. Chem. Eng. Sci. 61, 4, 1138-1145.

Lu, C., Chiu, H., Liu, C., (2006). Removal of zinc (II) from aqueous solution by purified carbon nanotubes: kinetic and equilibrium studies. Ind. Eng. Chem. Res. 45, 8, 2850-2855.

Lu, C., Liu, C., (2006). Removal of nickel (II) from aqueous solution by carbon nanotubes. J. Chem. Technol. Biotechnol. 81, 12, 1932-1940.

Lu, C., Liu, C., Rao, G. P., (2008). Comparisons of sorbent cost for removal of nickel (II) from aqueous solution by carbon nanotubes and granular activated carbon. J. Hazard. Mater. 151, 1, 239-246.

Lu, C., Chiu, H., (2008). Chemical modification of multiwalled carbon nanotubes for sorption of zinc (II) from aqueous solution. Chem. Eng. J. 139, 3, 462-468.

Lu, C., Liu, C., Su, F., (2009). Sorption kinetics, thermodynamics and competition of Ni2+ from aqueous solutions onto surface oxidized carbon nanotubes. Desalination 249, 1, 18-23.

Mitchell, P.C.H., (1990). Ullmann’s Encyclopedia of Industrial Chemistry, 5th Ed. Wiley-VCH, Weinheim. 16, 7, 675 - 682.

Rao, G.P., Lu, C., Su, F., (2007). Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep. Purif. Technol. 58, 1, 224-231.

Ruthven, D.M., (1984). Principle of Adsorption and Adsorption Process. John Willey and Sons. New York.

Satishkumar, B.C., Govindaraj, A., Mofokeng, J., Subbanna, G.N., Rao, C.N.R., (1996). Novel experiments with carbon nanotubes: opening, filling, closing and functionalizing nanotubes. J. Phys. B. 29, 4925-4934.

Venugopal, B., Luckey, T.D., (1978). Metal toxicity in mammals, 2, chemical toxicity of metals and metalloids. Plenum Press, New York, 253-257.

Zhao G, Jiang L, HE y , et al. (2011). Sulfonated graphene for persistent aromatic pollutant management. Advanced Materials,23:3959-3963

Sitko R,Turek E,Zawisza B,et al(2013). Adsorption of diva-lent metal ions from aqueous solutions using grapheme oxide. Dalton Transactions,42:5682-5689

Liu Li, Liu Shuxia, Zhang Qiuping,et al(2016). Adsorption of Au (Ⅱ)、Pd (Ⅱ),and Pt (Ⅳ) from aqueous solution on grapheme oxide. Journal of chemical & engineering data ,58:209-216.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊