跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/25 21:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳睿騰
研究生(外文):Rui-Teng Wu
論文名稱:檸檬酸螯合土壤鐵礦活化過硫酸鹽降解三氯乙烯
論文名稱(外文):Citric acid chelated soil iron mineral activated persulfate oxidation of trichloroethylene
指導教授:梁振儒梁振儒引用關係
口試委員:許益源林雅婷
口試日期:2017-07-11
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:48
中文關鍵詞:現地化學氧化法檸檬酸過硫酸鹽鐵離子
外文關鍵詞:In Situ Chemical OxidationCitric acidPersulfateferrous ion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:311
  • 評分評分:
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:0
現地化學氧化法(In Situ Chemical Oxidation, ISCO)為目前被廣泛的應用於土壤及地下水污染場址整治。過硫酸鹽(Persulfate, PS, S2O82-)氧化劑,可經由過渡金屬(Fe2+)予以活化,產生具有高氧化力之硫酸根自由基(Sulfate free radical, SO4-),達到快速破壞目標污染物目的。土壤中含有天然鐵礦,可作為活化過硫酸鹽活化劑,若利用螯合劑螯合土壤鐵礦,可有效控制活化程序產生SO4-之效率。因此本研究利用檸檬酸螯合土壤鐵礦活化過硫酸鹽降解三氯乙烯,探討檸檬酸(Citric acid, CA)存在於土壤時,對土壤鐵礦釋出至水溶液之變化。實驗結果顯示,檸檬酸之添加有助於土壤鐵離子釋出,9.00 mM CA於泥水相環境(20 g Soil/40 mL water)於反應360小時後,測得水中Fe2+ = 1.89 mg/L及總Fe = 24.40 mg/L,Fe2+ 之釋出有活化過硫酸鹽之潛力,PS/CA/TCE莫耳比為10/5/1、10/20/1、20/20/1於泥水相系統中,反應96小時後,三氯乙烯降解依序為20%、28%及48%,過硫酸鹽耗損率皆小於5%,可知,較高濃度PS及CA存在下,可有效提升降解效率並使較多之土壤鐵離子釋出至水溶液。
In Situ Chemical Oxidation (ISCO) is a widely used technique to remediate contaminated soil and groundwater. Persulfate (Na2S2O8, PS) oxidant can be activated by transition metal ions such as ferrous ion (Fe2+) to produce a powerful sulfate free radicals (SO4-) for destruction of organic contaminants. Soil iron minerals can be used to activate persulfate. The use of chelating agent to chelate soil iron mineral, can effectively control the activation process to produce SO4-. In this laboratory study, citric acid (CA) was to chelate soil iron mineral to activate persulfate oxidation of trichloroethylene (TCE). The results showed that the addition of CA can regulate the release soil iron to activate persulfate (e.g., 9.00 mM CA in soil slurry system (20 g/40 ml water) released Fe2+ = 1.89 mg/L and total Fe = 24.40 mg/L after 360 h). It was demonstrated that the PS/CA/TCE mole ratio of 10/5/1, 10/20/1 and 20/20/1 resulted in TCE destructions of 20%, 28% and 48% and the persulfate decomposition was less than 5%. In addition, higher concentrations of PS and CA can effectively improve the degradation efficiency and release more soil iron mineral actuators in the aqueous solution.
摘要 i
Abstract ii
目錄 iii
表目錄 v
圖目錄 vi
第一章 緒論 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 三氯乙烯之物化特性及其危害性 3
2.2 土壤及地下水整治技術 7
2.2.1 物理化學處理 7
2.2.2 生物復育 10
2.2.3 熱處理 11
2.3 現地化學氧化法 12
2.3.1 過硫酸鹽及活化過硫酸鹽機制 12
2.3.2 檸檬酸螯合鐵活化劑 18
第三章 研究材料與方法 22
3.1 實驗藥品與材料 22
3.2 實驗流程 24
3.3 分析方法 27
第四章 結果與討論 31
4.1 檸檬酸對土壤鐵礦釋出影響試驗 31
4.2 檸檬酸螯合土壤鐵礦活化過硫酸鹽降解三氯乙烯試驗 36
第五章 結論與建議 43
5.1 結論 43
5.2 建議 44
參考文獻 45
[1] Latimer, W.M., Oxidation potentials, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, USA, (1952).
[2] Huling, S.G., Pivetz, B.E., In-situ chemical oxidation, United States Environmental Protection Agency(USEPA), Engineering Issue, EPA/600/R-06/072, (2006).
[3] Liang, C., Bruell C.J., Marley, M.C., Sperry, K.L.,Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion, Chemosphere, 55 (2004) 1225-1233.
[4] Westrick, J.J., Mello, J.W., Thomas, R.F., The groundwater supply survey, Journal American Water Works Association,75 (1984) 52-59.
[5] Forkert, P.G. Sylvestre, P.L., Poland, J.S., Lung injury induced by trichloroethylene, Toxicology, 35 (1985) 143-160.
[6] IARC, Trichloroethyylene, tetrachloroethylene, and some other chlorinated agents, International Agency for Research on Cancer (IARC), 106 (2014) 1-512.
[7] ATSDR, Toxicological profile for trichloroethylene, Agency for Toxic Substances and Disease Registry, (1989).
[8] 行政院環境保護署, 三氯乙烯物質安全資料表, 行政院環境保護署, (2016).
[9] 經濟部工業局, 工廠土壤及地下水污染整治技術手冊:石化業, 經濟部工業局, (2003).
[10] 盧至人, 現地生物復育技術, 台灣土壤及地下水環境保護協會簡訊,(5), (2002) 3-5.
[11] FMC-Corporation, Persulfate technical information, (2001).
[12] Liang, C., Bruell C.J., Marley, M.C., Sperry, K.L., Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1, 1, 1-trichloroethane (TCA) in aqueous systems and soil slurries, Soil and Sediment Contamination: An International Journal, 12 (2003) 207-228.
[13] IARC, Technical and regulatory guidance for in situ chemical oxidation of contaminated soil and groundwater, International Agency for Research on Cancer (IARC) (2005).
[14] Block, P.A., Brown, R.A., Robinson, D., Novel activation technologies for sodium persulfate in situ chemical oxidation, Proceedings of the Fourth International Conference on the Remediation of Chlorinated and Recalcitrant Compounds, Monterey, California, USA, (2004) 2A-05.
[15] Kolthoff, I.M., Miller, I.K., The chemistry of persulfate. I. The kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium, Journal of the American Chemical Society, 73 (1951) 3055-3059.
[16] Johnson, R.L., Tratnyek, P.G., Johnson, R.O.B., Persulfate persistence under thermal activation conditions, Environmental Science & Technology, 42 (2008) 9350-9356.
[17] Liang, C., Guo, Y.Y., Remediation of diesel-contaminated soils using persulfate under alkaline condition, Water, Air, & Soil Pollution, 223 (2012) 4605-4614.
[18] Kolthoff, I., Medalia, A., Raaen, H.P., The reaction between ferrous iron and peroxides. IV. reaction with potassium persulfate, Journal of the American Chemical Society, 73 (1951) 1733-1739.
[19] Liang, C., Bruell, C.J., Marley, M.C., Sperry, K.L., Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple, Chemosphere, 55 (2004) 1213-1223.
[20] Fordham, J., Williams, H.L., The persulfate-iron (II) initiator system for free radical polymerizations, Journal of the American Chemical Society, 73 (1951) 4855-4859.
[21] Turgut, C., Katie Pepe, M., Cutright, T.J., The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus, Environmental Pollution, 131 (2004) 147-154.
[22] Blaylock, M.J., Salt, D.E., Dushenkov, S., Zakharova, O., Gussman, C., Kapulnik, Y., Ensley, B.D., Raskin, I., Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents, Environmental Science & Technology, 31 (1997) 860-865.
[23] Molinari, R., Poerio, T., Argurio, P., Polymer assisted ultrafiltration for copper–citric acid chelate removal from wash solutions of contaminated soil, Journal of Applied Electrochemistry, 35 (2005) 375-380.
[24] Mcclure, I.Z.F.J., Salivary citrate and dental erosion: procedure for determining citric acid in saliva-dental erosion and citric acid in saliva, Journal of Dental Research, 28 (1949) 613-626.
[25] Muller, B., Citric acid as corrosion inhibitor for aluminium pigment, Corrosion Science, 46 (2004) 159-167.
[26] Kroschwitz, J.I., Seidel, A., Kirk-Othmer Encyclopedia of Chemical Technology, Hoboken, New Jersey, Wiley-Interscience, (2006).
[27] Liang, C., Huang, C.F., Chen, Y.J., Potential for activated persulfate degradation of BTEX contamination, Water Research, 42 (2008) 4091-4100.
[28] Seol, Y., Javandel, I., Citric acid-modified fenton's reaction for the oxidation of chlorinated ethylenes in soil solution systems, Chemosphere, 72 (2008) 537-542.
[29] Furia, T.E., CRC handbook of food additives, CRC press, Cleveland, (1972).
[30] Skoog, D.A., West, D.M., Holler, F.J., Crouch, S.R., Fundamentals of analytical chemistry, Cengage Learning, (2004).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊