跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/03 00:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張志宇
研究生(外文):Zhi-Yu Zhang
論文名稱:以一步製備之非金屬硫摻雜碳氮化物異相光催化劑活化過一硫酸氫鉀降解羅丹明B及酚甲烷
論文名稱(外文):Degradation of Rhodamine B and Bisphenol A using Potassium peroxymonosulfate activated by one-step prepared sulfur-doped carbon nitride as a non-metallic heterogeneous photocatalyst
指導教授:林坤儀林坤儀引用關係
口試委員:黃智峯陳致光
口試日期:2017-07-10
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:72
中文關鍵詞:過一硫酸氫鉀非金屬催化劑CNS羅丹明B酚甲烷光催化
外文關鍵詞:Potassium peroxymonosulfatenon-metallic catalystCNSRhodamine BBisphenol Aphotocatalyst
相關次數:
  • 被引用被引用:1
  • 點閱點閱:222
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目前在高級氧化處理(AOPs)中,主要是以自由基氧化來去除污染物,而其中自由基主要來自於氧化劑,本研究中的氧化劑為過一硫酸氫鉀(PMS),其產生的硫酸根自由基(SO4-•)有著比氫氧根自由基(OH•)更強的氧化還原電位,但是PMS產生硫酸根自由基速度過慢,通常需要過渡金屬作為催化劑,而為了減少金屬催化劑的成本及對環境的影響,所以非金屬催化劑為未來趨勢,本研究中以一步製備的硫摻雜碳氮化物(CNS)作為非金屬和易於製備的催化劑來激活PMS以降解目標污染物羅丹明B (RhB)及酚甲烷(BPA)。
CNS分別以FE-SEM、TEM、BET、XRD、XPS等儀器詳細分析材料特性,由於所製備的CNS顯示出比未摻雜硫的碳氮化物(CN)更高的表面積和催化活性,且在可見光照射下,CNS激活PMS降解污染物的程度也遠高於CN激活的PMS,所以我們推測CNS中硫和氮共摻雜的協同作用可能使CNS表現出更高的催化能力和光催化性。
於降解污染物RhB及BPA的測試實驗中,以溫度、pH值、共存離子模擬目標污染物可能出現的環境,在CNS催化PMS在高溫、中性條件下更有利於降解污染物,而在污染水體中含有濃縮NaCl當共存離子下,CNS催化PMS降解污染物的效果則不受影響。透過自由基清除劑的測試證明實驗中主要作用的自由基為硫酸根自由基,最後在CNS回收實驗中以同一批CNS來催化PMS的降解污染物效果幾乎不受影響,由這些特徵表明CNS是一種方便製備、有效的非金屬光催化劑,且適用於催化PMS降解RhB及BPA。
Advanced Oxidation Processes (AOPs) mainly removes contaminants by free radical oxidation which is produced from oxidants. In this study, Potassium peroxymonosulfate (PMS) was used as the oxidant to produce sulfate radicals (SO4-•) which had stronger redox potential than hydroxyl radical (OH•). However, it shows slow response for PMS producing sulfate radicals. A transition metal catalyst to enhance activate degradation speed is needed. In order to reduce the cost and environmental impact of the metal catalyst, non-metallic catalysts will be seen as a future trend. In this work, one-step preperation for sulfur-doped carbon nitride (CNS) was used as a non-metallic and easily prepared catalyst to activate PMS to degrade target contaminants Rhodamine B (RhB) and Bisphenol A (BPA).
CNS was analyzed by FE-SEM, TEM, BET, XRD, XPS and other instruments.
Since the prepared CNS exhibits a higher surface area and catalytic activity than the undoped sulfur-based carbonitride (CN). Contaminants degradation by CNS activated PMS exhibits a much higher efficiency than CN activated PMS. Therefore we speculate that the synergistic effect of sulfur and nitrogen co-doping in CNS may lead CNS exhibit higher catalytic and photocatalytic properties.
From RhB and BPA degradation test, temperature, pH, co-existing ion simulation of the target contaminants may occur in the environment. It is more conducive for CNS catalyzed PMS to degrade contaminants in high temperature and neutral conditions. When high concentrated NaCl as co-existing ions was added into contaminated water, the effect of CNS catalyzed PMS degradation was not affected. The free radical scavenger test proved that sulfate radicals are the main free radicals in this experiment. Finally, five times CNS recyclability recveals almost the same result to CNS catalyzed PMS degradation batch experiment. These characteristics indicate that CNS is a convenient preparation and effective nonmetallic photocatalyst and is suitable for catalyzing PMS degradation of RhB and BPA.
摘要 i
abstract ii
目錄 iii
圖目錄 v
表目錄 vi
第一章緒論 1
1-1.研究動機 1
1-2.研究目的 2
第二章文獻回顧 3
2-1.降解水中污染物 3
2-1-1.染整廢水 3
2-1-2.Rhodamine B 5
2-1-3.新興污染物 9
2-1-4.Bisphenol A 10
2-2.高級氧化程序(AOPs) 13
2-2-1.高級氧化程序介紹 13
2-2-2.硫酸根自由基氧化 15
2-2-3.過一硫酸氫鉀光催化 16
2-3.製作觸媒 17
2-3-1.非金屬碳氮化物異相光催化劑 17
2-3-2.CNS可見光催化過一硫酸氫鉀 19
第三章實驗材料與方法 20
3-1.實驗設計 20
3-2.實驗藥品及儀器 22
3-3.材料製作與鑑定 24
3-3-1.CNS合成方法 24
3-3-2.CNS材料鑑定 24
3-3-2-1.場發射掃描式電子顯微鏡(FE-SEM) 24
3-3-2-2.穿透式電子顯微鏡(TEM) 25
3-3-2-3.比表面積及孔徑分析儀(BET) 25
3-3-2-4.X射線繞射分析儀(XRD) 26
3-3-2-5.X射線光電子能譜儀(XPS) 26
3-3-2-6.界達電位分析(Zeta potential) 26
3-3-2-7.紫外可見慢反射光譜(DRS) 27
3-4.實驗方法 28
3-4-1.CNS催化實驗 29
3-4-1-1.吸附排除實驗 29
3-4-1-2.單純氧化實驗 29
3-4-1-3.光催化實驗 29
3-4-1-4.光催化比較實驗 30
3-4-2.最佳參數實驗 30
3-4-2-1.催化劑加藥量變化 30
3-4-2-2.氧化劑加藥量變化 30
3-4-2-3.溫度變化 30
3-4-2-4.pH值變化 31
3-4-2-5.離子強度變化 31
3-4-2-6.抑制劑測試 31
3-4-2-7.催化劑穩定性回收測試 31
第四章結果與討論 32
4-1.材料鑑定 32
4-1-1.表面結構及內部晶格構造(FE-SEM、TEM、BET、XRD) 32
4-1-2.材料與表面之特性和結構(XPS、Zeta potential、DRS) 35
4-2.CNS光催化PMS降解染整目標污染物RhB 39
4-2-1.CNS催化實驗 39
4-2-2.催化劑加藥量變化 41
4-2-3.氧化劑加藥量變化 42
4-2-4.溫度變化 43
4-2-5.pH值變化 44
4-2-6.離子強度變化 45
4-2-7.抑制劑測試 46
4-2-8.催化劑穩定性回收測試 47
4-3.CNS光催化PMS降解新興目標污染物BPA 48
4-3-1.CNS催化實驗 48
4-3-2.催化劑加藥量變化 49
4-3-3.氧化劑加藥量變化 50
4-3-4.溫度變化 51
4-3-5.pH值變化 52
4-3-6.離子強度變化 53
4-3-7.抑制劑測試 54
4-3-8.催化劑穩定性回收測試 55
第五章結論與建議 56
5-1.結論 56
5-2.建議 57
參考文獻 58
1.Aditya Rastogi, Souhail R. Al-Abed, Dionysios D. Dionysiou (2009). “Sulfate radical-based ferrous–peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems.” Applied Catalysis B: Environmental 85(3–4), 171-179. doi:https://doi.org/10.1016/j.apcatb.2008.07.010

2.Aikaterini Tsitonaki, Benjamin Petri, Michelle Crimi, Hans Mosbæk , Robert L. Siegrist & Poul L. Bjerg (2010). “In Situ Chemical Oxidation of Contaminated Soil and Groundwater Using Persulfate: A Review.” Critical Reviews in Environmental Science and Technology, 40(1), 55-91. doi:http://dx.doi.org/10.1080/10643380802039303

3.Alimet Sema Özen, Viktorya Aviyente, Gökçe Tezcanli-Güyer, Nilsun H. Ince (2005). “Experimental and Modeling Approach to Decolorization of Azo Dyes by Ultrasound: Degradation of the Hydrazone Tautomer.” J. Phys. Chem. A, 109 (15), 3506-3516. doi:https://doi.org/10.1021/jp046374m

4.Andrea L. Lister, Glen J. Van Der Kraak (2001). “Endocrine Disruption: Why Is It So Complicated?” Water Qual. Res. J. Canada 36(2), 175-190. doi:https://www.researchgate.net/profile/Glen_Kraak/publication/239522834_Endocrine_disruption_Why_is_it_so_complicated/links/02e7e51c442cba3d00000000/Endocrine-disruption-Why-is-it-so-complicated.pdf

5.Anjali Pandey, Poonam Singh, Leela Iyengar (2007). “Bacterial decolorization and degradation of azo dyes.” International Biodeterioration & Biodegradation 59(2), 73-84. doi:https://doi.org/10.1016/j.ibiod.2006.08.006


6.Barbara Kasprzyk-Hordern, Maria Ziółek, Jacek Nawrocki (2003). “Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment.” Applied Catalysis B: Environmental 46(4), 639-669. doi:https://doi.org/10.1016/S0926-3373(03)00326-6

7.C G Daughton , T A Ternes (1999). “Pharmaceuticals and personal care products in the environment: agents of subtle change?” Environ Health Perspect 107(6), 907-938. doi:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1566206/

8.C. Li, X.Z. Li, N. Graham, N.Y. Gao (2008). “The aqueous degradation of bisphenol A and steroid estrogens by ferrate.” Water Research 42(1-2), 109-120. doi:https://doi.org/10.1016/j.watres.2007.07.023

9.Chenju Liang, Chiu-Fen Huang, Yan-Jyun Chen (2008). “Potential for activated persulfate degradation of BTEX contamination.” Water Research 42(15), 4091-4100. doi:https://doi.org/10.1016/j.watres.2008.06.022

10.Chien Chun Wang, Adriana N. Masi, Liliana Fernández (2008). “On-line micellar-enhanced spectrofluorimetric determination of rhodamine dye in cosmetics.” Talanta 75(1), 135-140. doi:https://doi.org/10.1016/j.talanta.2007.10.041

11.Choudhry (1991). “Comparison of Minute Smears of Lipstick by Microspectrophotometry and Scanning Electron Microscopy/Energy-Dispersive Spectroscopy.” Journal of Forensic Sciences 36(2), 366-375. doi:https://doi.org/10.1520/JFS13039J




12.Christophe Bauer, Patrice Jacques, André Kalt (2001). “Photooxidation of an azo dye induced by visible light incident on the surface of TiO2.” Journal of Photochemistry and Photobiology A: Chemistry 140 (2001) 87–92. doi: https://doi.org/10.1016/S1010-6030(01)00391-4

13.Claudia Desiderio, Carolina Marra, Dr. Salvatore Fanali (1998). “Quantitative analysis of synthetic dyes in lipstick by micellar electrokinetic capillary chromatography.” ELECTROPHORESIS 19(8-9), 1478-1483. doi:https://doi.org/10.1002/elps.1150190844

14.Colborn, Theo, Dumanoski, Dianne, Myers, John Peterson (1996). “Our Stolen Future: Are We Threatening Our Fertility, Intelligence and Survival? - a Scientific Detective Story.” New York: Dutton/Penguin Books, p.306. doi:http://hdl.handle.net/10822/889724

15.Deming Ge, Zequan Zeng, Moses Arowo, Haikui Zou, Jianfeng Chen, Lei Shao (2016). “Degradation of methyl orange by ozone in the presence of ferrous and persulfate ions in a rotating packed bed.” Chemosphere 146, 413-418. doi:https://doi.org/10.1016/j.chemosphere.2015.12.058

16.Donghai Wang, Daiwon Choi, Juan Li, Zhenguo Yang, Zimin Nie, Rong Kou, Dehong Hu, Chongmin Wang, Laxmikant V. Saraf, Jiguang Zhang, Ilhan A. Aksay, Jun Liu (2009). “Self-Assembled TiO2–Graphene Hybrid Nanostructures for Enhanced Li-Ion Insertion.” ACS Nano 3(4), 907-914. doi:https://doi.org/10.1021/nn900150y

17.Dongsheng Geng, Songlan Yang, Yong Zhang, Jinli Yang, Jian Liu, Ruying Li, Tsun-Kong Sham, Xueliang Sun, Siyu Ye, Shanna Knights. (2011). “Nitrogen doping effects on the structure of grapheme.” Applied Surface Science 257(21), 9193-9198. doi:https://doi.org/10.1016/j.apsusc.2011.05.131
18.Douglas Kornbrust, Thomas Barfknecht (1985). ”Testing of 24 food, drug, cosmetic, and fabric dyes in the in vitro and the in vivo/in vitro rat hepatocyte primary culture DNA repair assays.” Environmental and Molecular Mutagenesis 7(1), 101-120. doi:https://doi.org/10.1002/em.2860070106

19.Esther Forgacs, Tibor Cserháti, Gyula Oros (2004). “Removal of synthetic dyes from wastewaters: a review.” Environment International, 30, 953 – 971. doi: https://doi.org/10.1016/j.envint.2004.02.001

20.Fei Qi, Wei Chu, Bingbing Xu (2014). “Modeling the heterogeneous peroxymonosulfate/Co-MCM41 process for the degradation of caffeine and the study of influence of cobalt sources.” Chemical Engineering Journal 235, 10-18. doi:https://doi.org/10.1016/j.cej.2013.08.113

21.Gang Liu, Ping Niu, Chenghua Sun, Sean C. Smith, Zhigang Chen, Gao Qing (Max) Lu, Hui-Ming Cheng (2010). “Unique Electronic Structure Induced High Photoreactivity of Sulfur-Doped Graphitic C3N4.” J. Am. Chem. Soc. 132(33), 11642-11648. doi:https://doi.org/10.1021/ja103798k

22.Gang Liu, Ping Niu, Lichang Yin, Hui-Ming Cheng (2012). “α-Sulfur Crystals as a Visible-Light-Active Photocatalyst.” J. Am. Chem. Soc., 134(22), 9070-9073. doi:https://doi.org/10.1021/ja302897b

23.George P. Anipsitakis, Dionysios D. Dionysiou (2003). “Degradation of Organic Contaminants in Water with Sulfate Radicals Generated by the Conjunction of Peroxymonosulfate with Cobalt.” Environ. Sci. Technol 37(20), 4790–4797. doi:https://doi.org/10.1021/es0263792


24.George P. Anipsitakis, Elias Stathatos, Dionysios D. Dionysiou (2005). “Heterogeneous Activation of Oxone Using Co3O4.” J. Phys. Chem. B 109(27), 13052-13055. doi:https://doi.org/10.1021/jp052166y

25.George P. Anipsitakis, Thomas P. Tufano, Dionysios D. Dionysiou (2008).“Chemical and microbial decontamination of pool water using activated potassium peroxymonosulfate.”Water Research 42(12), 2899-2910. doi:https://doi.org/10.1016/j.watres.2008.03.002

26.Hongqi Sun, Shizhen Liu, Guanliang Zhou, Ha Ming Ang, Moses O Tadé, Shaobin Wang (2012). “Reduced Graphene Oxide for Catalytic Oxidation of Aqueous Organic Pollutants.” ACS Appl. Mater. 4(10), 5466-5471. doi:https://doi.org/10.1021/am301372d

27.Hongshin Lee, Hye-Jin Lee, Joonseon Jeong, Jaesang Lee, Noh-Back Park, Changha Lee (2015). “Activation of persulfates by carbon nanotubes: Oxidation of organic compounds by nonradical mechanism.” Chemical Engineering Journal 266(15), 28-33. doi:https://doi.org/10.1016/j.cej.2014.12.065

28.Hyun-Seok Son, So-Jin Lee, Il-Hyoung Cho, Kyung-Duk Zoh (2004). “Kinetics and mechanism of TNT degradation in TiO2 photocatalysis.” Chemosphere 57(4), 309-317. doi:https://doi.org/10.1016/j.chemosphere.2004.05.008

29.I. Bautista-Toledo, M. A. Ferro-García, J. Rivera-Utrilla, C. Moreno-Castilla, F. J. Vegas Fernández (2005). “Bisphenol A Removal from Water by Activated Carbon. Effects of Carbon Characteristics and Solution Chemistry.” Environ. Sci. Technol. 39(16), 6246-6250. doi:https://doi.org/ 10.1021/es0481169



30.Jihyun R, Scott G. Huling, Eunsung Kan(2015). “Effects of temperature on adsorption and oxidative degradation of bisphenol A in an acid-treated iron-amended granular activated carbon.” Chemical Engineering Journal 262, 1260-1267. doi:https://doi.org/10.1016/j.cej.2014.10.065

31.Jinghai Liu, Tiekai Zhang, Zhichao Wang, Graham Dawsona, Wei Chen (2011). “Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity.” J. Mater. Chem. 21(38), 14398-14401. doi:https://doi.org/10.1039/C1JM12620B

32.Jingling Chen, Zhenhua Hong, Yilin Chen, Bizhou Lin, Bifen Gao (2015). “One-step synthesis of sulfur-doped and nitrogen-deficient g-C3N4 photocatalyst for enhanced hydrogen evolution under visible light.” Materials Letters 145, 129-132. doi:https://doi.org/10.1016/j.matlet.2015.01.073

33.Jinlin Long, Xiuqiang Xie, Jie Xu, Quan Gu, Liming Chen, Xuxu Wang (2012). “Nitrogen-Doped Graphene Nanosheets as Metal-Free Catalysts for Aerobic Selective Oxidation of Benzylic Alcohols.” ACS Catal 2(4), 622-631. doi:https://doi.org/10.1021/cs3000396

34.Jun Zhang, Xueting Shao, Chao Shi, Shiying Yang (2013). “Decolorization of Acid Orange 7 with peroxymonosulfate oxidation catalyzed by granular activated carbon.” Chemical Engineering Journal 232, 259-265. doi:https://doi.org/10.1016/j.cej.2013.07.108
35.Jyoti Sharma, I.M. Mishra, Vineet Kumar(2015). “Degradation and mineralization of Bisphenol A (BPA) in aqueous solution using advanced oxidation processes: UV/H2O2 and UV/S2O82− oxidation systems.” Journal of Environmental Management 156, 266-275. doi:https://doi.org/10.1016/j.jenvman.2015.03.048
36.K.C. Jones, P. de Voogt (1999). “Persistent organic pollutants (POPs): state of the science.” Environmental Pollution 100(1-3), 209-221. doi:https://doi.org/10.1016/S0269-7491(99)00098-6

37.Kai Yu, Shaogui Yang, Huan He, Cheng Sun, Chenggang Gu, Yongming Ju (2009). “Visible Light-Driven Photocatalytic Degradation of Rhodamine B over NaBiO3: Pathways and Mechanism.” J. Phys. Chem. A 113, 10024-10032. doi:https://doi.org/10.1021/jp905173e

38.Kun-Yi Andrew Lin, Zhi-Yu Zhang (2016). “Metal-free activation of Oxone using one-step prepared sulfur-doped carbon nitride under visible light irradiation.” Separation and Purification Technology 173, 72-79. doi:http://dx.doi.org/10.1016/j.seppur.2016.09.008

39.Kun-Yi Andrew Lin, Zhi-Yu Zhang (2016). “α-Sulfur as a Metal-free Catalyst to Activate Peroxymonosulfate under Visible Light Irradiation for Decolorization.” RSC Adv. 6, 15027-15034. doi:https://doi.org/10.1039/C5RA22947B

40.Kun-Yi Andrew Lin, Zhi-Yu Zhang (2017). “Degradation of Bisphenol A using peroxymonosulfate activated by one-step prepared sulfur-doped carbon nitride as a metal-free heterogeneous catalyst.” Chemical Engineering Journal 313, 1320-1327. doi:https://doi.org/10.1016/j.cej.2016.11.025

41.Lei Ge, Changcun Han, Xinlai Xiao, Lele Guo, Yujing Li (2013). “Enhanced visible light photocatalytic hydrogen evolution of sulfur-doped polymeric g-C3N4 photocatalysts.” Materials Research Bulletin 48(10), 3919-3925. doi:https://doi.org/10.1016/j.materresbull.2013.06.002



42.Lei Ge, Fan Zuo, Jikai Liu, Quan Ma, Chen Wang, Dezheng Sun, Ludwig Bartels, Pingyun Feng (2012). “Synthesis and Efficient Visible Light Photocatalytic Hydrogen Evolution of Polymeric g-C3N4 Coupled with CdS Quantum Dots.” J. Phys. Chem. C 116(25), 13708-13714. doi:https://doi.org/10.1021/jp3041692

43.Li Xu (2015). “A Study on College English Teachers' Role in Developing Learner Autonomy.” Theory and Practice in Language Studies 5(2), 435-441. doi:http://dx.doi.org/10.17507/tpls.0502.27

44.Liang-Liang Feng, Yongcun Zou, Chunguang Li, Shuang Gao, Li-Jing Zhou, Qiushi Sun, Meihong Fan, Huijie Wang, Dejun Wang, Guo-Dong Li, Xiaoxin Zou (2014). “Nanoporous sulfur-doped graphitic carbon nitride microrods: A durable catalyst for visible-light-driven H2 evolution.” International Journal of Hydrogen Energy 39(28), 15373-15379. doi:https://doi.org/10.1016/j.ijhydene.2014.07.160

45.Lipeng Zhang, Jianbing Niu, Mingtao Li, Zhenhai Xia (2014). “Catalytic Mechanisms of Sulfur-Doped Graphene as Efficient Oxygen Reduction Reaction Catalysts for Fuel Cells.” J. Phys. Chem. C 118(7), 3545-3553. doi:https://doi.org/10.1021/jp410501u

46.Magdalena Alesso, Gabriel Bondioli, María C. Talío, Marta O. Lucon, Liliana P. Fernández (2012). “Micelles mediated separation fluorimetric methodology for Rhodamine B determination in condiments, snacks and candies.” Food Chemistry 134(1), 513-517. doi:https://doi.org/10.1016/j.foodchem.2012.02.110

47.Maria G. Antoniou, Armah A. de la Cruz, Dionysios D. Dionysiou (2010). “Intermediates and Reaction Pathways from the Degradation of Microcystin-LR with Sulfate Radicals.” Environ. Sci. Technol 44 (19), 7238-7244. doi:https://doi.org/10.1021/es1000243


48.Mingyu Wei, Long Gao, Jun Li, Jia Fang, Wenxuan Cai, Xiaoxia Li, Aihua Xu (2016). “Activation of peroxymonosulfate by graphitic carbon nitride loaded on activated carbon for organic pollutants degradation.” Journal of Hazardous Materials 316, 60-68. doi:https://doi.org/10.1016/j.jhazmat.2016.05.031

49.N. Pourreza, S. Rastegarzadeh, A. Larki (2008). “Micelle-mediated cloud point extraction and spectrophotometric determination of rhodamine B using Triton X-100.” Talanta 77(2), 733-736. doi:https://doi.org/10.1016/j.talanta.2008.07.031

50.Noriyuki Kurita, Kinya Kobayashi, Hiroki Kumahora, Kazutami Tago, Kunio Ozawa(1992). “Molecular structures, binding energies and electronic properties of dopyballs C59X (X=B, N and S).” Chemical Physics Letters 198(1-2), 95-99. doi:https://doi.org/10.1016/0009-2614(92)90054-Q

51.P. Neta, Robert E. Huie, Alberta B. Ross (1988). “Rate Constants for Reactions of Inorganic Radicals in Aqueous Solution.” Journal of Physical and Chemical Reference Data 17(3), 1027. doi:http://dx.doi.org/10.1063/1.555808

52.Peidong Hu, Mingce Long (2016). “Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications.” Applied Catalysis B: Environmental 181, 103-117. doi:https://doi.org/10.1016/j.apcatb.2015.07.024

53.Pradeep R. Shukla, Shaobin Wang, Hongqi Sun, H. Ming Ang, Moses Tadé (2010). “Activated carbon supported cobalt catalysts for advanced oxidation of organic contaminants in aqueous solution.” Applied Catalysis B: Environmental 100(3–4), 529-534. doi:https://doi.org/10.1016/j.apcatb.2010.09.006



54.Qi Han, Hongjie Wang, Wenyi Dong, Tongzhou Liu, Yulei Yin, Hongkai Fan (2015). “Degradation of bisphenol A by ferrate(VI) oxidation: Kinetics, products and toxicity assessment.” Chemical Engineering Journal 262, 34-40. doi:https://doi.org/10.1016/j.cej.2014.09.071

55.Qiushi Sun, Meihong Fan, Huijie Wang, Dejun Wang, Guo-Dong Li, Xiaoxin Zou (2014). “Nanoporous sulfur-doped graphitic carbon nitride microrods: A durable catalyst for visible-light-driven H2 evolution.” International Journal of Hydrogen Energy 39(28), 15373-15379. doi:https://doi.org/10.1016/j.ijhydene.2014.07.160

56.Rajeev Jain, Megha Mathur, Shalini Sikarwar, Alok Mittal (2007). “Removal of the hazardous dye rhodamine B through photocatalytic and adsorption treatments.” Journal of Environmental Management 85(4), 956-964. doi:https://doi.org/10.1016/j.jenvman.2006.11.002

57.Roberto Andreozzi, Vincenzo Caprio, Amedeo Insola, Raffaele Marotta (1999). “Advanced oxidation processes (AOP) for water purification and recovery.” Catalysis Today 53(1), 51-59 doi:https://doi.org/10.1016/S0920-5861(99)00102-9

58.S. C. Yan, Z. S. Li, Z. G. Zou (2010). “Photodegradation of Rhodamine B and Methyl Orange over Boron-Doped g-C3N4 under Visible Light Irradiation.” Langmuir 26(6), 3894-3901. doi:https://doi.org/10.1021/la904023j

59.Samyoung Ahn, Tawnya D. Peterson, Jason Righter, Danielle M. Miles, Paul G. Tratnyek (2013). “Disinfection of Ballast Water with Iron Activated Persulfate.” Environ. Sci. Technol 47 (20), 11717-11725. doi:https://doi.org/10.1021/es402508k



60.Saskia G. Zimmermann, Mathias Wittenwiler, Juliane Hollender, Martin Krauss, Christoph Ort, Hansruedi Siegrist, Urs von Gunten (2011). “Kinetic assessment and modeling of an ozonation step for full-scale municipal wastewater treatment: Micropollutant oxidation, by-product formation and disinfection.” Water Research 45(2), 605-617. doi: https://doi.org/10.1016/j.watres.2010.07.080

61.Shaobin Wang (2008). “A Comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater.” Dyes and Pigments 76(3), 714-720. doi:https://doi.org/10.1016/j.dyepig.2007.01.012

62.Shengnan Su, Weilin Guo, Chunliang Yi, Yanqiu Leng, Zhenmin Ma (2012). “Degradation of amoxicillin in aqueous solution using sulphate radicals under ultrasound irradiation.” Ultrasonics Sonochemistry 19(3), 469-474. doi:https://doi.org/10.1016/j.ultsonch.2011.10.005

63.Shiying YANG, Ping WANG, Xin YANG, Guang WEI, Wenyi ZHANG, Liang SHAN (2009).“A novel advanced oxidation process to degrade organic pollutants in wastewater: Microwave-activated persulfate oxidation.”Journal of Environmental Sciences 21(9), 1175-1180. doi:https://doi.org/10.1016/j.watres.2008.03.002

64.Shubhangi P. Patil, Jayshri V. Pande, Rajesh B. Biniwale (2013). “Non-noble Ni–Cu/ACC bimetallic catalyst for dehydrogenation of liquid organic hydrides for hydrogen storage.” International Journal of Hydrogen Energy 38(35), 15233-15241. doi:https://doi.org/10.1016/j.ijhydene.2013.09.115

65.Somaye Akbari, Farshid Ghanbari, Mahsa Moradi (2016). “Bisphenol A degradation in aqueous solutions by electrogenerated ferrous ion activated ozone, hydrogen peroxide and persulfate: Applying low current density for oxidation mechanism.” Chemical Engineering Journal 294, 298-307. doi:https://doi.org/10.1016/j.cej.2016.02.106
66.Stephen D. Richardson, Clint S. Willson, Kelly A. Rusch (2004). “Use of Rhodamine Water Tracer in the Marshland Upwelling System.” Groundwater 42(5), 678-688. doi:https://doi.org/10.1111/j.1745-6584.2004.tb02722.x

67.Suna Yüksel, Nalan Kabay, Mithat Yüksel (2013). “Removal of bisphenol A (BPA) from water by various nanofiltration (NF) and reverse osmosis (RO) membranes.” Journal of Hazardous Materials 263(2), 307-310. doi:https://doi.org/10.1016/j.jhazmat.2013.05.020

68.Tak-Hyun Kim, Chulhwan Park, Eung-Bai Shin, Sangyong Kim (2004). “Decolorization of disperse and reactive dye solutions using ferric chloride.” Desalination 161, 49-58. doi:https://doi.org/10.1016/S0011-9164(04)90039-2

69.Tinne Geens, Leo Goeyens, Adrian Covaci (2011). “Are potential sources for human exposure to bisphenol-A overlooked?” International Journal of Hygiene and Environmental Health 214(5), 339-347. doi:https://doi.org/10.1016/j.ijheh.2011.04.005

70.Tugba Olmez-Hanci, Idil Arslan-Alaton (2013). “Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol.” Chemical Engineering Journal 224, 10-16. doi:https://doi.org/10.1016/j.cej.2012.11.007

71.Wang Chuanxian, Han Li, Fang Xiaoming, Li Bo, Wang Min, Ni Xinlu (2008). “Determination of rhodamine B in food by high performance liquid chromatography-fluorescence detection.” Analytical Instrumentation. doi: http://en.cnki.com.cn/Article_en/CJFDTOTAL-FXYQ200801012.htm

72.Wei Zhang, Hui Lin Tay, Sze Sheng Lim, Yongsheng Wang, Ziyi Zhong, Rong Xu (2010). “Supported cobalt oxide on MgO: Highly efficient catalysts for degradation of organic dyes in dilute solutions.” Applied Catalysis B: Environmental 95(1-2), 93-99. doi:https://doi.org/10.1016/j.apcatb.2009.12.014
73.Weibing Li, Chang Feng, Shiyuan Dai, Jiguang Yue, Fangxia Hua, Hao Hou (2015). “Fabrication of sulfur-doped g-C3N4/Au/CdS Z-scheme photocatalyst to improve the photocatalytic performance under visible light.” Applied Catalysis B: Environmental 168-169, 465-471. doi:https://doi.org/10.1016/j.apcatb.2015.01.012

74.Weilin Guo, Shengnan Su, Chunliang Yi, Zhenmin Ma (2013). “Degradation of antibiotics amoxicillin by Co3O4-catalyzed peroxymonosulfate system.” Environmental Progress & Sustainable Energy 32(2), 193-197. doi:https://doi.org/10.1002/ep.10633

75.Wen-Da Oh, Zhili Dong, Zhong-Ting Hu, Teik-Thye Lim (2015). “A novel quasi-cubic CuFe2O4–Fe2O3 catalyst prepared at low temperature for enhanced oxidation of bisphenol A via peroxymonosulfate activation.” J. Mater. Chem 3, 22208-22217. doi:https://doi.org/10.1039/C5TA06563A

76.William H. G1aze and Joon-Wun Kang (1989). “Advanced Oxidation Processes. Description of a Kinetic Model for the Oxidation of Hazardous Materials in Aqueous Media with Ozone and Hydrogen Peroxide in a Semibatch Reactor.” Industrial & engineering chemistry research, 28, 1573-1580. doi:http://pubs.acs.org/doi/pdf/10.1021/ie00095a001

77.Wohlgemuth, S.-A., White, R.J., Willinger, M.-G., Titirici, M.-M., Antonietti, M. (2012). “A one-pot hydrothermal synthesis of sulfur and nitrogen doped carbon aerogels with enhanced electrocatalytic activity in the oxygen reduction reaction.” Green Chemistry 14(5), 1515-1523. doi:https://doi.org/10.1039/c2gc35309a



78.Xiaoguang Duan, Kane O'Donnell, Hongqi Sun, Yuxian Wang, Shaobin Wang (2015). “Sulfur and Nitrogen Co-Doped Graphene for Metal-Free Catalytic Oxidation Reactions.” Small 11(25), 3036-3044. doi:https://doi.org/10.1002/smll.201403715

79.Yao Zheng, Dr. Yan Jiao, Lei Ge, Prof. Mietek Jaroniec, Prof. Shi Zhang Qiao (2013). “Two-Step Boron and Nitrogen Doping in Graphene for Enhanced Synergistic Catalysis.” Angewandte Chemie International Edition 52(11), 3110-3116. doi:https://doi.org/10.1002/anie.201209548

80.Yoshihisa Ohko Isao Ando, Chisa Niwa, Tetsu Tatsuma, Tsuyoshi Yamamura, Tetsuto Nakashima, Yoshinobu Kubota, Akira Fujishima (2001). “Degradation of Bisphenol A in Water by TiO2 Photocatalyst.” Environ. Sci. Technol 35 (11), 2365-2368. doi:https://doi.org/10.1021/es001757t

81.Young-Joon Park, Dong-Sung Ryu, Dong Xun Li, Qi Zhe Quan, Dong Hoon Oh, Jong Oh Kim, Youn Gee Seo, Young-Im Lee, Chul Soon Yong, Jong Soo Woo, Han-Gon Choi (2009).“Physicochemical characterization of tacrolimus-loaded solid dispersion with sodium carboxylmethyl cellulose and sodium lauryl sulfate.”Archives of Pharmacal Research 32(6), 893-898. doi:https://doi.org/10.1007/s12272-009-1611-5

82.Yufang Tao, Qian Ni, Mingyu Wei, Dongsheng Xia, Xiaoxia Li, Aihua Xu (2015). “Metal-free activation of peroxymonosulfate by g-C3N4 under visible light irradiation for the degradation of organic dyes.” RSC Advances 5, 44128. doi:https://doi.org/10.1039/c5ra06223c




83.Zheng Liu, Huagui Nie, Zhi Yang, Jing Zhang, Zhiping Jin, Yanqi Lu, Zhubing Xiao, Shaoming Huang (2013). “Sulfur–nitrogen co-doped three-dimensional carbon foams with hierarchical pore structures as efficient metal-free electrocatalysts for oxygen reduction reactions.” Nanoscale 5(8), 3283-3288. doi:https://doi.org/10.1039/C3NR34003A

84.Zhong He, Cheng Sun, Shaogui Yang, Youchao Ding, Huan He, Zhiliang Wang (2009). “Photocatalytic degradation of rhodamine B by Bi2WO6 with electron accepting agent under microwave irradiation: Mechanism and pathway.” Journal of Hazardous Materials 162(2-3), 1477-1486. doi:https://doi.org/10.1016/j.jhazmat.2008.06.047
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊