中文
圖書
王敏泰(1982)“染料化學”,五洲出版社,頁 1-26。
申洋文和車雲霞(1998)“無機化學叢書”,張青蓮主編, 鈦分類,科學出版社,第八卷,頁 35-44。
李其紘(2013)“原子力顯微鏡的基本介紹”,科學研習,國立台灣科學教育館,第52-5 卷,頁 18-21。
洪連輝、劉立基和魏榮君譯(1997)“固態物理學導論 第七版”,Kittel, C. 原著,“Introduction to Solid State Physics, 7th ed”,高立圖書有限公司,頁 191-194。
高濂、鄭珊和張青紅(2004)“奈米光觸媒”,五南圖書出版股份有限公司,頁 2-30。
黃文魁(2003)“奈米光觸媒之發展與市場應用”,工研院 IEK 化材組,頁 26-29。
楊萬發、翁志聖、余騰耀和林坤讓(1994)“染整業水污染防治技術”,經濟部工業局,頁 27-29,133-180。
鄭信民和林麗娟(2002)“X 光繞射應用簡介”,工業材料雜誌,工業技術研究院,第 181 卷,頁 100-108。
期刊論文
王維甫(2015)“利用實場太陽光搭配氮鑭共改質二氧化鈦光觸媒降解雙酚 A 之研究”,博士學位論文,國立中興大學,頁 127-131。汪昀昇(2008)“利用過渡金屬 V 改質 TiO2/ITO 光觸媒電極特性及光活性之研究”,碩士學位論文,國立中興大學,頁 48、52、57。連建智(2010)“利用光催化反應處理染整廢水之可行性研究”,碩士學位論文,國立中興大學,頁 38-39,41-42。網路資源
放流水標準(2016 修正),從 http://w3.epa.gov.tw/epalaw/docfile/060060.pdf 獲得,行政院環境保護署,依水污染防治法第七條第二項規定訂定之。
其他
周珊珊、黃國豪、廖啟鐘和徐淑芳(2003)“高濃度廢水處理技術實例探討 - Fenton 家族”。「高濃度COD廢水氧化處理技術」研討會發表之論文,臺灣,工業技術研究院環境與安全衛生技術發展中心,頁 1-14。
楊萬發、鄭耀文、楊宜掄、彭衍順、吳靜玫和何曉琪(2003)“印染整理業、農藥業、印刷電路板業、晶圓製造及半導體製造業等四行業別之廢水中特定物質前處理及管理制度評估計畫”,環保專案計畫,國立台灣大學環境工程學研究所,第 4 章,頁 1-58,EPA-92-G104-02-207。
English
Books
Brinker, C. J., and Scherer, G. W. (1990). "CHAPTER 1 - Introduction" Sol-Gel Science, San Diego, Academic Press, pp. xvi-18.
Byrappa, K., and Yoshimura, M. (2001). "2 - History of Hydrothermal Technology" Handbook of Hydrothermal Technology, Norwich, NY, William Andrew Publishing, pp. 53-81.
Dean, J. A. (1973). "Lange's Handbook of Chemistry", New York, McGraw-Hill.
Doede, C. M., and Walker, C. A. (1955). "Photochemical Engineering", New Haven.
Finklea, H. O. (1988). "Titanium Dioxide (TiO2) and Stronium Titanate (SrTiO3)"; Finklea, H. O. Ed., Semiconductor Electrodes, New York, Elsevier: Amsterdam, vol. 55, pp. 43-145.
Gnaser, H., Huber, B., and Ziegler, C. (2004). "Nanocrystalline TiO2 for Photocatalysis"; Nalwa, H. S. Ed., Encyclopedia of Nanoscience and Nanotechnology, American Scinetific Publishers, vol. 6, pp. 505-535.
Jones, A. C., and Hitchman, M. L. (2009). "Chapter 1. Overview of Chemical Vapour Deposition"; Jones, A. C. and Hitchman, M. L. Eds., Chemical Vapour Deposition: Precursors, Processes and Applications, The Royal Society of Chemistry, pp. 1-36.
Lewis, N. S., and Rosenbluth, M. (1989). "Theory of Semiconductor Materials"; Serpone, N. and Pelizzetti, E. Eds., Photocatalysis: Fundamentals and Applications, New York, John Wiley & Sons, pp. 45-121.
Lide, D. R. (2005). "CRC Handbook of Chemistry and Physics, 85th ed" Lide, D. R. Ed., Boca Raton, FL, CRC Press, pp.8-23~8-33.
Livage, J. (2004). "Basic Principles of Sol-Gel Chemistry"; Aegerter, M. A. and Mennig, M. Eds., Sol-Gel Technologies for Glass Producers and Users, Boston, MA, Springer US, pp. 3-14.
Machulek Jr., A., Quina, F. H., Gozzi, F., Silva, V. O., Friedrich, L. C., and Moraes, J. E. F. (2012). "Fundamental Mechanistic Studies of the Photo-Fenton Reaction for the Degradation of Organic Pollutants"; Puzyn, T. and Mostrag-Szlichtyng, A. Eds., Organic Pollutants Ten Years After the Stockholm Convention - Environmental and Analytical Update, InTech, pp. 271-292.
Sakata, T., and Kawai, T. (1983). "Photosynthesis and Photocatalysis with Semiconductor Powders"; Gratzel, M. Ed., Energy Resources through Photochemistry and Catalysis, Academic Press, Inc. , pp. 331-358.
Sakka, S. (2016). "History of the Sol–Gel Chemistry and Technology"; Klein, L., Aparicio, M., and Jitianu, A. Eds., Handbook of Sol-Gel Science and Technology, Cham, Springer International Publishing, pp. 1-27.
Stumm, W. (1992). "Chemistry of the Solid-Water Interface", John Wiley & Sons, Inc., p.347.
Turner, J. C. R. (1981). "An Introduction to the Theory of Catalytic Reactors"; Anderson, J. R. and Boudart, M. Eds., Catalysis: Science and Technology, Berlin, Heidelberg, Springer Berlin Heidelberg, vol. 1, pp. 43-86.
Journal Articles
Aba-Guevara, C. G., Medina-Ramírez, I. E., Hernández-Ramírez, A., Jáuregui-Rincón, J., Lozano-Álvarez, J. A., and Rodríguez-López, J. L. (2017). "Comparison of two synthesis methods on the preparation of Fe, N-Co-doped TiO2 materials for degradation of pharmaceutical compounds under visible light". Ceramics International, vol. 43(6), pp.5068-5079.
Ahmad, A. (1996). "Magnetic, structural, and transport properties of CuMnFeO4 compound". Paper presented at the Metal/Nonmetal Microsystems: Physics, Technology, and Applications, Poland.
Ahmad, R., Ahmad, Z., Khan, A. U., Mastoi, N. R., Aslam, M., and Kim, J. (2016). "Photocatalytic systems as an advanced environmental remediation: Recent developments, limitations and new avenues for applications". Journal of Environmental Chemical Engineering, vol. 4(4, Part A), pp.4143-4164.
Asgharinezhad, M., Eshaghi, A., and Arab, A. (2016). "Fabrication and characterization of optical and electrical properties of vanadium doped titanium dioxide nanostructured thin film". Optik - International Journal for Light and Electron Optics, vol. 127(19), pp.8130-8134.
Avril, L., Bourgeois, S., Marco de Lucas, M. C., Domenichini, B., Simon, P., Addou, F., Boudon, J., Potin, V., and Imhoff, L. (2015). "Thermal stability of Au–TiO2 nanocomposite films prepared by direct liquid injection CVD". Vacuum, vol. 122, Part B, pp.314-320.
Calatayud, J. M., Pardo, P., and Alarcón, J. (2017). "Hydrothermal-mediated synthesis of orange Cr, Sb-containing TiO2 nano-pigments with improved microstructure". Dyes and Pigments, vol. 139, pp.33-41.
Cao, Z., Zhang, J., Zhou, J., Ruan, X., Chen, D., Liu, J., Liu, Q., and Qian, G. (2017). "Electroplating sludge derived zinc-ferrite catalyst for the efficient photo-Fenton degradation of dye". Journal of Environmental Management, vol. 193, pp.146-153.
Childs, L. P., and Ollis, D. F. (1980). "Is photocatalysis catalytic?". Journal of Catalysis, vol. 66(2), pp.383-390.
Cui, Y., Ding, Z., Liu, P., Antonietti, M., Fu, X., and Wang, X. (2012). "Metal-free activation of H2O2 by g-C3N4 under visible light irradiation for the degradation of organic pollutants". Physical Chemistry Chemical Physics, vol. 14(4), pp.1455-1462.
De Laat, J., and Gallard, H. (1999). "Catalytic Decomposition of Hydrogen Peroxide by Fe(III) in Homogeneous Aqueous Solution: Mechanism and Kinetic Modeling". Environmental Science & Technology, vol. 33(16), pp.2726-2732.
De Laat, J., Gallard, H., Ancelin, S., and Legube, B. (1999). "Comparative study of the oxidation of atrazine and acetone by H2O2/UV, Fe(III)/UV, Fe(iii)/H2O2/UV and Fe(II) or Fe(III)/H2O2". Chemosphere, vol. 39(15), pp.2693-2706.
Fenton, H. J. H. (1894). "LXXIII.-Oxidation of tartaric acid in presence of iron". Journal of the Chemical Society, Transactions, vol. 65(0), pp.899-910.
Fox, M. A., and Dulay, M. T. (1993). "Heterogeneous photocatalysis". Chemical Reviews, vol. 93(1), pp.341-357.
Fujishima, A., and Honda, K. (1972). "Electrochemical photolysis of water at a semiconductor electrode". Nature, vol. 238(5358), pp.37-38.
Fujishima, A., Rao, T. N., and Tryk, D. A. (2000). "TiO2 photocatalysts and diamond electrodes". Electrochimica Acta, vol. 45(28), pp.4683-4690.
Garcia-Segura, S., and Brillas, E. (2017). "Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters". Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 31, pp.1-35.
Glaze, W. H., Kang, J. W., and Chapin, D. H. (1987). "The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation". Ozone: Science & Engineering, vol. 9(4), pp.335-352.
Gleick, P. H. (2000). "A look at twenty-first century water resources development". Water International, vol. 25(1), pp.127-138.
Guo, Q., Zhang, Z., Ma, X., Jing, K., Shen, M., Yu, N., Tang, J., and Dionysiou, D. D. (2017). "Preparation of N,F-codoped TiO2 nanoparticles by three different methods and comparison of visible-light photocatalytic performances". Separation and Purification Technology, vol. 175, pp.305-313.
Haber, F., and Weiss, J. (1932). "Über die Katalyse des Hydroperoxydes". Naturwissenschaften, vol. 20(51), pp.948-950.
Haber, F., and Weiss, J. (1934). "The Catalytic Decomposition of Hydrogen Peroxide by Iron Salts". Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences, vol. 147(861), p.332.
Haber, F., and Willstätter, R. (1931). "Unpaarigkeit und Radikalketten im Reaktionsmechanismus organischer und enzymatischer Vorgänge". Berichte der deutschen chemischen Gesellschaft (A and B Series), vol. 64(11), pp.2844-2856.
Hoffmann, M. R., Martin, S. T., Choi, W., and Bahnemann, D. W. (1995). "Environmental applications of semiconductor photocatalysis". Chemical Reviews, vol. 95(1), pp.69-96.
Huang, C. P., Dong, C., and Tang, Z. (1993). "Advanced chemical oxidation: Its present role and potential future in hazardous waste treatment". Waste Management, vol. 13(5), pp.361-377.
Hwang, Y. J., Yang, S., and Lee, H. (2017). "Surface analysis of N-doped TiO2 nanorods and their enhanced photocatalytic oxidation activity". Applied Catalysis B: Environmental, vol. 204, pp.209-215.
Jaeger, C. D., and Bard, A. J. (1979). "Spin trapping and electron spin resonance detection of radical intermediates in the photodecomposition of water at titanium dioxide particulate systems". The Journal of Physical Chemistry, vol. 83(24), pp.3146-3152.
Köferstein, R., Jäger, L., and Ebbinghaus, S. G. (2013). "Magnetic and optical investigations on LaFeO3 powders with different particle sizes and corresponding ceramics". Solid State Ionics, vol. 249–250, pp.1-5.
Khataee, A., Kayan, B., Gholami, P., Kalderis, D., and Akay, S. (2017). "Sonocatalytic degradation of an anthraquinone dye using TiO2-biochar nanocomposite". Ultrasonics Sonochemistry, vol. 39, pp.120-128.
Kwan, W. P., and Voelker, B. M. (2003). "Rates of Hydroxyl Radical Generation and Organic Compound Oxidation in Mineral-Catalyzed Fenton-like Systems". Environmental Science & Technology, vol. 37(6), pp.1150-1158.
Lee, K. T., Chuah, X. F., Cheng, Y. C., and Lu, S. Y. (2015). "Pt coupled ZnFe2O4 nanocrystals as a breakthrough photocatalyst for Fenton-like processes - photodegradation treatments from hours to seconds". Journal of Materials Chemistry A, vol. 3(36), pp.18578-18585.
Lee, K. T., and Lu, S. Y. (2015). "A cost-effective, stable, magnetically recyclable photocatalyst of ultra-high organic pollutant degradation efficiency: SnFe2O4 nanocrystals from a carrier solvent assisted interfacial reaction process". Journal of Materials Chemistry A, vol. 3(23), pp.12259-12267.
Lin, W. C., and Lin, Y. J. (2011). "Effect of vanadium(IV)-doping on the visible light-induced catalytic activity of titanium dioxide catalysts for methylene blue degradation". Environmental Engineering Science, vol. 29(6), pp.447-452.
Litter Marta, I., and Slodowicz, M. (2017). An overview on heterogeneous Fenton and photoFenton reactions using zerovalent iron materials Journal of Advanced Oxidation Technologies, Vol. 20, pp. 1-19.
Martin, S. T., Herrmann, H., Choi, W., and Hoffmann, M. R. (1994). "Time-resolved microwave conductivity. Part 1.-TiO2 photoreactivity and size quantization". Journal of the Chemical Society, Faraday Transactions, vol. 90(21), pp.3315-3322.
Martin, S. T., Herrmann, H., and Hoffmann, M. R. (1994). "Time-resolved microwave conductivity. Part 2.-Quantum-sized TiO2 and the effect of adsorbates and light intensity on charge-carrier dynamics". Journal of the Chemical Society, Faraday Transactions, vol. 90(21), pp.3323-3330.
Munter, R. (2001). "Advanced oxidation processes - current status and prospects". Proceedings of the Estonian Academy of Sciences. Chemistry, vol. 50, pp.59-80.
Muruganandham, M., Suri, R. P. S., Sillanpää, M., Wu, J. J., Ahmmad, B., Balachandran, S., and Swaminathan, M. (2014). "Recent developments in heterogeneous catalyzed environmental remediation processes". Journal of Nanoscience and Nanotechnology, vol. 14(2), pp.1898-1910.
Nasirian, M., Bustillo-Lecompte, C. F., and Mehrvar, M. (2017). "Photocatalytic efficiency of Fe2O3/TiO2 for the degradation of typical dyes in textile industries: Effects of calcination temperature and UV-assisted thermal synthesis". Journal of Environmental Management, vol. 196, pp.487-498.
Ohko, Y., Tryk, D. A., Hashimoto, K., and Fujishima, A. (1998). "Autoxidation of acetaldehyde initiated by TiO2 photocatalysis under weak UV illumination". The Journal of Physical Chemistry B, vol. 102(15), pp.2699-2704.
Okamoto, K.-i., Yamamoto, Y., Tanaka, H., Tanaka, M., and Itaya, A. (1985). "Heterogeneous photocatalytic decomposition of phenol over TiO2 powder". Bull. Chem. Soc. Jpn., vol. 58(7), pp.2015-2022.
Pang, H., Li, Y., Guan, L., Lu, Q., and Gao, F. (2011). "TiO2/Ni nanocomposites: Biocompatible and recyclable magnetic photocatalysts". Catalysis Communications, vol. 12(7), pp.611-615.
Priyanka, K. P., Revathy, V. R., Rosmin, P., Thrivedu, B., Elsa, K. M., Nimmymol, J., Balakrishna, K. M., and Varghese, T. (2016). "Influence of La doping on structural and optical properties of TiO2 nanocrystals". Materials Characterization, vol. 113, pp.144-151.
Suri, R. P. S., Liu, J., Hand, D. W., Crittenden, J. C., Perram, D. L., and Mullins, M. E. (1993). "Heterogeneous photocatalytic oxidation of hazardous organic contaminants in water". Water Environment Research, vol. 65(5), pp.665-673.
Tian, Z., Yu, N., Cheng, Y., Wang, Z., Chen, Z., and Zhang, L. (2017). "Hydrothermal synthesis of graphene/TiO2/CdS nanocomposites as efficient visible-light-driven photocatalysts". Materials Letters, vol. 194, pp.172-175.
Walling, C., and Goosen, A. (1973). "Mechanism of the ferric ion catalyzed decomposition of hydrogen peroxide. Effect of organic substrates". Journal of the American Chemical Society, vol. 95(9), pp.2987-2991.
Wang, L., Zhang, C., Gao, F., Mailhot, G., and Pan, G. (2017). "Algae decorated TiO2/Ag hybrid nanofiber membrane with enhanced photocatalytic activity for Cr(VI) removal under visible light". Chemical Engineering Journal, vol. 314, pp.622-630.
Wang, W. Y., and Ku, Y. (2007). "Effect of solution pH on the adsorption and photocatalytic reaction behaviors of dyes using TiO2 and Nafion-coated TiO2". Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 302(1–3), pp.261-268.
Wu, J., Pu, W., Yang, C., Zhang, M., and Zhang, J. (2013). "Removal of benzotriazole by heterogeneous photoelectro-Fenton like process using ZnFe2O4 nanoparticles as catalyst". Journal of Environmental Sciences, vol. 25(4), pp.801-807.
Xu, L., and Wang, J. (2012). "Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient Fenton-Like heterogeneous catalyst for degradation of 4-chlorophenol". Environmental Science & Technology, vol. 46(18), pp.10145-10153.
Xu, T., Zhu, R., Zhu, G., Zhu, J., Liang, X., Zhu, Y., and He, H. (2017). "Mechanisms for the enhanced photo-Fenton activity of ferrihydrite modified with BiVO4 at neutral pH". Applied Catalysis B: Environmental, vol. 212, pp.50-58.
Yang, X., Chen, W., Huang, J., Zhou, Y., Zhu, Y., and Li, C. (2015). "Rapid degradation of methylene blue in a novel heterogeneous Fe3O4 @rGO@TiO2-catalyzed photo-Fenton system". Scientific Reports, vol. 5, p.10632.
Yao, Y., Qin, J., Cai, Y., Wei, F., Lu, F., and Wang, S. (2014). "Facile synthesis of magnetic ZnFe2O4–reduced graphene oxide hybrid and its photo-Fenton-like behavior under visible iradiation". Environmental Science and Pollution Research, vol. 21(12), pp.7296-7306.
Yeganeh, M., Shahtahmasebi, N., Kompany, A., Karimipour, M., Razavi, F., Nasralla, N. H. S., and Šiller, L. (2017). "The magnetic characterization of Fe doped TiO2 semiconducting oxide nanoparticles synthesized by sol–gel method". Physica B: Condensed Matter, vol. 511, pp.89-98.
Zafiriou, O. C., Joussot-Dubien, J., Zepp, R. G., and Zika, R. G. (1984). "Photochemistry of natural waters". Environmental Science & Technology, vol. 18(12), pp.358A-371A.
Zelekew, O. A., Kuo, D.-H., Yassin, J. M., Ahmed, K. E., and Abdullah, H. (2017). "Synthesis of efficient silica supported TiO2/Ag2O heterostructured catalyst with enhanced photocatalytic performance". Applied Surface Science, vol. 410, pp.454-463.
Zepp, R. G. (1988). "Factors affecting the photochemical treatment of hazardous waste". Environmental Science & Technology, vol. 22(3), pp.256-257.
Zhao, W., Liu, N., Wang, H., and Mao, L. (2017). "Sacrificial template synthesis of core-shell SrTiO3/TiO2 heterostructured microspheres photocatalyst". Ceramics International, vol. 43(6), pp.4807-4813.
Zhou, B., Zhao, X., Liu, H., Qu, J., and Huang, C. P. (2010). "Visible-light sensitive cobalt-doped BiVO4 (Co-BiVO4) photocatalytic composites for the degradation of methylene blue dye in dilute aqueous solutions". Applied Catalysis B: Environmental, vol. 99(1–2), pp.214-221.
Electronic Resources
Colour IndexTM Online. (2016). from www.colour-index.com
Others