|
1.Agency for Toxic Substances and Disease Registry, Toxicological profile for nitrophenols: 2-nitrophenol, 4-Nitrophenol, U.S. Public Health Service,Washington D.C., 1992.
2.Ajit M. Kalekar, Kiran Kumar K. Sharma, Anaïs Lehoux, Fabrice Audonnet, Hynd Remita, Abhijit Saha and Geeta K. Sharma. (2013). Investigation into the Catalytic Activity of Porous Platinum Nanostructures.Langmuir. 29 11431−11439.
3.Ajit M. Kalekar, Kiran Kumar K. Sharma, Meitram N. Luwang and Geeta K. Sharma. (2016). Catalytic activity of bare and porous palladium nanostructures in the reduction of 4-nitrophenol. RSC Adv. 611911-11920.
4.Amutha Chinnappan, Ashif H. Tamboli, Wook-Jin Chung, Hern Kim. (2016). Green synthesis, characterization and catalytic efficiency of hypercrosslinked porous polymeric ionic liquid networks towards 4-nitrophenol Reduction. Chemical Engineering Journal. 285 554–561.
5.Anindita Roy, Biplab Debnath, Ramkrishna Sahoo, Teresa Aditya, Tarasankar Pal. (2017). Micelle confined mechanistic pathway for 4-nitrophenol reduction. Journal of Colloid and Interface Science. 493 288–294.
6.Anna Klinkova, Aftab Ahmed, Rachelle M. Choueiri,Jeffery R. Guest and Eugenia Kumacheva. (2016). Toward rational design of palladium nanoparticles with plasmonically enhanced catalytic performance. RSC Adv. 6 47907–47911.
7.Batsile M. Mogudi, Phendukani Ncube, Reinout Meijboom. (2016).Catalytic activity of mesoporous cobalt oxides with controlledporosity and crystallite sizes: Evaluation using the reduction of4-nitrophenol. Applied Catalysis B: Environmental. 198 (2016) 74–82.
8.Joongoo Lee, Ji Chan Park, and Hyunjoon Song. (2008). A Nanoreactor Framework of a Au@SiO2 Yolk/Shell Structure for Catalytic Reduction of p-Nitrophenol. Adv Mater. 20 1523–1528.
9.Daping He, Yulin Jiang, Haifeng Lv, Mu Pan, Shichun Mu. (2013). Nitrogen-doped reduced graphene oxide supports for noble metal catalysts with greatly enhanced activity and stability. Applied Catalysis B: Environmental. 132–133 379–388. 10.Dong Wan, Wenbing Li , Guanghua Wang, Lulu Lu, Xiaobi Wei. (2017). Degradation of p-Nitrophenol using magnetic Fe0 /Fe3O4/Coke composite as a heterogeneous Fenton-like catalyst. Science of the Total Environment. 574 1326–1334.
11.Elaine A. Gelder, S. David Jackson, C. Martin Lok. (2004). The hydrogenation of nitrobenzene to aniline: a new mechanism. Chem. Commun.,522-524.
12.Elham Akbarzadeh, Mehrdad Falamarzi, Mohammad Reza Gholami. (2017). Synthesis of M/CuO (M=Ag, Au) from Cu based Metal Organic Frameworks for efficient catalytic reduction of p-nitrophenol. Materials Chemistry and Physics. 198 374-379.
13.Eloise Marais, Tebello Nyokong. (2008). Adsorption of 4-nitrophenol onto Amberlite® IRA-900 modified with metallophthalocyanines. J. Hazard. Mater . 152 293-301.
14.Fabio Visentin , Graeme Puxty , Oemer M. Kut , Konrad Hungerbühler. (2006). Study of the Hydrogenation of Selected Nitro Compounds by Simultaneous Measurements of Calorimetric, FT-IR, and Gas-Uptake Signals. Ind. Eng. Chem. Res. 45 (13) 4544–4553.
15.Guoqing Wu, Xiaoyu Liang, Lijuan Zhang, Zhiyong Tang, Mohammad Al-Mamun, Huijun Zhao and Xintai Su. (2017). Fabrication of Highly Stable Metal Oxide Hollow Nanospheres and Their Catalytic Activity toward 4‑Nitrophenol Reduction. ACS Appl. Mater. Interfaces. 9 18207−18214.
16.Hanyu Ma, Haitao Wang, Tong Wu, Chongzheng Na. (2016). Highly active layered double hydroxide-derived cobalt nano-catalysts for p-nitrophenol reduction. Applied Catalysis B: Environmental. 180 471–479.
17.Hui Li, Fan Yue,Chao Yang, Peng Xue,Nannan Li, Yi Zhang and Jide Wang. (2017). Structural evolution of a metal–organic framework and derived hybrids composed of metallic cobalt and copper encapsulated in nitrogen-doped porous carbon cubes with high catalytic performance. CrystEngComm. 19 64–71.
18.Huihui Chen , Mei Yang , Sha Tao , Guangwen Chen. (2017). Oxygen vacancy enhanced catalytic activity of reduced Co3O4 towards p-nitrophenol reduction. Applied Catalysis B: Environmental. 209 648–656.
19.J. Chen, H. Zhang, P. Liu, Y. Li, X. Liu, G. Li, P.K. Wong, T. An, H. Zhao. (2015) . Cross-linked ZnIn2S4/rGO composite photocatalyst for sunlight-driven photocatalytic degradation of 4-nitrophenol. Appl Catal. B Environ. 168-169 266-273.
20.J. Xia, G. He, L. Zhang, X. Sun, X. Wang. (2016). Hydrogenation of nitrophenolscatalyzed by carbon black-supported nickel nanoparticles under mild conditions, Appl Catal B Environ. 180 408–415.
21.J.A. Makaryan.,V.I. Savchenko. (1993). n-Arylhydroxylamines Transformation in thePresense of Heterogeneous Catalysts. Studies in Surface Science and Catalysis. 75 2439-2442.
22.Jau-Rung Chiou, Bo-Hung Lai, Kai-Chih Hsu, Dong-Hwang Chen. (2013).One-pot green synthesis of silver/iron oxide composite nanoparticles for 4-nitrophenol reduction. Journal of Hazardous Materials. 248 249 394– 400.
23.Jianhua Chen , Xue Sun , Lijing Lin , Xinfei Dong , Yasan He. (2017). Adsorption removal of o-nitrophenol and p-nitrophenol from wastewater by metal–organic framework Cr-BDC. Chinese Journal of Chemical Engineering. http://www.sciencedirect.com/science/article/pii/S1004954116303998.
24.Jie Feng, Li Su, Yanhua Ma, Cuiling Ren, Qing Guo, Xingguo Chen. (2013). CuFe2O4 magnetic nanoparticles: A simple and efficient catalyst for the reduction of nitrophenol. Chemical Engineering Journal. 221 16–24.
25.Jingkuo Zhou, Jianping Gao, Xiaoyang Xu,Wei Hong, Yahui Song, Ruinan Xue, Huilin Zhao,Yu Liu, Haixia Qiu. (2017). Synthesis of porous Bi@Cs networks by a one-step hydrothermal method and their superior catalytic activity for the reduction of 4-nitrophenol. Journal of Alloys and Compounds. 709 206-212.
26.Jun Li, Yi Ren, Fangzhou Ji, Bo Lai. (2017). Heterogeneous catalytic oxidation for the degradation of p-nitrophenol in aqueous solution by persulfate activated with CuFe2O4 magnetic nano-particles. Chemical Engineering Journal. 324 63–73.
27.Juwei Wu, Wei Liu, Xia Xiang, Kai Sun, Fenghua Liu, Chao Cai,Shaobo Han, Yongyong Xie, Sean Li, Xiaotao Zu. (2017). From Ni(OH)2/Graphene composite to Ni@Graphene core-shell:A self-catalyzed epitaxial growth and enhanced activity fornitrophenol reduction. Carbon. 117 192-200.
28.K. Kuroda, T. Ishida, M. Haruta.(2009). Reduction of 4-nitrophenol to 4-aminophenolover Au nanoparticles deposited on PMMA. J. Mol. Catal. A: Chem. 298 7–11.
29.K.S. Ju, R.E. Parales. (2010). Nitroaromatic Compounds, from Synthesis to Biodegradation.Micorobiol. Mol.Biol.Rev. 74 250-272.
30.Kong-Lin Wu, Xian-Wen Wei, Xian-Min Zhou, De-Hong Wu, Xiao-Wang Liu, Yin Ye, and Qi Wang. (2011). NiCo2 Alloys: Controllable Synthesis, Magnetic Properties, and Catalytic Applications in Reduction of 4-Nitrophenol. J. Phys. Chem. C. 115 16268–16274.
31.Kunfeng Zhang, Dr. Yuxi Liu, Dr. Jiguang Deng, Shaohua Xie, Hongxia Lin, Xingtian Zhao, Jun Yang, Zhuo Han, Hongxing Dai (Prof.). (2017). Fe2O3/3DOM BiVO4: High-performance photocatalysts for the visible light-driven degradation of 4-nitrophenol. Applied Catalysis B: Environmental. 202 569–579.
32.Kun-Yi Andrew Lin , Yu-Chien Chen , Chih-Feng Huang. (2016). Magnetic carbon-supported cobalt prepared from one-step carbonization of hexacyanocobaltate as an efficient and recyclable catalyst for activating Oxone. Separation and Purification Technology. 170 173–182.
33.Kyoko Kuroda, Tamao Ishida, Masatake Haruta. (2009). Reduction of 4-nitrophenol to 4-aminophenol over Au nanoparticles deposited on PMMA. Journal of Molecular Catalysis A: Chemical. 298 7–11.
34.Laura Levin , Maira Carabajal , Martin Hofrichter , Rene Ullrich. (2016). Degradation of 4-nitrophenol by the white-rot polypore. Trametes versicolor International Biodeterioration & Biodegradation. 107 174-179.
35.Liguang Dou and Hui Zhang. (2013). Facile assembly of nanosheet array-like CuMgAl-layered double hydroxide/rGO nanohybrids for highly efficient reduction of 4-nitrophenol. J. Name. 00, 1-3.
36.M. Studer, S. Neto, H.-U. Blaser. (2000). Modulating the hydroxylamine accumulation in the hydrogenation of substituted nitroarenes using vanadium-promoted RNi catalysts. Topics in Catalysis. 13:205.
37.M.V. Morales, M. Rocha, C. Freire, E. Asedegbega-Nieto, E. Gallegos-Suarez,I. Rodríguez-Ramos, A. Guerrero-Ruiz. (2017). Development of highly efficient Cu versus Pd catalysts supported on graphitic carbon materials for the reduction of 4-nitrophenol to 4-aminophenol at room temperature. Carbon., 111 150-161.
38.Megan S. Holden, Kevin E. Nick, Mia Hall, Jamie R. Milligan, Qiao Chene and Christopher C. Perry. (2014). Synthesis and catalytic activity of pluronic stabilized silver–gold bimetallic nanoparticles. RSC Adv, 4, 52279–52288.
39.Muhammad Ajmal,Sahin Demirci,Mohammad Siddiq,Nahit Aktasd and Nurettin Sahiner. Simultaneous catalytic degradation/reduction of multiple organic compounds by modifiable p(methacrylic acid-co-acrylonitrile)–M (M: Cu, Co) microgel catalyst composites. New J. Chem., 40, 1485-1496.
40.O''Connor, L.Y. Young. (1989). Toxicity and anaerobic biodegradability of substituted phenols under methanogenic conditions. Environ. Toxicol. Chem. 8 853-862.
41.Owena . O''connor and L. Y. Youn. (1989). Toxicity and Anaerobic Biodegradability of Substituted Pheols Under Methanogenic Conditions. EnvironmenIaI Toxicology and Chemistry. 8 853-862.
42.Pengxiang Zhao, Xingwen Feng, Deshun Huang, Guiying Yanga, Didier Astruc. (2015). Basic concepts and recent advances in nitrophenol reduction by gold- and other transition metal nanoparticles. Coordination Chemistry Reviews 287 114–136.
43.Pinhua Zhang, Yongming Sui, Guanjun Xiao,YingnanWang, ChunzhongWang, Bingbing Liu, Guangtian Zou and Bo Zou. (2012). Facile fabrication of faceted copper nanocrystals with high catalytic activity for p-nitrophenol reduction. J. Mater. Chem. A. 1 1632–1638. 44.Priority Pollutants List, United States Environmental Protection Agency, 2014 (Accessed 16 November 2001), https://www.epa.gov/sites/production/files/ 2015-09/documents/priority-pollutant-list-epa.pdf/.
45.Rahat Javaid , Shin-ichiro Kawasaki, Akira Suzuki and Toshishige M. Suzuki. (2013). Simple and rapid hydrogenation of p-nitrophenol with aqueous formic acid in catalytic flow reactors. Beilstein J. Org. Chem. 9 1156–1163.
46.Rama Jyothi Kongarapu, Prateeksha Mahamallik, Anjali Pal. (2017).Surfactant modification of chitosan hydrogel beads for Ni@NiO core-shell nanoparticles formation and its catalysis to 4-nitrophenol reduction. Journal of Environmental ChemicalEngineering. 5 1321–1329.
47.S. Álvarez-Torrellas, M. Martin-Martinez , H.T. Gomes , G. Ovejeroa, J. García. (2017). Enhancement of p-nitrophenol adsorption capacity through N2-thermal-based treatment of activated carbons. Applied Surface Science 414 424–434.
48.S.R. Subashchandrabose, M. Megharaj, K. Venkateswarlu, R. Naidu. (2012). p-nitrophenol toxicity to and its removal by three select soil isolates of microalgae: The role of antioxidants. Environ.Toxicol. Chem. 31 1980-1988.
49.S.V. Otari, R.M. Patil, N.H. Nadaf, S.J. Ghosh, S.H. Pawar. (2014). Green synthesis of silver nanoparticles by microorganism using organic pollutant: its antimicrobial and catalytic application. Environ. Sci. Pollut.Res. 21 1503-1513.
50.Stefanos Mourdikoudis,Thomas Altantzis,Luis M. Liz-Marzán,Sara Bals,Isabel Pastoriza-Santos and Jorge Pérez-Juste.Hydrophilic Pt nanoflowers: synthesis, crystallographic analysis and catalytic performance. CrystEnqComm. 18 3422–3427.
51.Sujit Kumar Ghosh, Madhuri Mandal, Subrata Kundu, Sudip Nath, Tarasankar Pal. (2004). Bimetallic Pt–Ni nanoparticles can catalyze reduction of aromatic nitro compounds by sodium borohydride in aqueous solution. Applied Catalysis A: General. 268 61-66.
52.Suman Singh, Nishant Kumar, Manish Kumar, Jyoti, Ajay Agarwal, Boris Mizaikoff. (2017). Electrochemical sensing and remediation of 4-nitrophenol using bio-synthesized copper oxide nanoparticles. Chemical Engineering Journal. 313 283–292.
53.Sungjun Bae, Suji Gim, Hyungjun Kim, Khalil Hanna. (2016). Effect of NaBH4on properties of nanoscale zero-valent iron and itscatalytic activity for reduction of p-nitrophenol. Applied Catalysis B: Environmental. 182 541–549.
54.Toxicological Profile for Nitrophenols: 2-nitrophenol and 4-nitrophenol,Agency for Toxic Substances and Disease Registry, Public Health Service, Washington D.C, 1992.
55.Tuo Ji , Long Chen, Liwen Mu, Ruixia Yuan, Michael Knoblauch, Forrest Sheng Bao, Jiahua Zhu. (2016). In-situ reduction of Ag nanoparticles on oxygenated mesoporous carbon fabric: Exceptional catalyst for nitroaromatics reduction. AppliedCatalysisB:Environmental. 182 306–315..
56.U. Siegrist, P. Baumeister, H.-U. Blaser.(1998).The Selective Hydrogenation of Functionalized Nitroarenes : New Catalytic Systems.Chem.Ind. 1998, 75,207 – 219.
57.U.S. EPA, Quality Criteria for Water, Office of Water, 1986. Washington D.C.
58.U.S. EPA, Water Quality Criteria, US EPA, Washington D.C., 1976
59.W.J. Lee, U.N. Maiti, J.M. Lee, J. Lim, T.H. Han, S.O. Kim, Nitrogen-doped carbon nanotubes and graphene composite structures for energy and catalyticapplications, Chem. Commun. 50 6818–6830.
60.Wangyang Lu, Wenxing Chen , Nan Li, Minhong Xu, Yuyuan Yao.(2009). Oxidative removal of 4-nitrophenol using activated carbon fiber and hydrogen peroxide to enhance reactivity of metallophthalocyanine. Applied Catalysis B: Environmental. 87 (2009) 146–151.
61.Xiao-Qiong Wu, Xing-Wen Wu, Qing Huang, Jiang-Shan Shen, Hong-Wu Zhang. (2015). In situ synthesized gold nanoparticles in hydrogels for catalyticreduction of nitroaromatic compounds. Applied Surface Science. 331 210–218.
62.Xin-Yi Wu, Hai-Xiao Qi, Jin-Jiao Ning, Jian-Feng Wang, Zhi-Gang Ren, Jian-Ping Lang. (2015). One silver(I)/tetraphosphine coordination polymer showing good catalytic performance in the photodegradation of nitroaromatics in aqueous solution. Applied Catalysis B: Environmental. 168-169 98–104.
63.Y. Zheng, J. Shu, Z. Wang. (2015). AgCl@Ag composites with rough surfaces asbifunctional catalyst for the photooxidation and catalytic reduction of 4-nitrophenol, Mater. Lett. 158 339–342.
64.Yan Zhang , Zhimin Cui , Lidong Li, Lin Guo and Shihe Yang. (2015). Two-dimensional structure Au nanosheets are super active for the catalytic reduction of 4-nitrophenol. Phys.Chem. 17 14656-14661.
65.Yizhao Li, Yali Cao, Jing Xie, Dianzeng Jia, Haiyu Qin, Zhiting Liang. (2015). Facile solid-state synthesis of Ag/graphene oxide nanocomposites as highly active and stable catalyst for the reduction of 4-nitrophenol.Catalysis Communications. 58 21–25.
66.Yonghai Feng, Aili Wang, Hengbo Yin, Xiaobo Yan, Lingqin Shen. (2015). Reduction of 3-nitro-4-methoxy-acetylaniline to 3-amino-4-methoxyacetylaniline catalyzed by metallic Cu nanoparticles at low reaction temperature. Chemical Engineering Journal. 262 427–435.
67.Yunfeng Qiu, Zhuo Mab and PingAn Hu. (2014). Environmentally benign magnetic chitosan/Fe3O4 composites as reductant and stabilizer for anchoring Au NPs and their catalytic reduction of 4-nitrophenol. J. Mater. Chem. A. 2 13471–13478.
68.Yusran Yusran, Dan Xu, Qianrong Fang, Daliang Zhang, Shilun Qiu. (2017). MOF-derived Co@N-C nanocatalyst for catalytic reduction of 4- nitrophenol to 4-aminophenol. Microporous and Mesoporous Materials. 241 346-354.
69.Zaihua Wang, Yongling Du, Fengyuan Zhang, Zhixiang Zheng, Xiaolong Zhang, Qingliang Feng, Chunming Wang. (2013). Photocatalytic degradation of pendimethalin over Cu2O/SnO2/graphene and SnO2/graphene nanocomposite photocatalysts under visible light irradiation. Materials Chemistry and Physics. 140 373-381.
70.Zeinhom M, El-Bahy. (2013). Preparation and characterization of Pt-promoted NiY and CoY catalysts employed for 4-nitrophenol reduction. Applied Catalysis A: General. 468 175–183.
71.Zhengping Dong, Xuanduong Le, Chunxu Dong, Wei Zhang, Xinlin Li, Jiantai Ma. (2015). Ni@Pd core–shell nanoparticles modified fibrous silica nanospheres ashighly efficient and recoverable catalyst for reduction of4-nitrophenol and hydrodechlorination of 4-chlorophenol. Applied Catalysis B: Environmental. 162 372–380.
72.Zhifeng Jiang, Deli Jiang, A. M. Showkot Hossain, Kun Qian and Jimin Xie. In situ synthesis of silver supported nanoporous iron oxide microbox hybrids from metal–organic frameworks and their catalytic application in p-nitrophenol reduction. Phys. Chem. 17, 2550—2559.
73.Zhiqian Jia , Mingchen Jiang, Guorong Wu. (2017). Amino-MIL-53(Al) sandwich-structure membranes for adsorption of p-nitrophenol from aqueous solutions. Chemical Engineering Journal. 307 283–290.
74.Zhiwen Li, Xiaohong Xu, Xiaojian Jiang, Yingchun Li, Zhixin Yu and Xiaomei Zhang. (2015). Facile reduction of aromatic nitro compounds to aromatic amines catalysed by support-free nanoporous silver. RSC Adv. 5 30062–30066.
75.Zubair Hasan, Dong-Wan Cho, Chul-Min Chon, Kwangsuk Yoon, Hocheol Song. (2016). Reduction of p-nitrophenol by magnetic Co-carbon composites derived from metal organic frameworks. Chemical Engineering Journal. 298 183–190.
76.Zubair Hasan, Yong Sik Ok, J?org Rinklebe, Yiu Fai Tsang, Dong-Wan Cho,Hocheol Song. (2017). N doped cobalt-carbon composite for reduction of p-nitrophenol and Pendimethaline. Journal of Alloys and Compounds. 703 118-124.
|