(3.235.11.178) 您好!臺灣時間:2021/03/07 08:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:胡正苓
研究生(外文):Cheng-Ling Hu
論文名稱:高級處理程序降解雌二醇之研究
論文名稱(外文):Study on the Degradation of 17β-estradiol by Advanced Treatment
指導教授:謝永旭謝永旭引用關係
口試委員:高肇郎張禎祐吳志超廖文彬
口試日期:2017-04-27
學位類別:博士
校院名稱:國立中興大學
系所名稱:環境工程學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:109
中文關鍵詞:雌二醇內分泌干擾化合物混凝膠凝沈澱活性碳吸附UVC/H2O2 程序UVA/TiO2程序Solar/TiO2程序
外文關鍵詞:17β-estradiol (E2)endocrine disrupting chemicals (EDCs)TiO2 photocatalysyscoagulation-flocculationactivated carbon adsorptionUVC/H2O2 systemUVA/TiO2 systemSolar/TiO2 system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:66
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
天然雌激素-雌二醇(17β-estradiol, E2)是一種內分泌干擾化合物(EDCs),這類的化學物質在多數國家中的污水處理廠進水端與出水端皆有被偵測到不同的濃度,在各種環境降解處理程序中,太陽光的光催化降解確定是環境中持久性污染物最重要的降解途徑之一。
目前廢水處理程序是否能有效地處理E2,避免造成環境的污染,本研究選擇混凝膠凝沈澱、活性碳吸附、UVC/H2O2與UVA/TiO2,進行討論,混凝膠凝沈澱幾乎無法去除E2;活性碳吸附不會受pH的影響,在24 hr有最佳的吸附效果;UVC/H2O2程序中,H2O2添加濃度越高,反應速率越快,10分鐘即可有效地降解E2,但礦化率僅有7%;其中以UVA/TiO2為最有效礦化E2之程序,利用實驗室不同光源(可見光與紫外光)進行TiO2光催化降解實驗,TiO2添加量為1 g/L與pH 9下有較佳的降解效率,E2初始濃度越低,反應速率越快(k = 4.24 hr-1),但初始濃度越高礦化率越高。
進一步探討利用太陽光光催化降解E2的可行性,太陽光照射E2降解速率很低,僅有0.004 hr-1,利用TiO2太陽光光催化降解E2可增加降解速率(k = 2.20-2.42 hr-1)與礦化率(5 hr處理後可達65-95%),其降解反應皆符合擬一階模式,當pH增加而反應速率略微增加。在有NO3-存在下,光催化降解速率顯著增加,歸因於反應物質的光敏化作用。
Natural steroid 17β-estradiol (E2) is one of the endocrine disrupting chemicals (EDCs). Estrogenic steroids are detected in both influent and effluent of sewage treatment plants in many countries at various concentrations. Among the various environmental degradation processes, photodegradation from solar irradiation is one of the most important factors determining the ultimate fate of the persistent pollutants in aquatic environments.
We not sure the current wastewater treatment program can effectively remove E2 and avoid the pollution caused by the environment. In this study, we chose coagulation-flocculation, activated carbon adsorption, UVC/H2O2 and UVA/TiO2 to investigate The coagulation was almost impossible to remove E2. The adsorption of activated carbon has the best adsorption effect at 24 hr and no effection by pH. At the higher concentration of H2O2 in UVC / H2O2, has faster reaction rate, and can remove E2 under detection limit in 10 minutes. In UVC / H2O2 degradation has only 7% removal in mineralization. The results showed that the UVA / TiO2 degradation can achieved the most mineralization of E2. The photocatalytic degradation of TiO2 was use different light sources (visible and ultraviolet) in the laboratory. At the addition of TiO2 was 1 g/L and pH 9 has the best UVA / TiO2 degradation rate. The higher the reaction rate is (k = 4.24 hr-1) at lower the initial E2 concentration. The higher the mineralization rate at higher initial E2 concentration.
Using solar photocatalytic degradation of E2, TiO2 photocatalytic degradation of E2 by TiO2 under solar irradiation can increase rate constant (k = 2.20-2.42 hr-1) and mineralization (65-95% after 5 hr irradiation). The E2 photodegradation followed pseudo-first-order kinetics, with the rate constant increasing slightly with increased pH. In the presence of NO3-, the photodegradation rate increased significantly, attributed to photosensitization by the reactive species.
摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 ix
1. 緒論 1
2. 文獻回顧 3
2.1 內分泌干擾化合物(EDCs) 3
2.1.1 EDCs簡介 3
2.1.2 EDCs 影響與分類 5
2.1.3 EDCs的來源 11
2.2 雌二醇(E2) 13
2.2.1 E2簡介 13
2.2.2 污水處理廠去除E2之探討 15
2.2.3 飲用水去除E2之探討 18
2.2.4 高級氧化處理處除E2之探討 20
2.3 處理程序 23
2.3.1 混凝膠凝程序 23
2.3.2 活性碳吸附處理 25
2.3.3 UVC/H2O2光氧化程序 27
2.3.4 UVA/TiO2光催化降解 28
2.4 Solar/TiO2 光催化降解 29
2.4.1 太陽光的優勢 29
2.4.2 太陽光光解 31
2.4.3 太陽光與光觸媒 32
2.4.4 二氧化鈦製備方法 33
3. 材料與方法 38
3.1 實驗方法 38
3.1.1 混凝膠凝實驗 40
3.1.2 粒狀活性碳(GAC)吸附實驗 41
3.1.3 UVC/H2O2實驗 42
3.1.4 UVA/ TiO2與VIS/ TiO2實驗 43
3.1.5 UVA/固定態TiO2實驗 44
3.1.6 Solar/TiO2實驗 45
3.2 光觸媒TiO2的製備 46
3.2.1 粉末態TiO2的製備 46
3.2.2 固定態TiO2的製備 47
3.3 分析項目及方法 49
3.3.1 E2螢光分析測定 49
3.3.2 E2總有機碳分析 51
3.3.3 等溫吸附模式 51
3.3.4 光催化反應動力模式 52
3.3.5 光觸媒表面分析儀 53
4. 結果與討論 54
4.1 混凝膠凝沈澱 54
4.2 高級程序處理E2 55
4.2.1 活性碳吸附處理 55
4.2.2 UVC/H2O2 光氧化處理 60
4.2.3 UVA/TiO2 與Solar/TiO2光催化處理 63
4.2.4 高級程序處理之比較 64
4.3 光觸媒表面特性分析 65
4.3.1 光觸媒表面顆粒分析 65
4.3.2 光觸媒晶相與結構分析 67
4.3.3 光觸媒吸收光譜分析 68
4.4 光催化實驗之初步測試 68
4.4.1 不同光觸媒添加量之暗吸附 69
4.4.2 不同 pH 值下之暗吸附 70
4.4.3 直接光解 71
4.5 實驗室光源光催化降解 E2 71
4.5.1 光觸媒 TiO2 添加量影響 71
4.5.2 水體 pH 值之影響 75
4.5.3 水體中 E2 初始濃度之影響 78
4.6 Solar/TiO2光催化降解 E2 81
4.6.1 太陽光直接光解與光催化降解 81
4.6.2 水體中 pH 值之影響 82
4.6.3 水體中硝酸鹽濃度之影響 83
4.6.4 實驗室光源與太陽光光催化 E2 之比較 86
4.7 固定態光觸媒光催化降解 E2 88
4.7.1 直接光解與吸附 88
4.7.2 披覆不同 TiO2 層數之影響 89
4.7.3 水體 pH 之影響 91
4.8 EE2 進行太陽光光催化之可行性 93
5. 結論與建議 94
5.1 結論 94
5.2 建議 95
6. 參考文獻 96
7. 附錄 108
Aegerter MA. 1989. Sol-gel: science and technology : proceedings of the winter school on glasses and ceramics from gels: World Scientific.
Ahn C-W, Park C-S, Dittmer R, Hong S-H, Priya S. 2010. Effect of elemental diffusion on temperature coefficient of piezoelectric properties in KNN-based lead-free composites. Journal of Materials Science 45: 3961-3965.
Al-Ekabi H, Serpone N. 1988. Kinetics studies in heterogeneous photocatalysis. I. Photocatalytic degradation of chlorinated phenols in aerated aqueous solutions over titania supported on a glass matrix. The Journal of Physical Chemistry 92: 5726-5731.
Aleboyeh A, Moussa Y, Aleboyeh H. 2005. The effect of operational parameters on UV/H2O2 decolourisation of Acid Blue 74. Dyes and Pigments 66: 129-134.
Alfano OM, Brandi RJ, Cassano AE. 2001. Degradation kinetics of 2,4-D in water employing hydrogen peroxide and UV radiation. Chemical Engineering Journal 82: 209-218.
Arnold SF, Klotz DM, Collins BM, Vonier PM, Guillette LJ Jr, McLachlan JA. 1996. Synergistic activation of estrogen receptor with combinations of environmental chemicals. Science 272:1489-1492.
Aris AZ, Shamsuddin AS, Praveena SM. 2014. Occurrence of 17α-ethynylestradiol (EE2) in the environment and effect on exposed biota: a review. Environment International 69: 104-119.
Balabanic D, Rupnik M, Klemencic AK. 2011. Negative impact of endocrine-disrupting compounds on human reproductive health. Reproduction, Fertlity and Development 23: 403-416.
Barnabe S, Beauchesne I, Cooper DG, Nicell JA. 2008. Plasticizers and their degradation products in the process streams of a large urban physicochemical sewage treatment plant. Water Research 42: 153-162.
Baronti C, Curini R, D''Ascenzo G, Di Corcia A, Gentili A, Samperi R. 2000. Monitoring natural and synthetic estrogens at activated sludge sewage treatment plants and in a receiving river water. Environmental Science & Technology 34: 5059-5066.
Belfroid AC, Van der Horst A, Vethaak AD, Schafer AJ, Rijs GBJ, Wegener J, Cofino WP. 1999a. Analysis and occurrence of estrogenic hormones and their glucuronides in surface water and waste water in The Netherlands. Science of The Total Environment 225: 101-108.
Belfroid AC, Van der Horst A, Vethaak AD, Schafer AJ, Rijs GBJ, Wegener J, Cofino WP. 1999b. Analysis and occurrence of estrogenic hormones and their glucuronides in surface water and waste water in The Netherlands. Science of The Total Environment 225: 101-108.
Bergendahl JA, Thies TP. 2004. Fenton''s oxidation of MTBE with zero-valent iron. Water Research 38: 327-334.
Bevan R, Harrison P, Youngs L, Whelan M, Golsan E, Macadam J. 2012. A review of latest endocrine disrupting chemicals research implications for drinking water. Final report DWI 70/2/266.
Błędzka D, Gromadzińska J, Wąsowicz W. 2014. Parabens. From environmental studies to human health. Environment International 67: 27-42.
Boberg J, Taxvig C, Christiansen S, Hass U. 2010. Possible endocrine disrupting effects of parabens and their metabolites. Reproductive Toxicology 30: 301-312.
Brinker CJ, Scherer GW. 1990. Sol-gel science. San Diego: Academic Press.
Butwell AJ, Gardner M, Johnson I, Rockett L. 2008. Endocrine disrupting chemicals national demonstration programme logistical support project—assessment of the performance of the removal of oestrogenic substances at WwTWs—Final report.: UKWIR.
Caliman FA, Gavrilescu M. 2009. Pharmaceuticals, personal care products and endocrine disrupting agents in the environment – a review. CLEAN – Soil, Air, Water 37: 277-303.
Campbell CG, Borglin SE, Green FB, Grayson A, Wozei E, Stringfellow WT. 2006. Biologically directed environmental monitoring, fate, and transport of estrogenic endocrine disrupting compounds in water: A review. Chemosphere 65: 1265-1280.
Canonica S, Meunier L, von Gunten U. 2008. Phototransformation of selected pharmaceuticals during UV treatment of drinking water. Water Research 42: 121-128.
Chen PJ, Rosenfeldt EJ, Kullman SW, Hinton DE, Linden KG. 2007. Biological assessments of a mixture of endocrine disruptors at environmentally relevant concentrations in water following UV/H2O2 oxidation. Science of The Total Environment 376: 18-26.
Chowdhury RR, Charpentier PA, Ray MB. 2011. Photodegradation of 17β-estradiol in aquatic solution under solar irradiation: Kinetics and influencing water parameters. Journal of Photochemistry and Photobiology A: Chemistry 219: 67-75.
Chumha N, Kittiwachana S, Thongtem T, Thongtem S, Kaowphong S. 2014. Synthesis and characterization of GdVO4 nanostructures by a tartaric acid-assisted sol–gel method. Ceramics International 40: 16337-16342.
Cock M, Maas YGH, van de Bor M. 2012. Does perinatal exposure to endocrine disruptors induce autism spectrum and attention deficit hyperactivity disorders? Review. Acta Paediatrica 101: 811-818.
Commission Of The European Communities 1999. Communication from the commission to the council and the european parliament. Community Strategy for Endocrine Disrupters a range of substances suspected of interfering with the hormone systems of humans and wildlife.: commission of the european communities.
D''Ascenzo G, Di Corcia A, Gentili A, Mancini R, Mastropasqua R, Nazzari M, Samperi R. 2003. Fate of natural estrogen conjugates in municipal sewage transport and treatment facilities. Science of The Total Environment 302: 199-209.
Di Valentin C, Finazzi E, Pacchioni G, Selloni A, Livraghi S, Paganini MC, Giamello E. 2007. N-doped TiO2: Theory and experiment. Chemical Physics 339: 44-56.
Dubalska K, Rutkowska M, Bajger-Nowak G, Konieczka P, Namiesnik J. 2013. Organotin compounds: environmental fate and analytics. Critical Reviews in Analytical Chemistry 43: 35-54.
Ene A, Bogdevich O, Sion A. 2012. Levels and distribution of organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs) in topsoils from SE Romania. Science of The Total Environment 439: 76-86.
Esplugas S, Bila DM, Krause LGT, Dezotti Mr. 2007. Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents. Journal of Hazardous Materials 149: 631-642.
Falconer IR, Chapman HF, Moore MR, Ranmuthugala G. 2006. Endocrine-disrupting compounds: A review of their challenge to sustainable and safe water supply and water reuse. Environmental Toxicology 21: 181-191.
Fan Z, Hu J, An W, Yang M. 2013. Detection and occurrence of chlorinated byproducts of bisphenol a, nonylphenol, and estrogens in drinking water of china: comparison to the parent compounds. Environmental Science & Technology 47: 10841-10850.
Fasnacht MP, Blough NV. 2002. Aqueous photodegradation of polycyclic aromatic hydrocarbons. Environmental Science & Technology 36: 4364-4369.
Frontistis Z, Xekoukoulotakis NP, Hapeshi E, Venieri D, Fatta-Kassinos D, Mantzavinos D. 2011. Fast degradation of estrogen hormones in environmental matrices by photo-Fenton oxidation under simulated solar radiation. Chemical Engineering Journal 178: 175-182.
Gaido KW, Leonard LS, Lovell S, Gould JC, Babai D, Portier CJ, McDonnell DP. 1997. Evaluation of chemicals with endocrine modulating activity in a yeast-based steroid hormone receptor gene transcription assay. Toxicology and Applied Pharmacology 143: 205-212.
Gee RH, Rockett LS, Rumsby PC. 2015. Chapter 18 - Considerations of endocrine disrupters in drinking water. Pages 319-341. Endocrine Disruption and Human Health. Boston: Academic Press.
Gibson JH. UVB radiation: definition and characteristics. Colorado State University. http://uvb.nrel.colostate.edu/UVB/index.jsf
Glaze WH, Kang J-W, Chapin DH. 1987. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone: Science & Engineering 9: 335-352.
Gmurek M, Olak-Kucharczyk M, Ledakowicz S. 2016. Photochemical decomposition of endocrine disrupting compounds-A review. Chemical Engineering Journal 310: 437-456.
Gora A, Toepfer B, Puddu V, Li Puma G. 2006. Photocatalytic oxidation of herbicides in single-component and multicomponent systems: Reaction kinetics analysis. Applied Catalysis B: Environmental 65: 1-10.
Guo F, Liu Q, Qu G-b, Song S-j, Sun J-t, Shi J-b, Jiang G-b. 2013. Simultaneous determination of five estrogens and four androgens in water samples by online solid-phase extraction coupled with high-performance liquid chromatography- tandem mass spectrometry. Journal of Chromatography A 1281: 9-18.
Hale RC, La Guardia MJ, Harvey E, Gaylor MO, Mainor TM. 2006. Brominated flame retardant concentrations and trends in abiotic media. Chemosphere 64: 181-186.
Hall T, Hyde RA, 1992. Water treatment processes and practices. Updated version of Report 854-S, prepared by WRc in March 1992, 192pp plus references and appendices, ISBN-0-902156-87X.
Hawthorne SB, Grabanski CB, Martin E, Miller DJ. 2000. Comparisons of Soxhlet extraction, pressurized liquid extraction, supercritical fluid extraction and subcritical water extraction for environmental solids: recovery, selectivity and effects on sample matrix. Journal of Chromatography A 892: 421-433.
Horng Y-J. 2006. Study on the Preparation and Characterization of Activated Carbon Supported TiO2 Photocatalyst. Master thesis. National Chung Hsing University, Taichung City.
Hu J, Cheng S, Aizawa T, Terao Y, Kunikane S. 2003. Products of aqueous chlorination of 17beta-estradiol and their estrogenic activities. Environmental Science & Technology 37: 5665-5670.
Hutchins SR, White MV, Hudson FM, Fine DD. 2007. Analysis of lagoon samples from different concentrated animal feeding operations for estrogens and estrogen conjugates. Environmental Science & Technology 41: 738-744.
Ifelebuegu AO. 2012. Removal of steriod hormones by activated carbon adsorption-kinetic and thermodynamic studies. Journal of Environmental Protection 3: 469-475.
Isobe T, Shiraishi H, Yasuda M, Shinoda A, Suzuki H, Morita M. 2003. Determination of estrogens and their conjugates in water using solid-phase extraction followed by liquid chromatography‚Aitandem mass spectrometry. Journal of Chromatography A 984: 195-202.
Jagadale TC, Takale SP, Sonawane RS, Joshi HM, Patil SI, Kale BB, Ogale SB. 2008. N-Doped TiO2 nanoparticle based visible light photocatalyst by modified peroxide sol-gel method. The Journal of Physical Chemistry C 112: 14595-14602.
Jakimska A, Huerta B, Barganska Z, Kot-Wasik A, Rodriguez-Mozaz S, Barcelo D. 2013. Development of a liquid chromatography-tandem mass spectrometry procedure for determination of endocrine disrupting compounds in fish from Mediterranean rivers. Journal of Chromatography A 1306: 44-58.
James HA, Fielding M, Franklin O, Williams D, Lunt D. 1997. Steroid concentrations in treated sewage effluents and water courses—implications for water supplies. Final report to the Department of Environment and UK Water Industry Research Ltd. Report No. DWI 4323.
Janjua NR, Mortensen GK, Andersson A-M, Kongshoj B, Wulf HC. 2007. Systemic uptake of diethyl phthalate, dibutyl phthalate, and butyl paraben following whole-body topical application and reproductive and thyroid hormone levels in humans. Environmental Science & Technology 41: 5564-5570.
Johnson AC, Williams RJ, Matthiessen P. 2006. The potential steroid hormone contribution of farm animals to freshwaters, the United Kingdom as a case study. Science of the Total Environment 362: 166-178.
Jones-Lepp TL, Stevens R. 2007. Pharmaceuticals and personal care products in biosolids/sewage sludge: the interface between analytical chemistry and regulation. Analytical Bioanalytical Chemistry 387: 1173-1183.
Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ. 2008. The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK. Water Research 42: 3498-3518.
Kelly MM, Fleischhacker NT, Rearick DC, Arnold WA, Schoenfuss HL, Novak PJ. 2014. Phytoestrogens in the environment, II: Microbiological degradation of phytoestrogens and the response of fathead minnows to degradate exposure. Environmental Toxicology and Chemistry 33: 560-566.
Kim SD, Cho J, Kim IS, Vanderford BJ, Snyder SA. 2007. Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Research 41: 1013-1021.
Korner W, Bolz U, Susmuth W, Hiller G, Schuller W, Hanf V, Hagenmaier H. 2000. Input/output balance of estrogenic active compounds in a major municipal sewage plant in Germany. Chemosphere 40: 1131-1142.
Kuch HM, Ballschmiter K. 2001. Determination of Endocrine-Disrupting Phenolic Compounds and Estrogens in Surface and Drinking Water by HRGC-(NCI)-MS in the Picogram per Liter Range. Environmental Science & Technology 35: 3201-3206.
Kupper T, Plagellat C, Brandli RC, de Alencastro LF, Grandjean D, Tarradellas J. 2006. Fate and removal of polycyclic musks, UV filters and biocides during wastewater treatment. Water Research 40: 2603-2612.
Lau TK, Chu W, Graham N. 2007. Reaction pathways and kinetics of butylated hydroxyanisole with UV, ozonation, and UV/O3 processes. Water Research 41: 765-774.
Lavicoli I, Fontana L, Bergamaschi A. 2009. The effects of metals as endocrine disruptors. Journal of Toxicology and Environmental Health, Part B 12: 206-223.
Law RJ, Allchin CR, de Boer J, Covaci A, Herzke D, Lepom P, Morris S, Tronczynski J, de Wit CA. 2006. Levels and trends of brominated flame retardants in the European environment. Chemosphere 64: 187-208.
Li Puma G, Puddu V, Tsang HK, Gora A, Toepfer B. 2010. Photocatalytic oxidation of multicomponent mixtures of estrogens (estrone (E1), 17β-estradiol (E2), 17α-ethynylestradiol (EE2) and estriol (E3)) under UVA and UVC radiation: Photon absorption, quantum yields and rate constants independent of photon absorption. Applied Catalysis B: Environmental 99: 388-397.
Linden KG, Rosenfeldt EJ, Kullman SW. 2007. degradation of endocrine-disrupting chemicals in water evaluated via toxicity assays. Water science and technology 55: 313-319.
Lintelmann J, Katayama A, Kurihara N, Shore L, Wenzel. 2003. Endocrine disruptors in the environment (iupac technical report). Research Triangle Park, NC, ETATS-UNIS: Pure and applied chemistry.
Liu B, Liu X. 2004. Direct photolysis of estrogens in aqueous solutions. Science of The Total Environment 320: 269-274.
Liu Z-h, Kanjo Y, Mizutani S. 2010. A review of phytoestrogens: Their occurrence and fate in the environment. Water Research 44: 567-577.
Mai J, Sun W, Xiong L, Liu Y, Ni J. 2008. Titanium dioxide mediated photocatalytic degradation of 17β-estradiol in aqueous solution. Chemosphere 73: 600-606.
Malato S, Blanco Jn, Vidal A, Richter C. 2002. Photocatalysis with solar energy at a pilot-plant scale: an overview. Applied Catalysis B: Environmental 37: 1-15.
Manassero A, Passalia C, Negro AC, Cassano AE, Zalazar CS. 2010. Glyphosate degradation in water employing the H2O2/UVC process. Water Research 44: 3875-3882.
Marchetti G, Minella M, Maurino V, Minero C, Vione D. 2013. Photochemical transformation of atrazine and formation of photointermediates under conditions relevant to sunlit surface waters: Laboratory measures and modelling. Water Research 47: 6211-6222.
Matthews RW. 1991. Photooxidative degradation of coloured organics in water using supported catalysts. TiO2 on sand. Water Research 25: 1169-1176.
Mazellier P, Meite L, Laat JD. 2008. Photodegradation of the steroid hormones 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) in dilute aqueous solution. Chemosphere 73: 1216-1223.
Mboula VM, Hequet V, Andres Y, Gru Y, Colin R, Dona-Rodriguez JM, Pastrana-Martinez LM, Sila AMT, Leleu M, Tindall AJ, Mateos S, Falaras P, 2015. Photocatalytic degradation of estradiol under simulated solar light and assessment of estrogenic activity. Applied Catalysis B: Environmental 162: 437-444.
Mehrvar M, Anderson WA, Moo-Young M, Reilly PM. 2000. Non-linear parameter estimation for a dynamic model in photocatalytic reaction engineering. Chemical Engineering Science 55: 4885-4891.
Ministry of Transportation and Communications. Central Weather Bureau 2006-2016. Monthly reporton climate system. http://www.cwb.gov.tw/V7/
Molinari R, Argurio P, Poerio T, Bonaddio F. 2007. Photo assisted fenton in a batch and a membrane reactor for degradation of drugs in water. Separation Science and Technology 42: 1597-1611.
Muller M, Rabenoelina F, Balaguer P, Patureau D, Karin L, Budzinski H, Barcelo D, de Alda ML, Kuster M, Delgenes J-P, Hernandez-Raquet G, 2008. Chemical and biological analysis of endocrine-disrupting hormones and estrogenic activity in an advanced sewage treatment plant. Environmental Toxicology and Chemistry 27: 1649-1658.
Nakai S, Kishita S, Nomura Y, Hosomi M. 2007. Polychlorinated dibenzothiophenes in Japanese environmental samples and their photodegradability and dioxin-like endocrine-disruption potential. Chemosphere 67: 1852-1857.
Nasu M, Goto M, Kato H, Oshima Y, Tanaka H. 2001. Study on endocrine disrupting chemicals in wastewater treatment plants. Water Science & Technology 43: 101-108.
Nawawi WI, Nawi MA. 2014. Carbon coated nitrogen doped P25 for the photocatalytic removal of organic pollutants under solar and low energy visible light irradiations. Journal of Molecular Catalysis A: Chemical 383-384: 83-93.
Neamtu M, Frimmel FH. 2006. Degradation of endocrine disrupting bisphenol A by 254 nm irradiation in different water matrices and effect on yeast cells. Water Research 40: 3745-3750.
Nelieu S, Kerhoas L, Sarakha M, Einhorn J. 2004. Nitrite and nitrate induced photodegradation of monolinuron in aqueous solution. Environmental Chemistry Letters 2: 83-87.
Nicole I, De Laat J, Dore M, Duguet JP, Bonnel C. 1990. Utilisation du rayonnement ultraviolet dans le traitement des eaux: mesure du flux photonique par actinometrie chimique au peroxyde d''hydrogene. Water Research 24: 157-168.
Nienow AM, Bezares-Cruz JC, Poyer IC, Hua I, Jafvert CT. 2008. Hydrogen peroxide-assisted UV photodegradation of Lindane. Chemosphere 72: 1700-1705.
Ning B, Graham N, Zhang Y, Nakonechny M, Gamal El-Din M. 2007. Degradation of endocrine disrupting chemicals by ozone/AOPs. Ozone: Science & Engineering 29: 153-176.
Okour Y, Shon HK, Liu H, Kim JB, Kim JH. 2011. Seasonal variation in the properties of titania photocatalysts produced from Ti-salt flocculated bioresource sludge. Bioresource Technology 102: 5545-5549.
Ollis DF. 2005. Kinetics of liquid phase photocatalyzed reactions: an illuminating approach. The Journal of Physical Chemistry B 109: 2439-2444.
Omar TFT, Ahmad A, Aris AZ, Yusoff FM. 2016. Endocrine disrupting compounds (EDCs) in environmental matrices: Review of analytical strategies for pharmaceuticals, estrogenic hormones, and alkylphenol compounds. TrAC Trends in Analytical Chemistry 85, Part C: 241-259.
Oppenlander T. 2007. Photochemical purification of water and air: advanced oxidation processes (AOPs) - principles, reaction mechanisms, reactor concepts: Wiley-VCH Verlag GmbH & Co.
Petrovic M, Sole M, Lopez De Alda MJ, Barcelo D. 2002. Endocrine disruptors in sewage treatment plants, receiving river waters, and sediments: Integration of chemical analysis and biological effects on feral carp. Environmental Toxicology and Chemistry 21: 2146-2156.
Planello R, Herrero O, Martinez-Guitarte JL, Morcillo G. 2011. Comparative effects of butyl benzyl phthalate (BBP) and di(2-ethylhexyl) phthalate (DEHP) on the aquatic larvae of Chironomus riparius based on gene expression assays related to the endocrine system, the stress response and ribosomes. Aquatic Toxicology 105: 62-70.
Qu S, Kolodziej EP, Cwiertny DM. 2012. Phototransformation rates and mechanisms for synthetic hormone growth promoters used in animal agriculture. Environmental Science & Technology 46: 13202-13211.
Racz L, Goel RK. 2010. Fate and removal of estrogens in municipal wastewater. Journal of Environmental Monitoring. 12: 58–70.
Raman DR, Williams EL, Layton AC, Burns RT, Easter JP, Daugherty AS, Mullen MD, Sayler GS. 2004. Estrogen content of dairy and swine wastes. Environmental Science & Technology 38: 3567-3573.
Rearick DC, Fleischhacker NT, Kelly MM, Arnold WA, Novak PJ, Schoenfuss HL. 2014. Phytoestrogens in the environment, I: Occurrence and exposure effects on fathead minnows. Environmental Toxicology and Chemistry 33: 553-559.
Rhind SM, Kyle CE, Kerr C, Osprey M, Zhang ZL. 2011. Effect of duration of exposure to sewage sludge-treated pastures on liver tissue accumulation of persistent endocrine disrupting compounds (EDCs) in sheep. Science of The Total Environment 409: 3850-3856.
Rodriguez-Gomez R, Jimenez-Diaz I, Zafra-Gomez A, Ballesteros O, Navalon A. 2014. A multiresidue method for the determination of selected endocrine disrupting chemicals in human breast milk based on a simple extraction procedure. Talanta 130: 561-570.
Rodriguez-reinoso F. 1998. The role of carbon materials in heterogeneous catalysis. Carbon 36: 159-175.
Rosenfeldt EJ, Chen PJ, Kullman S, Linden KG. 2007. Destruction of estrogenic activity in water using UV advanced oxidation. Science of The Total Environment 377: 105-113.
Rosenfeldt EJ, Linden KG. 2004. Degradation of endocrine disrupting chemicals bisphenol A, ethinyl estradiol, and estradiol during UV photolysis and advanced oxidation processes. Environmental Science & Technology 38: 5476-5483.
Rudel H, Muller J, Steinhanses J, Schroter-Kermani C. 2007. Retrospective monitoring of organotin compounds in freshwater fish from 1988 to 2003: Results from the German environmental specimen bank. Chemosphere 66: 1884-1894.
Sato S. 1986. Photocatalytic activity of NOx-doped TiO2 in the visible light region. Chemical Physics Letters 123: 126-128.
Shankar MV, Nelieu S, Kerhoas L, Einhorn J. 2007. Photo-induced degradation of diuron in aqueous solution by nitrites and nitrates: Kinetics and pathways. Chemosphere 66: 767-774.
Shemer H, Linden KG. 2007. Aqueous photodegradation and toxicity of the polycyclic aromatic hydrocarbons fluorene, dibenzofuran, and dibenzothiophene. Water Research 41: 853-861.
Silva CPc, Otero M, Esteves V. 2012. Processes for the elimination of estrogenic steroid hormones from water: A review. Environmental Pollution 165: 38-58.
Skubal LR, Meshkov NK, Vogt MC. 2002. Detection and identification of gaseous organics using a TiO2 sensor. Journal of Photochemistry and Photobiology A: Chemistry 148: 103-108.
Soto AM, Calabro JM, Prechtl NV, Yau AY, Orlando EF, Daxenberger A, Kolok AS, Guillette, Jr LJ, le Bizec B, Lange IG, Sonnenschein C, 2004. Androgenic and estrogenic activity in water bodies receiving cattle feedlot effluent in Eastern Nebraska, USA. Environmental Health Perspectives 112: 346-352.
Stichel W. 1997. Water treatment processes; simple options. Von S. Vigneswaran und C. Visvanathan, 224 Seiten. CRC Press, Lewis Publishers.
Ternes TA, Stumpf M, Mueller J, Haberer K, Wilken RD, Servos M. 1999. Behavior and occurrence of estrogens in municipal sewage treatment plants — I. Investigations in Germany, Canada and Brazil. Science of The Total Environment 225: 81-90.
U.S. Environmental Protection Agency. 2016. Special report on environmental endocrine disruption: an effects assessment and analysis. Washington, D.C.
UKWIR. 1996. Effect of water treatment processes on oestrogenic chemicals. UKWIR; Report DW-05/10 Final.
UKWIR. 2009. Endocrine disrupting chemicals national demonstration programme: assessment of the performance of WwTW in removing oestrogenic substances.
UKWIR. 2010. Assessment of the performance of wastewater treatment works in removing oestrogenic substances.
Vela N, Martinez-Menchon M, Navarro Gs, Perez-Lucas G, Navarro S. 2012. Removal of polycyclic aromatic hydrocarbons (PAHs) from groundwater by heterogeneous photocatalysis under natural sunlight. Journal of Photochemistry and Photobiology A: Chemistry 232: 32-40.
Wang C-Y. 2012. Study on the mineralization of bisphenol A using the N-TiO2 photocatalysts under solar light. Master’s Thesis. National Chung Hsing University, Taichung City.
Wang F, Zhu N, Li T, Zhang H-C. 2014. Material and energy efficiency analysis of low pressure chemical vapor deposition of TiO2 film. Procedia CIRP 15: 32-37.
Xia X, Li G, Yang Z, Chen Y, Huang GH. 2009. Effects of fulvic acid concentration and origin on photodegradation of polycyclic aromatic hydrocarbons in aqueous solution: Importance of active oxygen. Environmental Pollution 157: 1352-1359.
Xie X, Lu W, Chen X. 2013. Binding of the endocrine disruptors 4-tert-octylphenol and 4-nonylphenol to human serum albumin. Journal of Hazardous Materials 248-249: 347-354.
Xu L-C, Sun H, Chen J-F, Bian Q, Qian J, Song L, Wang X-R. 2005. Evaluation of androgen receptor transcriptional activities of bisphenol A, octylphenol and nonylphenol in vitro. Toxicology 216: 197-203.
Xue N, Xu X, Jin Z. 2005. Screening 31 endocrine-disrupting pesticides in water and surface sediment samples from Beijing Guanting reservoir. Chemosphere 61: 1594-1606.
Ying G-G, Kookana RS, Ru Y-J. 2002. Occurrence and fate of hormone steroids in the environment. Environment International 28: 545-551.
Zhang Y, Zhou JT. 2005. Removal of estrone and 17β-estradiol from water by adsorption. Water Research 39: 3991-4003.
Zhang Y, Zhou JL, Ning B. 2007. Photodegradation of estrone and 17β-estradiol in water. Water Research 41: 19-26.
Zhao YX, Gao BY, Qi QB, Wang Y, Phuntsho S, Kim JH, Yue QY, Li Q, Shon HK. 2013. Cationic polyacrylamide as coagulant aid with titanium tetrachloride for low molecule organic matter removal. Journal of Hazardous Materials 258–259: 84-92.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔