跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/18 01:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝明軒
研究生(外文):Ming-Hsuan Hsieh
論文名稱:於春夏季使用渦流協變性系統進行二氧化碳及甲烷通量觀測之研究-以台南北門鹽田為例
論文名稱(外文):Observation of the CO2/CH4 fluxes by the eddy covariance system in spring and summer – A Case Study of the Beimen Salt Fields
指導教授:莊秉潔莊秉潔引用關係
口試委員:莊振義陳琦玲
口試日期:2017-06-19
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:57
中文關鍵詞:濕地鹽田渦流協變系統通量光合作用
外文關鍵詞:wetlandsalt fieldeddy covariancefluxphotosynthesis
相關次數:
  • 被引用被引用:2
  • 點閱點閱:269
  • 評分評分:
  • 下載下載:35
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用渦流協變系統(Eddy Covariance system, EC)觀測北門鹽田甲烷通量且藉由為氣象觀測數據探討各項氣象因子與甲烷通量的相關性。
為了解鹽田在作業流程中甲烷通量排放情形,實驗場址選在台南北門井仔腳瓦盤鹽田進行甲烷通量觀測,觀測期間為2017年1月12日至2017年5月30日止。除了利用渦流協變系統以10 Hz頻率觀測甲烷、二氧化碳及水氣濃度外,長短波輻射、大氣溫度、土壤溫度、風速風向亦同時記錄。結果顯示,鹽田作業曝曬之1月通量在-1.17~2.45 μg m-2 s-1之間;2月通量在-1.2 ~2.66 μg m-2 s-1之間;4月通量在-2.7~3.7 μg m-2 s-1之間;5月通量在-1.1 ~3.6 μg m-2 s-1之間。日間甲烷通量在下午13 ~14時有最大源(source)現象,而夜間則呈現匯(sink)現象。
甲烷通量的日夜週期變化並非經由土壤溫度所主導,而是由gross
ecosystem photosynthesis (GEP),也就是由光合作用主導。觀測發現 GEP的
波峰出現在正午11 ~12時,甲烷通量波峰出現在13 ~14時,時間提早甲烷
通量約1 ~2小時;而土壤溫度之波峰出現於下午15時左右,延後甲烷通量
約1 ~2小時,其相關性為透過光合作用的變化進一步影響甲烷通量的生成
,最後才是土壤溫度的變化
透過微氣象觀測與鹽田作業行程了解鹽田甲烷通量與土溫及光合作用有相關性。雖然近幾年在鹽田進行觀測的研究尚未完整,但藉由濕地甲烷通量與鹽度相關的文獻推測為合理的情況。
In this study, the methane flux of the Beimen salt fields was observed by eddy covariance system (EC), and the correlation between meteorological factors and methane flux was discussed by observing the data.
The observation period was from January 12, 2017 to May 30, 2017. In addition to the use of eddy covariance system to observe the methane, carbon dioxide and water vapor concentration at 10 Hz frequency, the long and short wave radiation, atmospheric temperature, soil temperature and wind speed are also recorded.
The results showed that methane fluxes were between -1.17 and 2.45 μg m-2 s-1 in January. The fluxes were between -1.2 and 2.66 μg m-2 s-1 in February. The fluxes were between -2.7 and 3.7μg m-2 s-1 in April. The fluxes were between -1.1 and 3.6μg m-2 s-1 in May. In general, daytime methane fluxes have a maximum source at 13-14 pm and a sink phenomenon at night. Methane fluxes are not dominated by soil temperature, but by gross ecosystem photosynthesis.
The relationship between methane flux and soil temperature and photosynthesis was studied by micrographic observation. Although the study of observations in salt fields in recent years has not yet been completed, it is reasonable to speculate on the literature.
第一章 前言..…………………………………………………………………....1
1.1 研究緣起………………………………………………………………...1
1.2 背景介紹………………………………………………………………...4
1.3 研究目的………………………………………………………………...5
第二章 文獻回顧………………………………………………………………..6
2.1 濕地定義………………………………………………………………...6
2.2 觀測方法比較…………………………………………………………...7
2.3 濕地甲烷通量觀測……………………………………………………...9
2.4 濕地二氧化碳觀測…………………………………………………….12
第三章 研究方法與原理………………………………………………………15
3.1 渦流協變性系統 (Eddy covariance system)………...………..…………15
3.2 甲烷通量之校正……………………………………………………….18
3.3 WPL校正……………………………………………………………….20
3.4 實驗設備…………………………………………………………….…22
3.4.1 渦流協變性系統 (Eddy covariance system)…..……………………22
3.4.2 微氣象觀測系統…………………………………………………..22
第四章 結果與討論……………………………………………………………25
4.1架設地點介紹…………………………………………………………..24
4.2 微氣象觀測資料……………………………………………………….26
4.2.1風速及風向………………………………………………………...26
4.2.2 氣溫(Ta)及相對溼度(RH)….……………………………………..28
4.2.3 輻射………………………………………………………………..29
4.2.4 氣溫(Ta)與土壤溫度(Ts)………………………………………….30
4.3甲烷通量………………………………………………….…………….32
4.3.1二氧化碳及甲烷通量與日變化……………………..………...…..32
4.3.2 甲烷通量與雨量…………………………………………………..35
4.3.3 甲烷通量與土壤溫度、光合作用………………………………..36
第五章 結論與建議……………………………………………………………40
5.1 結論…………………………………………………………………….40
5.2 建議…………………………………………………………………….41
第六章 參考文獻………………………………………………………………42
附錄A…………………………………………………………………………..48
Allen, D.E., Dalal, R.C., Rennenberg, H., Meyer, R.L., Reeves, S., Schmidt, S.: Spatial and temporal variation of nitrous oxide and methane flux between
subtropical mangrove sediments and the atmosphere, Soil Biol. Biochem. Vol.39, 622–631, 2007.
Amouroux, D., Roberts, G., Rapsomanikis, S., Andreae, M.O.: Biogenic gas (CH4,N2O, DMS) emission to the atmosphere from near-shore and shelf waters of the north-western Black sea. Estuar. Coast. Shelf Sci. Vol.54 (3), 575-587, 2002.
Audet, J., Elsgaard, L., Kjaergaard, C., Larsen,S.E., Hoffmann., C.C.: Greenhouse gas emissions from a Danish riparian wetland before and after restoration.Ecological Engineering. Vol.57 170-182, 2013.
Baldocchi, D., Detto, M., Sonnentag, O., Verfaillie, J., The, Y. A., Silver, W.,Kelly, N. M.: The challenges of measuring methane fluxes and concentrations over a peatland pasture. Agricultural and Forest Meteorology, Vol.153, 177-187, 2012.
Beringer, J., Livesley, S. J., Randle, J., Hutley, L. B.: Carbon dioxide fluxes dominate the greenhouse gas exchanges of a seasonal wetland in the wet-dry tropics of northern Australia. Vol 182-183, 239-247, 2013.
Chang, T. C., Yang, S. S.:Methane emission from wetlands in Taiwan. Atmospheric Environment. Vol. 37, 4551-4558, 2003.
Chojnicki, B. H, Michalak M, Acosta M, Juszczak R, Augustin J, Droesler M, Olejnik J.: Measurements of carbon dioxide fluxes by chamber method at the Rzecin wetland ecosystem, Poland. Pol J Environ Stud. Vol 19(2), 283–291, 2010.
Deborde, J., Anschutz, P., Guerin, F., Poirier, D., Marty, D., Boucher, G., Thouzeau, G., Canton, M., Abril, G.: Methane sources, sinks and fluxes in a temperate tidal Lagoon: The Arcachon lagoon (SW France). Vol. 89, 256-266, 2010.
Detto, M., Verfaillie, J., Anderson, F., Xu, L., Baldocchi, D.: Comparing laser-based open- and closed-path gas analyzers to measure methane fluxes using the eddy covariance method. Agricultural and Forest Meteorology. Vol. 151,1312-1324, 2011.
Fortuniak, K., Pawlak, W., Bednorz, L., Grygoruk, M., Siedlecki, M., Zielinski, M.: Methane and carbon dioxide fluxes of a temperate mire in Central Europe. Agricultural and Forest Meteorology. Vol. 232, 306-318, 2017.
Ganguly, D., Dey, M., Mandal, S. K., De, T. K., Jana, T. K.: Energy dynamics and its implication to biosphere-atmosphere exchange of CO2, H2O and CH4 in a tropical mangrove forest canopy. Vol. 42, 4172-4184, 2008.
Gregorich, E.G., Hopkins, D.W., Elberling, B., Sparrow, A.D., Novis, P., Greefield, L.G., Rochette, P.: Emission of CO2, CH4 and N2O from lakeshore soils in an Antarctic dry valley, Soil Biol. Biochem.Vol.38, 3120-3129, 2006.
Hatala, J. A., Detto, M., Baldocchi, D. D.: Gross ecosystem photosynthesis cause a diurnal pattern in methane emission from rice. Geophysical Research Letters. Vol. 39, L06409, doi: 10. 1029/2012GL051303, 2012.
Hatala, J. A., Detto, M., Sonnentag, O., Deverel, S. J.: Greenhouse gas(CO2, CH4, H2O) fluxes from drained and flooded agricultural peatlands in the Sacramento-San Joaquin Delta. Agriculture, Ecosystems and Environment. Vol. 150, 1-18, 2012.
Hegde, U., Chang T.C., Yang, S.S.: Methane and carbon dioxide emissions from Shan-Chu-Ku landfill site northern Taiwan, Chemosphere 52 1275–1285, 2003.
Herbst, M., Friborg, T., Ringgaard, R., Soegaard, H.:Interpreting the variations in atmospheric methane fluxes observed above a restored wetland. Agriculture and Forest Meteorology, Vol.151, 841-853, 2011
Hu, M., Wilson, B. J., Sun, Z., Ren, P., Tong, C.: Effects of the addition of nitrogen and sulfate on CH4 and CO2 emissions, soil, and pore water chemistry in a high marsh of the Min River estuary in southeastern China. Vol. 579, 292-304, 2017.
IPCC (Intergovernment Panel on Climate Change). 2007, IPCC Fourth Assessment Report: Climate Change 2007: Working Group I Report "The Physical Science Basis" Chapter 2: Changes in Atmospheric Constituents and in Radiative Forcing.
IPCC (Intergovernment Panel on Climate Change). 2007, IPCC Fourth Assessment Report: Climate Change 2007: Working Group I Report "The Physical Science Basis" Chapter 7: Couplings Between Changes in the Climate System and Biogeochemistry.
Li, X., Mitsch, W. J.: Methane emissions from created and restored freshwater and brackish marshes in southwest Florida, USA. Ecological Engineering, Vol.91, 529-536, 2016.
Magalhães, C., Costa, J., Teixeira, C., Bordalo, A.A.: Impact of trace metals on denitrification in estuarine sediments of the Douro river estuary. Portugal. Mar. Chem. Vol 107, 332–341, 2007.
Marton, J., E. Herbert, and C. Craft.: Effects of salinity on denitrification and greenhouse gas production from laboratory-incubated tidal forest soils. Wetlands. Vol. 32, 347-357, 2012.
Mitsch, W. J., Bernal, B., Nahlik, A. M., Mander U. L., Zhang, L., Anderson, C. J., J?rgensen, S. E., Brix, H., Wetlands, carbon, and climate change. Landscape Ecol. Vol. 28, 583–597, 2013.
Morin, T. H., Bohrer, G., Naor-Azrieli, L., Mesi, S., Kenny, W. T., Mitsch, W. J., Schafer, K. V. R.: The seasonal and diurnal dynamics of methane flux at a created urban wetland. Ecological Engineering, Vol.72, 74-83, 2014.
Morin, T. H., Bohrer, G., Stefanik, K. C., Rey-Sanchez, A. C., Matheny, A. M.: Combining eddy-covariance and chamber measurements to determine the methane budget from a small, heterogeneous urban floodplain wetland park. Agricultural and Forest Meteorology. Vol. 237-238, pages 160-170, 2017.
Morrissey, E. M., Gillespie, J. L.,Morina, J. C., Franklin, R. B.: Salinity affects microbial activity and soil organic matter content in tidal wetlands. Global Change Biology. Vol. 20, 1351-1362, 2014.
Poffenbarger H. J., Needelman B. A., Megonigal J. P.: Salinity influence on methane emissions from tidal marshes. Wetlands. Vol. 31, 831-842, 2011.
Shoemaker, J. K., Varner, R. K., Schrag, D. P.: Characterization of subsurface methane production and release over 3 years at a New Hampshire wetland. Geochimica et Cosmochimica Acta. Vol. 91, 120-139, 2012.
Tomas, G., Sherin, A. P., Zachariah, E. J.: Atmospheric methane mixing ratio in a south Indian coastal city interlaced by wetlands. Procedia Environmental Sciences. Vol. 21, 14-25, 2014.
Webb, E. K., Pearman, G. I., and Leuning, R.: Correction of Flux Measurements for Density Effects Due to Heat and Water Vapour Transfer. Quart. J. Roy. Meteorol. Soc., Vol. 196, 85-100, 1980.
Xiang, J., Liu, D., Ding, W., Yuan, J., Lin, Y.: Invasion chronosequence of Spartina alterniflora on methane emission and organic carbon sequestration in a coastal salt marsh. Atmospheric Environment. Vol. 112, 72-80, 2015.
Xu, X., Zou, X., Cao, L., Zhamangulova, N., Zhao, Y., Tang, D., Liu, D.: Seasonal and spatial dynamics of greenhouse gas emissions under various vegetation covers in a coastal saline wetland in southeast China. Vol. 73, 469-477, 2014.
Yang, S. S., Chen, I. C., Pao, L. C., Liu, L. Y., Chang, C. H.: Carbon dioxide and methane emissions from Tanswei River in Northern Taiwan. Atmospheric Pollution Research. Vol. 6, 52-61, 2015.
Ye, R., Keller, J. K., Jin, Q., Bohannan, B. J. M., Bridgham, S. D.: Peatland types influence the inhibitory effects of a humic substance analog on methane production.Vol. 265, 131-140, 2016.
空氣品質模式支援中心 (2010)。建立 AERMET 各土地區分所需之氣 象檔案及地表特性參數。空氣品質模式支援中心歷年成果,台北市。
內政部國土測繪中心 (2015)。國土測繪圖資網路地圖服務。取自:
http://maps.nlsc.gov.tw/
李麗華 (2013)。高美濕地泥灘地碳循環研究 (博士論文)。國立中興大學生命科學系,台中市。
許?平 (2010)。七股鄉志。臺南市七股區公所,台南市。
鄭丞孝 (2013)。渦流協變系統之全年度水稻田甲烷通量觀測及模擬 (碩士論文)。國立中興大學環境工程系,台中市。
林卷樺 (2017)。以渦流協變系統觀測二氧化碳/甲烷通量之研究-以台南北門鹽田為例 (碩士論文)。國立中興大學環境工程系,台中市。 
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊