(34.237.124.210) 您好!臺灣時間:2021/02/25 19:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳長軒
研究生(外文):Chang-Hsuan Wu
論文名稱:磁性碳鈷複合物之製備及應用於對硝基苯酚之還原
論文名稱(外文):Synthesis of Magnetic Cobalt-Carbon Composites and their Applications as Catalysts for Reduction of p-nitrophenol
指導教授:林坤儀林坤儀引用關係
指導教授(外文):Kun-Yi Lin
口試委員:黃智峯陳致光
口試委員(外文):Chih-Feng HuangChih-Kuang Chen
口試日期:2017-07-10
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:72
中文關鍵詞:MCCNMCC硼氫化鈉對硝基苯酚 4NP
外文關鍵詞:MCCNMCCSodium borohydridep-nitrophenol
相關次數:
  • 被引用被引用:0
  • 點閱點閱:106
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,金屬被應用於催化實驗上是越來越多,但是如果只是單純地以金屬離子進行催化反應,則催化反應結束時會造成金屬離子難以與水溶液分離之問題,進而產生二次污染造成環境之危害,目前已知有三種方式可以避免金屬離子流失;分別為負載型材料、配位型材料以及核孔型材料,而本研究主要在於開發透過簡單省時之合成方法,而負載型材料正是符合本研究之所需。
碳負載型奈米材料為近期應用層面十分廣泛的奈米材料,其衍生之材料也是越來越多樣化,在本研究中嘗試將兩種含鈷金屬之材料CoPDA、六氰鈷酸鉀(K3[Co(CN)6])為前驅物以單步驟改質方法製作成負載鈷金屬的多孔碳材料,並分別命名為磁性碳鈷複合材料(Magnetic Cobalt – embedded Carbon Nanocomposite,MCCN)、(Magnetic Carbon-Supported Cobalt,MCC),再分別以FE-SEM、TEM、XRD、XPS、RAMAN、SQUID VSM等儀器詳細分析材料特性,由於MCCN及MCC的磁性、孔隙度和含鈷量等特性,使MCCN及MCC皆具有良好的操控性與催化能力。
在MCCN以及MCC的應用研究中將MCCN以及MCC應用在催化硼氫化鈉水解還原對硝基苯酚 p-Nitro Phenol (4NP)反應,一般奈米鈷催化劑在催化硼氫化鈉水解反應時,常會有因催化劑團聚而失活的情況,而本研究所製備的MCCN以及MCC之鈷金屬均勻的固定於碳材料中,避免了本身聚合的問題,以及擁有通過碳化反應之後的材料MCCN以及MCC皆具有磁性可以幫助催化劑與水溶液分離,其中六氰鈷酸鉀(K3[Co(CN)6])較為方便製備,是透過單步驟改質方法將藥品製作成附載型材料,而CoPDA則是透過有機高分子聚合透過配位的方式反覆配位而形成較為穩固的材料。
催化還原4NP其反應最佳加藥量、環境溫度、最佳催化劑之濃度等參數變化也在實驗中進行了詳細的討論。在變化溫度的條件下,所計算得到的反應活化能分別為34.51 kJ mol-1、86.02 kJ mol-1各代表著MCCN、MCC催化所得之活化能。實驗最後模擬了補充硼氫化鈉的還原反應系統,將MCCN以及MCC在進行了4次循環的還原反應後仍可保持不錯的催化還原效果分別為92%與90%以上,由以上各種不同參數之實驗證明MCCN以及MCC可有效催化硼氫化鈉水解還原對硝基苯酚反應。
最後,本研究將會針對近年來所開發應用於還原對硝基苯酚之催化劑,與本研究所開發之兩項催化劑進行反應常數與活化能之比較,之後再分別比較材料MCCN與MCC之優缺點,並探討其實場上之可行性。
Metal was used for plenty of catalitic experiments in recent years. If metal ions are only added to a batch reaction tank for reduction reaction. It will face a difficult chanllenge for separating metal ions and solution after the reaction was once balanced. This will cause second damage for environment. According to our best knowledge, we can conclude three ways to deal with the separated problem such as Supported on template, Coordination and Core-Shell. Thus, we pursue to develop a simple and save time synthesis method in this study. And which the method of surported on template is what used in this study.
Carbon supported nano particles have lots of applications about catalyzing in past decade. And its derived material are also being widely discussed.In this study, we try to use one-step carbonazation method to modify precursor CoPDA and (K3[Co(CN)6]) to synthesis Magenetic Cobalt-Carbon Composites. Named for each material MCCN (Magnetic Cobalt – embedded Carbon Nanocomposite), MCC(Magnetic Carbon-Supported Cobalt ).The detailed characterization of MCC and MCCN are analyzed by FE-SEM, TEM, XRD, XPS ,Raman ,SQUID VSM. Due to the materials magenetism, porosity and cobalt uniformity, MCCN and MCC are both good at controlling and catalyzing.
Both MCCN and MCC are applicated to reduction p-nitrophenol. Gernerally, Nanoparticles applied in catalyzing will caused catalytic effect decrease by nanoparticles aggregation. However, cobalt MCCN and MCC are uniformally dispersion in carbon.Therefore it could help to dissovle aggregated problem. MCCN and MCC shows magentism property after calcination.We could add a magnet to separate solution with catalysts. For synthesis, MCC is much easier than MCCN by carbonazation (K3[Co(CN)6])to farbrication supported-material.
Effects of catalyst loading, temperature, sodium hydroxide concentration and reuse were thoroughly examined. Under various temperature conditions, the activation energy of reduction exhibits 34.51 kJ mol-1 and 86.02 kJ mol-1. Eventally, a simulate experiment provides NaBH4 after reduction reaction ended. MCCN and MCC display good efficiency over 4 times recyclability with 92% and 90% conversion rate. Based on the above experiments, we could prove that MCCN and MCC are effective catalyst for reduction p-nitrophenol.
Finally, we compared our catalysts with recently developed materials for reduction p-nitrophenol.Then we compared kinetic rate and activation energy to MCCN and MCC. After all, we discussed the advantage and disadvantage of MCCN and MCC.
摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 viii
第一章 前言 1
1-1. 研究動機 1
1-2. 研究目的 2
第二章 文獻回顧 4
2-1. 工業廢水簡介 4
2-2. 酚類化合物介紹 4
2-3. 硝基化合物之特性 5
2-3-1. 硝基化合物之概述 5
2-3-2. 對硝基苯酚之基本特性 5
2-3-3. 對硝基苯酚之用途 7
2-3-4. 對硝基苯酚對生物體之危害 7
2-3-5. 處理對硝基苯酚之方法 7
2-3-6. 對胺基苯酚之基本特性 10
2-3-7. 對胺基苯酚之應用 10
2-3-8. 化學還原法處理對硝基苯酚 10
2-3-9. 機制介紹 13
2-4. 製作觸媒 15
2-4.1. 金屬觸媒 15
2-4-2. 負載型催化劑簡介 16
2-4-3. 負載型催化劑之載體 16
2-4-4. 鈷基催化劑 17
第三章 實驗與方法 18
3-1. 實驗設計 18
3-2. 實驗使用之藥物 19
3-3. 實驗使用之儀器 20
3-4. 製作MCCN以及MCC觸媒 21
3-4-1. MCCN合成方式 21
3-4-2. MCC合成方式 21
3-4-3. MCCN與MCC之催化硼氫化鈉水解還原反應 21
3-4-4. MCCN以及MCC之特性鑑定 22
3-4-4-1. 穿透式電子顯微鏡(Transmission Electron Microscopy;TEM) 22
3-4-4-2. 場發射掃描式電子顯微鏡(Field Emission Scanning Eletron Microscopy;FE-SEM) 22
3-4-4-3. X射線繞射分析儀(X-Ray Diffraction;XRD) 23
3-4-4-4. 拉曼光譜儀(Raman Spectrometer) 23
3-4-4-5. X射線光電子能譜儀(X-ray Photoelectron spectroscopy;XPS) 24
3-4-4-6. 材料比表面積與孔徑大小(BET) 24
3-4-4-7. 熱重分析儀 (Thermogravimetric analysis;TGA) 24
3-4-4-8. 超導量子干涉振動磁量儀(;SQUID VSM) 24
3-5. MCC以及MCCN之催化NaBH4水解還原對硝基苯酚 25
3-5-1. 還原劑加藥量變化 26
3-5-2. 催化劑加藥量變化 26
3-5-3. 溫度變化 26
3-5-4. 再利用實驗 27
第四章 結果與討論 28
4-1. 材料特性鑑定 28
4-1-1. SEM、TEM、XRD 28
4-1-2. 拉曼光譜 33
4-1-3. XPS 35
4-1-4. SQUID VSM 39
4-1-5. 材料比表面積與孔徑大小 41
4-1-6. TGA 43
4-2. MCC與MCCN之催化還原對硝基苯酚實驗 44
4-2-1. 材料性質初步測試 44
4-2-2. 材料MCC進行催化實驗之各種參數變化 47
4-2-2-1. 探討還原劑之變化量對還原效果之影響 47
4-2-2-2. 探討催化劑之變化量對還原效果之影響 49
4-2-2-3. 探討不同溫度變化對於還原效果之影響 50
4-2-2-4. 探討材料之觸媒再利用效果 52
4-2-3. 材料MCCN進行催化實驗之各種參數變化 54
4-2-3-1. 探討還原劑之變化量對還原效果之影響 54
4-2-3-2. 探討催化劑之變化對還原效果之影響 55
4-2-3-3. 探討不同溫度變化對於還原效果之影響 57
4-2-2-4. 探討材料之觸媒再利用效果 59
4-2-3. 比較材料MCC與MCCN以及其他之催化材料 60
4-2-4. 比較材料MCC與MCCN之優缺點 61
第五章 結論與建議 62
5-1. 結論 62
5-2. 建議 63
參考文獻 64
1.Agency for Toxic Substances and Disease Registry, Toxicological profile for nitrophenols: 2-nitrophenol, 4-Nitrophenol, U.S. Public Health Service,Washington D.C., 1992.

2.Ajit M. Kalekar, Kiran Kumar K. Sharma, Anaïs Lehoux, Fabrice Audonnet, Hynd Remita, Abhijit Saha and Geeta K. Sharma. (2013). Investigation into the Catalytic Activity of Porous Platinum Nanostructures.Langmuir. 29 11431−11439.

3.Ajit M. Kalekar, Kiran Kumar K. Sharma, Meitram N. Luwang and Geeta K. Sharma. (2016). Catalytic activity of bare and porous palladium nanostructures in the reduction of 4-nitrophenol. RSC Adv. 611911-11920.

4.Amutha Chinnappan, Ashif H. Tamboli, Wook-Jin Chung, Hern Kim. (2016). Green synthesis, characterization and catalytic efficiency of hypercrosslinked porous polymeric ionic liquid networks towards 4-nitrophenol Reduction. Chemical Engineering Journal. 285 554–561.

5.Anindita Roy, Biplab Debnath, Ramkrishna Sahoo, Teresa Aditya, Tarasankar Pal. (2017). Micelle confined mechanistic pathway for 4-nitrophenol reduction. Journal of Colloid and Interface Science. 493 288–294.

6.Anna Klinkova, Aftab Ahmed, Rachelle M. Choueiri,Jeffery R. Guest and Eugenia Kumacheva. (2016). Toward rational design of palladium nanoparticles with plasmonically enhanced catalytic performance. RSC Adv. 6 47907–47911.

7.Batsile M. Mogudi, Phendukani Ncube, Reinout Meijboom. (2016).Catalytic activity of mesoporous cobalt oxides with controlledporosity and crystallite sizes: Evaluation using the reduction of4-nitrophenol. Applied Catalysis B: Environmental. 198 (2016) 74–82.

8.Joongoo Lee, Ji Chan Park, and Hyunjoon Song. (2008). A Nanoreactor Framework of a Au@SiO2 Yolk/Shell Structure for Catalytic Reduction of p-Nitrophenol. Adv Mater. 20 1523–1528.


9.Daping He, Yulin Jiang, Haifeng Lv, Mu Pan, Shichun Mu. (2013). Nitrogen-doped reduced graphene oxide supports for noble metal catalysts with greatly enhanced activity and stability. Applied Catalysis B: Environmental. 132–133 379–388.
10.Dong Wan, Wenbing Li , Guanghua Wang, Lulu Lu, Xiaobi Wei. (2017). Degradation of p-Nitrophenol using magnetic Fe0 /Fe3O4/Coke composite as a heterogeneous Fenton-like catalyst. Science of the Total Environment. 574 1326–1334.

11.Elaine A. Gelder, S. David Jackson, C. Martin Lok. (2004). The hydrogenation of nitrobenzene to aniline: a new mechanism. Chem. Commun.,522-524.

12.Elham Akbarzadeh, Mehrdad Falamarzi, Mohammad Reza Gholami. (2017). Synthesis of M/CuO (M=Ag, Au) from Cu based Metal Organic Frameworks for efficient catalytic reduction of p-nitrophenol. Materials Chemistry and Physics. 198 374-379.

13.Eloise Marais, Tebello Nyokong. (2008). Adsorption of 4-nitrophenol onto Amberlite® IRA-900 modified with metallophthalocyanines. J. Hazard. Mater . 152 293-301.

14.Fabio Visentin , Graeme Puxty , Oemer M. Kut , Konrad Hungerbühler. (2006). Study of the Hydrogenation of Selected Nitro Compounds by Simultaneous Measurements of Calorimetric, FT-IR, and Gas-Uptake Signals. Ind. Eng. Chem. Res. 45 (13) 4544–4553.

15.Guoqing Wu, Xiaoyu Liang, Lijuan Zhang, Zhiyong Tang, Mohammad Al-Mamun, Huijun Zhao and Xintai Su. (2017). Fabrication of Highly Stable Metal Oxide Hollow Nanospheres and Their Catalytic Activity toward 4‑Nitrophenol Reduction. ACS Appl. Mater. Interfaces. 9 18207−18214.

16.Hanyu Ma, Haitao Wang, Tong Wu, Chongzheng Na. (2016). Highly active layered double hydroxide-derived cobalt nano-catalysts for p-nitrophenol reduction. Applied Catalysis B: Environmental. 180 471–479.

17.Hui Li, Fan Yue,Chao Yang, Peng Xue,Nannan Li, Yi Zhang and Jide Wang. (2017). Structural evolution of a metal–organic framework and derived hybrids composed of metallic cobalt and copper encapsulated in nitrogen-doped porous carbon cubes with high catalytic performance. CrystEngComm. 19 64–71.

18.Huihui Chen , Mei Yang , Sha Tao , Guangwen Chen. (2017). Oxygen vacancy enhanced catalytic activity of reduced Co3O4 towards p-nitrophenol reduction. Applied Catalysis B: Environmental. 209 648–656.

19.J. Chen, H. Zhang, P. Liu, Y. Li, X. Liu, G. Li, P.K. Wong, T. An, H. Zhao. (2015) . Cross-linked ZnIn2S4/rGO composite photocatalyst for sunlight-driven photocatalytic degradation of 4-nitrophenol. Appl Catal. B Environ. 168-169 266-273.

20.J. Xia, G. He, L. Zhang, X. Sun, X. Wang. (2016). Hydrogenation of nitrophenolscatalyzed by carbon black-supported nickel nanoparticles under mild conditions, Appl Catal B Environ. 180 408–415.

21.J.A. Makaryan.,V.I. Savchenko. (1993). n-Arylhydroxylamines Transformation in thePresense of Heterogeneous Catalysts. Studies in Surface Science and Catalysis. 75 2439-2442.

22.Jau-Rung Chiou, Bo-Hung Lai, Kai-Chih Hsu, Dong-Hwang Chen. (2013).One-pot green synthesis of silver/iron oxide composite nanoparticles for 4-nitrophenol reduction. Journal of Hazardous Materials. 248 249 394– 400.

23.Jianhua Chen , Xue Sun , Lijing Lin , Xinfei Dong , Yasan He. (2017). Adsorption removal of o-nitrophenol and p-nitrophenol from wastewater by metal–organic framework Cr-BDC. Chinese Journal of Chemical Engineering. http://www.sciencedirect.com/science/article/pii/S1004954116303998.

24.Jie Feng, Li Su, Yanhua Ma, Cuiling Ren, Qing Guo, Xingguo Chen. (2013). CuFe2O4 magnetic nanoparticles: A simple and efficient catalyst for the reduction of nitrophenol. Chemical Engineering Journal. 221 16–24.

25.Jingkuo Zhou, Jianping Gao, Xiaoyang Xu,Wei Hong, Yahui Song, Ruinan Xue, Huilin Zhao,Yu Liu, Haixia Qiu. (2017). Synthesis of porous Bi@Cs networks by a one-step hydrothermal method and their superior catalytic activity for the reduction of 4-nitrophenol. Journal of Alloys and Compounds. 709 206-212.

26.Jun Li, Yi Ren, Fangzhou Ji, Bo Lai. (2017). Heterogeneous catalytic oxidation for the degradation of p-nitrophenol in aqueous solution by persulfate activated with CuFe2O4 magnetic nano-particles. Chemical Engineering Journal. 324 63–73.

27.Juwei Wu, Wei Liu, Xia Xiang, Kai Sun, Fenghua Liu, Chao Cai,Shaobo Han, Yongyong Xie, Sean Li, Xiaotao Zu. (2017). From Ni(OH)2/Graphene composite to Ni@Graphene core-shell:A self-catalyzed epitaxial growth and enhanced activity fornitrophenol reduction. Carbon. 117 192-200.

28.K. Kuroda, T. Ishida, M. Haruta.(2009). Reduction of 4-nitrophenol to 4-aminophenolover Au nanoparticles deposited on PMMA. J. Mol. Catal. A: Chem. 298 7–11.

29.K.S. Ju, R.E. Parales. (2010). Nitroaromatic Compounds, from Synthesis to Biodegradation.Micorobiol. Mol.Biol.Rev. 74 250-272.

30.Kong-Lin Wu, Xian-Wen Wei, Xian-Min Zhou, De-Hong Wu, Xiao-Wang Liu, Yin Ye, and Qi Wang. (2011). NiCo2 Alloys: Controllable Synthesis, Magnetic Properties, and Catalytic Applications in Reduction of 4-Nitrophenol. J. Phys. Chem. C. 115 16268–16274.

31.Kunfeng Zhang, Dr. Yuxi Liu, Dr. Jiguang Deng, Shaohua Xie, Hongxia Lin, Xingtian Zhao, Jun Yang, Zhuo Han, Hongxing Dai (Prof.). (2017). Fe2O3/3DOM BiVO4: High-performance photocatalysts for the visible light-driven degradation of 4-nitrophenol. Applied Catalysis B: Environmental. 202 569–579.

32.Kun-Yi Andrew Lin , Yu-Chien Chen , Chih-Feng Huang. (2016). Magnetic carbon-supported cobalt prepared from one-step carbonization of hexacyanocobaltate as an efficient and recyclable catalyst for activating Oxone. Separation and Purification Technology. 170 173–182.

33.Kyoko Kuroda, Tamao Ishida, Masatake Haruta. (2009). Reduction of 4-nitrophenol to 4-aminophenol over Au nanoparticles deposited on PMMA. Journal of Molecular Catalysis A: Chemical. 298 7–11.

34.Laura Levin , Maira Carabajal , Martin Hofrichter , Rene Ullrich. (2016). Degradation of 4-nitrophenol by the white-rot polypore. Trametes versicolor International Biodeterioration & Biodegradation. 107 174-179.

35.Liguang Dou and Hui Zhang. (2013). Facile assembly of nanosheet array-like CuMgAl-layered double hydroxide/rGO nanohybrids for highly efficient reduction of 4-nitrophenol. J. Name. 00, 1-3.

36.M. Studer, S. Neto, H.-U. Blaser. (2000). Modulating the hydroxylamine accumulation in the hydrogenation of substituted nitroarenes using vanadium-promoted RNi catalysts. Topics in Catalysis. 13:205.

37.M.V. Morales, M. Rocha, C. Freire, E. Asedegbega-Nieto, E. Gallegos-Suarez,I. Rodríguez-Ramos, A. Guerrero-Ruiz. (2017). Development of highly efficient Cu versus Pd catalysts supported on graphitic carbon materials for the reduction of 4-nitrophenol to 4-aminophenol at room temperature. Carbon., 111 150-161.

38.Megan S. Holden, Kevin E. Nick, Mia Hall, Jamie R. Milligan, Qiao Chene and Christopher C. Perry. (2014). Synthesis and catalytic activity of pluronic stabilized silver–gold bimetallic nanoparticles. RSC Adv, 4, 52279–52288.

39.Muhammad Ajmal,Sahin Demirci,Mohammad Siddiq,Nahit Aktasd and Nurettin Sahiner. Simultaneous catalytic degradation/reduction of multiple organic compounds by modifiable p(methacrylic acid-co-acrylonitrile)–M (M: Cu, Co) microgel catalyst composites. New J. Chem., 40, 1485-1496.

40.O''Connor, L.Y. Young. (1989). Toxicity and anaerobic biodegradability of substituted phenols under methanogenic conditions. Environ. Toxicol. Chem. 8 853-862.

41.Owena . O''connor and L. Y. Youn. (1989). Toxicity and Anaerobic Biodegradability of Substituted Pheols Under Methanogenic Conditions. EnvironmenIaI Toxicology and Chemistry. 8 853-862.

42.Pengxiang Zhao, Xingwen Feng, Deshun Huang, Guiying Yanga, Didier Astruc. (2015). Basic concepts and recent advances in nitrophenol reduction by gold- and other transition metal nanoparticles. Coordination Chemistry Reviews 287 114–136.

43.Pinhua Zhang, Yongming Sui, Guanjun Xiao,YingnanWang, ChunzhongWang, Bingbing Liu, Guangtian Zou and Bo Zou. (2012). Facile fabrication of faceted copper nanocrystals with high catalytic activity for p-nitrophenol reduction. J. Mater. Chem. A. 1 1632–1638.
44.Priority Pollutants List, United States Environmental Protection Agency, 2014 (Accessed 16 November 2001), https://www.epa.gov/sites/production/files/ 2015-09/documents/priority-pollutant-list-epa.pdf/.

45.Rahat Javaid , Shin-ichiro Kawasaki, Akira Suzuki and Toshishige M. Suzuki. (2013). Simple and rapid hydrogenation of p-nitrophenol with aqueous formic acid in catalytic flow reactors. Beilstein J. Org. Chem. 9 1156–1163.

46.Rama Jyothi Kongarapu, Prateeksha Mahamallik, Anjali Pal. (2017).Surfactant modification of chitosan hydrogel beads for Ni@NiO core-shell nanoparticles formation and its catalysis to 4-nitrophenol reduction. Journal of Environmental ChemicalEngineering. 5 1321–1329.

47.S. Álvarez-Torrellas, M. Martin-Martinez , H.T. Gomes , G. Ovejeroa, J. García. (2017). Enhancement of p-nitrophenol adsorption capacity through N2-thermal-based treatment of activated carbons. Applied Surface Science 414 424–434.

48.S.R. Subashchandrabose, M. Megharaj, K. Venkateswarlu, R. Naidu. (2012). p-nitrophenol toxicity to and its removal by three select soil isolates of microalgae: The role of antioxidants. Environ.Toxicol. Chem. 31 1980-1988.

49.S.V. Otari, R.M. Patil, N.H. Nadaf, S.J. Ghosh, S.H. Pawar. (2014). Green synthesis of silver nanoparticles by microorganism using organic pollutant: its antimicrobial and catalytic application. Environ. Sci. Pollut.Res. 21 1503-1513.

50.Stefanos Mourdikoudis,Thomas Altantzis,Luis M. Liz-Marzán,Sara Bals,Isabel Pastoriza-Santos and Jorge Pérez-Juste.Hydrophilic Pt nanoflowers: synthesis, crystallographic analysis and catalytic performance. CrystEnqComm. 18 3422–3427.

51.Sujit Kumar Ghosh, Madhuri Mandal, Subrata Kundu, Sudip Nath, Tarasankar Pal. (2004). Bimetallic Pt–Ni nanoparticles can catalyze reduction of aromatic nitro compounds by sodium borohydride in aqueous solution. Applied Catalysis A: General. 268 61-66.

52.Suman Singh, Nishant Kumar, Manish Kumar, Jyoti, Ajay Agarwal, Boris Mizaikoff. (2017). Electrochemical sensing and remediation of 4-nitrophenol using bio-synthesized copper oxide nanoparticles. Chemical Engineering Journal. 313 283–292.

53.Sungjun Bae, Suji Gim, Hyungjun Kim, Khalil Hanna. (2016). Effect of NaBH4on properties of nanoscale zero-valent iron and itscatalytic activity for reduction of p-nitrophenol. Applied Catalysis B: Environmental. 182 541–549.

54.Toxicological Profile for Nitrophenols: 2-nitrophenol and 4-nitrophenol,Agency for Toxic Substances and Disease Registry, Public Health Service, Washington D.C, 1992.

55.Tuo Ji , Long Chen, Liwen Mu, Ruixia Yuan, Michael Knoblauch, Forrest Sheng Bao, Jiahua Zhu. (2016). In-situ reduction of Ag nanoparticles on oxygenated mesoporous carbon fabric: Exceptional catalyst for nitroaromatics reduction. AppliedCatalysisB:Environmental. 182 306–315..

56.U. Siegrist, P. Baumeister, H.-U. Blaser.(1998).The Selective Hydrogenation of Functionalized Nitroarenes : New Catalytic Systems.Chem.Ind. 1998, 75,207 – 219.

57.U.S. EPA, Quality Criteria for Water, Office of Water, 1986. Washington D.C.

58.U.S. EPA, Water Quality Criteria, US EPA, Washington D.C., 1976

59.W.J. Lee, U.N. Maiti, J.M. Lee, J. Lim, T.H. Han, S.O. Kim, Nitrogen-doped carbon nanotubes and graphene composite structures for energy and catalyticapplications, Chem. Commun. 50 6818–6830.

60.Wangyang Lu, Wenxing Chen , Nan Li, Minhong Xu, Yuyuan Yao.(2009). Oxidative removal of 4-nitrophenol using activated carbon fiber and hydrogen peroxide to enhance reactivity of metallophthalocyanine. Applied Catalysis B: Environmental. 87 (2009) 146–151.

61.Xiao-Qiong Wu, Xing-Wen Wu, Qing Huang, Jiang-Shan Shen, Hong-Wu Zhang. (2015). In situ synthesized gold nanoparticles in hydrogels for catalyticreduction of nitroaromatic compounds. Applied Surface Science. 331 210–218.

62.Xin-Yi Wu, Hai-Xiao Qi, Jin-Jiao Ning, Jian-Feng Wang, Zhi-Gang Ren, Jian-Ping Lang. (2015). One silver(I)/tetraphosphine coordination polymer showing good catalytic performance in the photodegradation of nitroaromatics in aqueous solution. Applied Catalysis B: Environmental. 168-169 98–104.

63.Y. Zheng, J. Shu, Z. Wang. (2015). AgCl@Ag composites with rough surfaces asbifunctional catalyst for the photooxidation and catalytic reduction of 4-nitrophenol, Mater. Lett. 158 339–342.

64.Yan Zhang , Zhimin Cui , Lidong Li, Lin Guo and Shihe Yang. (2015). Two-dimensional structure Au nanosheets are super active for the catalytic reduction of 4-nitrophenol. Phys.Chem. 17 14656-14661.

65.Yizhao Li, Yali Cao, Jing Xie, Dianzeng Jia, Haiyu Qin, Zhiting Liang. (2015). Facile solid-state synthesis of Ag/graphene oxide nanocomposites as highly active and stable catalyst for the reduction of 4-nitrophenol.Catalysis Communications. 58 21–25.

66.Yonghai Feng, Aili Wang, Hengbo Yin, Xiaobo Yan, Lingqin Shen. (2015). Reduction of 3-nitro-4-methoxy-acetylaniline to 3-amino-4-methoxyacetylaniline catalyzed by metallic Cu nanoparticles at low reaction temperature. Chemical Engineering Journal. 262 427–435.

67.Yunfeng Qiu, Zhuo Mab and PingAn Hu. (2014). Environmentally benign magnetic chitosan/Fe3O4 composites as reductant and stabilizer for anchoring Au NPs and their catalytic reduction of 4-nitrophenol. J. Mater. Chem. A. 2 13471–13478.

68.Yusran Yusran, Dan Xu, Qianrong Fang, Daliang Zhang, Shilun Qiu. (2017). MOF-derived Co@N-C nanocatalyst for catalytic reduction of 4- nitrophenol to 4-aminophenol. Microporous and Mesoporous Materials. 241 346-354.

69.Zaihua Wang, Yongling Du, Fengyuan Zhang, Zhixiang Zheng, Xiaolong Zhang, Qingliang Feng, Chunming Wang. (2013). Photocatalytic degradation of pendimethalin over Cu2O/SnO2/graphene and SnO2/graphene nanocomposite photocatalysts under visible light irradiation. Materials Chemistry and Physics. 140 373-381.

70.Zeinhom M, El-Bahy. (2013). Preparation and characterization of Pt-promoted NiY and CoY catalysts employed for 4-nitrophenol reduction. Applied Catalysis A: General. 468 175–183.


71.Zhengping Dong, Xuanduong Le, Chunxu Dong, Wei Zhang, Xinlin Li, Jiantai Ma. (2015). Ni@Pd core–shell nanoparticles modified fibrous silica nanospheres ashighly efficient and recoverable catalyst for reduction of4-nitrophenol and hydrodechlorination of 4-chlorophenol. Applied Catalysis B: Environmental. 162 372–380.

72.Zhifeng Jiang, Deli Jiang, A. M. Showkot Hossain, Kun Qian and Jimin Xie. In situ synthesis of silver supported nanoporous iron oxide microbox hybrids from metal–organic frameworks and their catalytic application in p-nitrophenol reduction. Phys. Chem. 17, 2550—2559.

73.Zhiqian Jia , Mingchen Jiang, Guorong Wu. (2017). Amino-MIL-53(Al) sandwich-structure membranes for adsorption of p-nitrophenol from aqueous solutions. Chemical Engineering Journal. 307 283–290.

74.Zhiwen Li, Xiaohong Xu, Xiaojian Jiang, Yingchun Li, Zhixin Yu and Xiaomei Zhang. (2015). Facile reduction of aromatic nitro compounds to aromatic amines catalysed by support-free nanoporous silver. RSC Adv. 5 30062–30066.

75.Zubair Hasan, Dong-Wan Cho, Chul-Min Chon, Kwangsuk Yoon, Hocheol Song. (2016). Reduction of p-nitrophenol by magnetic Co-carbon composites derived from metal organic frameworks. Chemical Engineering Journal. 298 183–190.

76.Zubair Hasan, Yong Sik Ok, J?org Rinklebe, Yiu Fai Tsang, Dong-Wan Cho,Hocheol Song. (2017). N doped cobalt-carbon composite for reduction of p-nitrophenol and Pendimethaline. Journal of Alloys and Compounds. 703 118-124.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔