跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/03 13:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:連建智
研究生(外文):Jian-Zhi Lian
論文名稱:奈米光觸媒材料的製備與應用於處理染料廢水
論文名稱(外文):Preparation and applications of nano photocatalyst materials in treating dye wastewater
指導教授:謝永旭謝永旭引用關係
口試委員:吳志超張禎祐高肇郎廖文彬
口試日期:2017-06-29
學位類別:博士
校院名稱:國立中興大學
系所名稱:環境工程學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:109
中文關鍵詞:光催化Photo Fenton-like 反應CuMnFeO4模擬太陽光
外文關鍵詞:PhotocatalysisPhoto Fenton-like reactionCuMnFeO4Simulated sun light
相關次數:
  • 被引用被引用:0
  • 點閱點閱:239
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
工業紡織廢水若未經妥善處理,將造成環境與生物不好的影響。近年的研究指出,高級氧化程序(AOP)中的光催化反應與 Photo Fenton-like 反應被認為可有效降解有機污染物。因為反應過程中,會生成具有高氧化能力的自由基,如氫氧自由基(OH•)。
本研究利用溶膠凝膠法製備 TiO2、0.05 LT、0.05 VT 光觸媒。另外,透過簡單、快速、安全的界面反應製備 CuMnFeO4 和複合金屬觸媒。完成的觸媒利用場發射掃瞄式電子顯微鏡(FE-SEM)、高解析 X 光繞射儀(HR-XRD)、原子力顯微鏡(AFM)、紫外光可見光漫反射分光光譜儀(UV-Vis DRS)進行觸媒特性分析。FE-SEM 掃瞄結果知,自製的觸媒,觸媒粒徑皆小於 100 nm,屬於奈米觸媒。TiO2摻雜微量的鑭與釩,會促使 TiO2 的晶相由銳鈦礦轉變為金紅石。
光觸媒利用紫外光進行光催化反應降解 Y2G 與 MB;CuMnFeO4 和複合金屬觸媒則以光強度為 100 mW/cm2 之模擬太陽光進行 Photo Fenton-like 反應降解 RB 來評估觸媒的活性。0.05 LT 在 pH 3 時,對 Y2G 可吸附 75.2 %,在照紫外光時,光催化降解效率可達 96.5 %。在模擬太陽光下,CuMnFeO4 表現良好的降解效率,且有磁性可回收再利用,故適合應用於實埸污染降解。
The insufficient treatment in industrial textile effluents have negative impacts on the environment and organisms. In the recent studies, both photocatalytic reaction and photo Fenton-like reaction are the advance oxidation processes (AOPs) are recognized to be effective in degradation of organic contaminants. The strong oxidation radicals generating in the AOP was like the hydroxyl radical (OH•).
In this study, photocatalysts – TiO2, 0.05LT and 0.05 VT – were prepared by Sol-Gel method. CuMnFeO4 and muti-metal composite catalysts were produced with a simple, fast, safe carrier solvent assisted interfacial reaction process. The characteristics of the product of catalysts was analyzed by field emission scanning microscope (FE-SEM), high resolution X-ray diffractometer (HR-XRD), atomic force microscopy (AFM), UV/Visible diffuse reflectance spectroscopy spectrophotometer (UV-Vis DRS). The particle size of the whole catalysts was less than 100 nm. The transformation of crystalline in TiO2 from anatase to rutile was promoted by doping lanthanum (La) and vanadium (V).
The activity of photocatalysts was performance with yellow 2G (Y2G) and methylene blue (MB) in a photocatalytic process under illumination of ultraviolet (UV) light, and the activity of CuMnFeO4 and muti-metal composite catalysts were demonstrated with rhodamine B (RB) in a photo Fenton-like process under illumination of simulated sun light at 100 mW/cm2.
The removal rate of Y2G was 75.2 % at pH 3 under dark, the rate of degradation of Y2G was 96.5 % at pH 3 under UV light. The high degradation efficiency of CuMnFeO4 under simulated sun light, and the magnetically recyclable property of CuMnFeO4 raised the practicality in the real field.
摘要 i
Abstract ii
目次 iii
表目次 vi
圖目次 vii
1. 第一章 前言 1
1.1. 研究緣起 1
1.2. 研究目的 2
2. 第二章 研究文獻回顧 4
2.1. 染料概述 4
2.2. 染整廠廢水概述 6
2.2.1. 染整廠廢水來源及特性 6
2.2.2. 染整廢水處理之概況 7
2.3. 光化學概述 8
2.4. 半導體概述 11
2.4.1. 半導體的基本性質 11
2.4.2. 半導體的分類 12
2.4.3. 半導體光催化原理及特性 13
2.5. 二氧化鈦概述 15
2.5.1. 二氧化鈦的基本性質 15
2.5.2. 二氧化鈦光催化機制 17
2.5.3. 二氧化鈦的製備與改質 19
2.6. Fenton 反應概述 24
2.7. Photo Fenton-like 反應概述 26
2.8. 近年來相關研究 27
3. 第三章 研究方法概述 30
3.1. 研究架構 30
3.2. 實驗內容與方法 32
3.2.1. 奈米觸媒製備方法 32
3.2.2. 主要實驗設計 38
3.3. 實驗設備與藥品 43
3.3.1. 實驗設備 43
3.3.2. 實驗藥品 44
3.4. 分析項目及方法 45
3.4.1. 奈米觸媒表面分析 45
3.4.2. 水樣分析 46
3.4.3. 當量去除比較 47
4. 第四章 研究結果與討論 48
4.1. 光催化實驗 48
4.1.1. 觸媒表面特性分析 48
4.1.2. 控制實驗 54
4.1.2.1. 染料自然衰退與直接照光分解試驗 55
4.1.2.2. 光觸媒不照光對染料吸附試驗 56
4.1.2.3. 吸附試驗之當量去除比較 60
4.1.3. 主軸實驗 61
4.1.3.1. 光催化降解試驗 61
4.1.3.2. 光催化降解試驗之當量去除比較 65
4.1.3.3. 光電化學試驗之微型反應模組光催化降解試驗 66
4.1.3.4. 微型反應模組光催化降解試驗之當量去除比較 68
4.1.3.5. 光電化學試驗之光電流量測 69
4.2. Photo Fenton-like 實驗 70
4.2.1. Photo Fenton-like 實驗Ⅰ 70
4.2.1.1. 觸媒表面特性分析 70
4.2.1.2. 染料自然衰退與直接照光分解試驗 76
4.2.1.3. 不同 CuMnFeO4 觸媒之效應 77
4.2.1.4. 染料初始濃度之影響 79
4.2.1.5. 觸媒添加劑量之影響 80
4.2.1.6. 過氧化氫添加劑量之影響 81
4.2.1.7. 觸媒再利用之活性 81
4.2.1.8. 溶液初始 pH 值之影響 82
4.2.1.9. 當量去除比較 83
4.2.2. Photo Fenton-like 實驗Ⅱ 87
4.2.2.1. 觸媒表面特性分析 87
4.2.2.2. 不同複合金屬觸媒活性之比較 88
4.2.2.3. 當量去除比較 90
5. 第五章 結論與建議 92
5.1. 結論 92
5.2. 建議 93
參考書目 94
S. 附錄 103
S.1. ICDD PDF 資料庫 103
S.2. 各染料標準曲線 105
S.3. CuMnFeO4 系列觸媒漫反射吸收光譜全譜圖 107
S.4. 複合金屬觸媒漫反射吸收光譜全譜圖 109
中文
圖書
王敏泰(1982)“染料化學”,五洲出版社,頁 1-26。
申洋文和車雲霞(1998)“無機化學叢書”,張青蓮主編, 鈦分類,科學出版社,第八卷,頁 35-44。
李其紘(2013)“原子力顯微鏡的基本介紹”,科學研習,國立台灣科學教育館,第52-5 卷,頁 18-21。
洪連輝、劉立基和魏榮君譯(1997)“固態物理學導論 第七版”,Kittel, C. 原著,“Introduction to Solid State Physics, 7th ed”,高立圖書有限公司,頁 191-194。
高濂、鄭珊和張青紅(2004)“奈米光觸媒”,五南圖書出版股份有限公司,頁 2-30。
黃文魁(2003)“奈米光觸媒之發展與市場應用”,工研院 IEK 化材組,頁 26-29。
楊萬發、翁志聖、余騰耀和林坤讓(1994)“染整業水污染防治技術”,經濟部工業局,頁 27-29,133-180。
鄭信民和林麗娟(2002)“X 光繞射應用簡介”,工業材料雜誌,工業技術研究院,第 181 卷,頁 100-108。

期刊論文
王維甫(2015)“利用實場太陽光搭配氮鑭共改質二氧化鈦光觸媒降解雙酚 A 之研究”,博士學位論文,國立中興大學,頁 127-131。
汪昀昇(2008)“利用過渡金屬 V 改質 TiO2/ITO 光觸媒電極特性及光活性之研究”,碩士學位論文,國立中興大學,頁 48、52、57。
連建智(2010)“利用光催化反應處理染整廢水之可行性研究”,碩士學位論文,國立中興大學,頁 38-39,41-42。
網路資源
放流水標準(2016 修正),從 http://w3.epa.gov.tw/epalaw/docfile/060060.pdf 獲得,行政院環境保護署,依水污染防治法第七條第二項規定訂定之。
其他
周珊珊、黃國豪、廖啟鐘和徐淑芳(2003)“高濃度廢水處理技術實例探討 - Fenton 家族”。「高濃度COD廢水氧化處理技術」研討會發表之論文,臺灣,工業技術研究院環境與安全衛生技術發展中心,頁 1-14。
楊萬發、鄭耀文、楊宜掄、彭衍順、吳靜玫和何曉琪(2003)“印染整理業、農藥業、印刷電路板業、晶圓製造及半導體製造業等四行業別之廢水中特定物質前處理及管理制度評估計畫”,環保專案計畫,國立台灣大學環境工程學研究所,第 4 章,頁 1-58,EPA-92-G104-02-207。
English
Books
Brinker, C. J., and Scherer, G. W. (1990). "CHAPTER 1 - Introduction" Sol-Gel Science, San Diego, Academic Press, pp. xvi-18.
Byrappa, K., and Yoshimura, M. (2001). "2 - History of Hydrothermal Technology" Handbook of Hydrothermal Technology, Norwich, NY, William Andrew Publishing, pp. 53-81.
Dean, J. A. (1973). "Lange's Handbook of Chemistry", New York, McGraw-Hill.
Doede, C. M., and Walker, C. A. (1955). "Photochemical Engineering", New Haven.
Finklea, H. O. (1988). "Titanium Dioxide (TiO2) and Stronium Titanate (SrTiO3)"; Finklea, H. O. Ed., Semiconductor Electrodes, New York, Elsevier: Amsterdam, vol. 55, pp. 43-145.
Gnaser, H., Huber, B., and Ziegler, C. (2004). "Nanocrystalline TiO2 for Photocatalysis"; Nalwa, H. S. Ed., Encyclopedia of Nanoscience and Nanotechnology, American Scinetific Publishers, vol. 6, pp. 505-535.
Jones, A. C., and Hitchman, M. L. (2009). "Chapter 1. Overview of Chemical Vapour Deposition"; Jones, A. C. and Hitchman, M. L. Eds., Chemical Vapour Deposition: Precursors, Processes and Applications, The Royal Society of Chemistry, pp. 1-36.
Lewis, N. S., and Rosenbluth, M. (1989). "Theory of Semiconductor Materials"; Serpone, N. and Pelizzetti, E. Eds., Photocatalysis: Fundamentals and Applications, New York, John Wiley & Sons, pp. 45-121.
Lide, D. R. (2005). "CRC Handbook of Chemistry and Physics, 85th ed" Lide, D. R. Ed., Boca Raton, FL, CRC Press, pp.8-23~8-33.
Livage, J. (2004). "Basic Principles of Sol-Gel Chemistry"; Aegerter, M. A. and Mennig, M. Eds., Sol-Gel Technologies for Glass Producers and Users, Boston, MA, Springer US, pp. 3-14.
Machulek Jr., A., Quina, F. H., Gozzi, F., Silva, V. O., Friedrich, L. C., and Moraes, J. E. F. (2012). "Fundamental Mechanistic Studies of the Photo-Fenton Reaction for the Degradation of Organic Pollutants"; Puzyn, T. and Mostrag-Szlichtyng, A. Eds., Organic Pollutants Ten Years After the Stockholm Convention - Environmental and Analytical Update, InTech, pp. 271-292.
Sakata, T., and Kawai, T. (1983). "Photosynthesis and Photocatalysis with Semiconductor Powders"; Gratzel, M. Ed., Energy Resources through Photochemistry and Catalysis, Academic Press, Inc. , pp. 331-358.
Sakka, S. (2016). "History of the Sol–Gel Chemistry and Technology"; Klein, L., Aparicio, M., and Jitianu, A. Eds., Handbook of Sol-Gel Science and Technology, Cham, Springer International Publishing, pp. 1-27.
Stumm, W. (1992). "Chemistry of the Solid-Water Interface", John Wiley & Sons, Inc., p.347.
Turner, J. C. R. (1981). "An Introduction to the Theory of Catalytic Reactors"; Anderson, J. R. and Boudart, M. Eds., Catalysis: Science and Technology, Berlin, Heidelberg, Springer Berlin Heidelberg, vol. 1, pp. 43-86.

Journal Articles
Aba-Guevara, C. G., Medina-Ramírez, I. E., Hernández-Ramírez, A., Jáuregui-Rincón, J., Lozano-Álvarez, J. A., and Rodríguez-López, J. L. (2017). "Comparison of two synthesis methods on the preparation of Fe, N-Co-doped TiO2 materials for degradation of pharmaceutical compounds under visible light". Ceramics International, vol. 43(6), pp.5068-5079.
Ahmad, A. (1996). "Magnetic, structural, and transport properties of CuMnFeO4 compound". Paper presented at the Metal/Nonmetal Microsystems: Physics, Technology, and Applications, Poland.
Ahmad, R., Ahmad, Z., Khan, A. U., Mastoi, N. R., Aslam, M., and Kim, J. (2016). "Photocatalytic systems as an advanced environmental remediation: Recent developments, limitations and new avenues for applications". Journal of Environmental Chemical Engineering, vol. 4(4, Part A), pp.4143-4164.
Asgharinezhad, M., Eshaghi, A., and Arab, A. (2016). "Fabrication and characterization of optical and electrical properties of vanadium doped titanium dioxide nanostructured thin film". Optik - International Journal for Light and Electron Optics, vol. 127(19), pp.8130-8134.
Avril, L., Bourgeois, S., Marco de Lucas, M. C., Domenichini, B., Simon, P., Addou, F., Boudon, J., Potin, V., and Imhoff, L. (2015). "Thermal stability of Au–TiO2 nanocomposite films prepared by direct liquid injection CVD". Vacuum, vol. 122, Part B, pp.314-320.
Calatayud, J. M., Pardo, P., and Alarcón, J. (2017). "Hydrothermal-mediated synthesis of orange Cr, Sb-containing TiO2 nano-pigments with improved microstructure". Dyes and Pigments, vol. 139, pp.33-41.
Cao, Z., Zhang, J., Zhou, J., Ruan, X., Chen, D., Liu, J., Liu, Q., and Qian, G. (2017). "Electroplating sludge derived zinc-ferrite catalyst for the efficient photo-Fenton degradation of dye". Journal of Environmental Management, vol. 193, pp.146-153.
Childs, L. P., and Ollis, D. F. (1980). "Is photocatalysis catalytic?". Journal of Catalysis, vol. 66(2), pp.383-390.
Cui, Y., Ding, Z., Liu, P., Antonietti, M., Fu, X., and Wang, X. (2012). "Metal-free activation of H2O2 by g-C3N4 under visible light irradiation for the degradation of organic pollutants". Physical Chemistry Chemical Physics, vol. 14(4), pp.1455-1462.
De Laat, J., and Gallard, H. (1999). "Catalytic Decomposition of Hydrogen Peroxide by Fe(III) in Homogeneous Aqueous Solution: Mechanism and Kinetic Modeling". Environmental Science & Technology, vol. 33(16), pp.2726-2732.
De Laat, J., Gallard, H., Ancelin, S., and Legube, B. (1999). "Comparative study of the oxidation of atrazine and acetone by H2O2/UV, Fe(III)/UV, Fe(iii)/H2O2/UV and Fe(II) or Fe(III)/H2O2". Chemosphere, vol. 39(15), pp.2693-2706.
Fenton, H. J. H. (1894). "LXXIII.-Oxidation of tartaric acid in presence of iron". Journal of the Chemical Society, Transactions, vol. 65(0), pp.899-910.
Fox, M. A., and Dulay, M. T. (1993). "Heterogeneous photocatalysis". Chemical Reviews, vol. 93(1), pp.341-357.
Fujishima, A., and Honda, K. (1972). "Electrochemical photolysis of water at a semiconductor electrode". Nature, vol. 238(5358), pp.37-38.
Fujishima, A., Rao, T. N., and Tryk, D. A. (2000). "TiO2 photocatalysts and diamond electrodes". Electrochimica Acta, vol. 45(28), pp.4683-4690.
Garcia-Segura, S., and Brillas, E. (2017). "Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters". Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 31, pp.1-35.
Glaze, W. H., Kang, J. W., and Chapin, D. H. (1987). "The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation". Ozone: Science & Engineering, vol. 9(4), pp.335-352.
Gleick, P. H. (2000). "A look at twenty-first century water resources development". Water International, vol. 25(1), pp.127-138.
Guo, Q., Zhang, Z., Ma, X., Jing, K., Shen, M., Yu, N., Tang, J., and Dionysiou, D. D. (2017). "Preparation of N,F-codoped TiO2 nanoparticles by three different methods and comparison of visible-light photocatalytic performances". Separation and Purification Technology, vol. 175, pp.305-313.
Haber, F., and Weiss, J. (1932). "Über die Katalyse des Hydroperoxydes". Naturwissenschaften, vol. 20(51), pp.948-950.
Haber, F., and Weiss, J. (1934). "The Catalytic Decomposition of Hydrogen Peroxide by Iron Salts". Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences, vol. 147(861), p.332.
Haber, F., and Willstätter, R. (1931). "Unpaarigkeit und Radikalketten im Reaktionsmechanismus organischer und enzymatischer Vorgänge". Berichte der deutschen chemischen Gesellschaft (A and B Series), vol. 64(11), pp.2844-2856.
Hoffmann, M. R., Martin, S. T., Choi, W., and Bahnemann, D. W. (1995). "Environmental applications of semiconductor photocatalysis". Chemical Reviews, vol. 95(1), pp.69-96.
Huang, C. P., Dong, C., and Tang, Z. (1993). "Advanced chemical oxidation: Its present role and potential future in hazardous waste treatment". Waste Management, vol. 13(5), pp.361-377.
Hwang, Y. J., Yang, S., and Lee, H. (2017). "Surface analysis of N-doped TiO2 nanorods and their enhanced photocatalytic oxidation activity". Applied Catalysis B: Environmental, vol. 204, pp.209-215.
Jaeger, C. D., and Bard, A. J. (1979). "Spin trapping and electron spin resonance detection of radical intermediates in the photodecomposition of water at titanium dioxide particulate systems". The Journal of Physical Chemistry, vol. 83(24), pp.3146-3152.
Köferstein, R., Jäger, L., and Ebbinghaus, S. G. (2013). "Magnetic and optical investigations on LaFeO3 powders with different particle sizes and corresponding ceramics". Solid State Ionics, vol. 249–250, pp.1-5.
Khataee, A., Kayan, B., Gholami, P., Kalderis, D., and Akay, S. (2017). "Sonocatalytic degradation of an anthraquinone dye using TiO2-biochar nanocomposite". Ultrasonics Sonochemistry, vol. 39, pp.120-128.
Kwan, W. P., and Voelker, B. M. (2003). "Rates of Hydroxyl Radical Generation and Organic Compound Oxidation in Mineral-Catalyzed Fenton-like Systems". Environmental Science & Technology, vol. 37(6), pp.1150-1158.
Lee, K. T., Chuah, X. F., Cheng, Y. C., and Lu, S. Y. (2015). "Pt coupled ZnFe2O4 nanocrystals as a breakthrough photocatalyst for Fenton-like processes - photodegradation treatments from hours to seconds". Journal of Materials Chemistry A, vol. 3(36), pp.18578-18585.
Lee, K. T., and Lu, S. Y. (2015). "A cost-effective, stable, magnetically recyclable photocatalyst of ultra-high organic pollutant degradation efficiency: SnFe2O4 nanocrystals from a carrier solvent assisted interfacial reaction process". Journal of Materials Chemistry A, vol. 3(23), pp.12259-12267.
Lin, W. C., and Lin, Y. J. (2011). "Effect of vanadium(IV)-doping on the visible light-induced catalytic activity of titanium dioxide catalysts for methylene blue degradation". Environmental Engineering Science, vol. 29(6), pp.447-452.
Litter Marta, I., and Slodowicz, M. (2017). An overview on heterogeneous Fenton and photoFenton reactions using zerovalent iron materials Journal of Advanced Oxidation Technologies, Vol. 20, pp. 1-19.
Martin, S. T., Herrmann, H., Choi, W., and Hoffmann, M. R. (1994). "Time-resolved microwave conductivity. Part 1.-TiO2 photoreactivity and size quantization". Journal of the Chemical Society, Faraday Transactions, vol. 90(21), pp.3315-3322.
Martin, S. T., Herrmann, H., and Hoffmann, M. R. (1994). "Time-resolved microwave conductivity. Part 2.-Quantum-sized TiO2 and the effect of adsorbates and light intensity on charge-carrier dynamics". Journal of the Chemical Society, Faraday Transactions, vol. 90(21), pp.3323-3330.
Munter, R. (2001). "Advanced oxidation processes - current status and prospects". Proceedings of the Estonian Academy of Sciences. Chemistry, vol. 50, pp.59-80.
Muruganandham, M., Suri, R. P. S., Sillanpää, M., Wu, J. J., Ahmmad, B., Balachandran, S., and Swaminathan, M. (2014). "Recent developments in heterogeneous catalyzed environmental remediation processes". Journal of Nanoscience and Nanotechnology, vol. 14(2), pp.1898-1910.
Nasirian, M., Bustillo-Lecompte, C. F., and Mehrvar, M. (2017). "Photocatalytic efficiency of Fe2O3/TiO2 for the degradation of typical dyes in textile industries: Effects of calcination temperature and UV-assisted thermal synthesis". Journal of Environmental Management, vol. 196, pp.487-498.
Ohko, Y., Tryk, D. A., Hashimoto, K., and Fujishima, A. (1998). "Autoxidation of acetaldehyde initiated by TiO2 photocatalysis under weak UV illumination". The Journal of Physical Chemistry B, vol. 102(15), pp.2699-2704.
Okamoto, K.-i., Yamamoto, Y., Tanaka, H., Tanaka, M., and Itaya, A. (1985). "Heterogeneous photocatalytic decomposition of phenol over TiO2 powder". Bull. Chem. Soc. Jpn., vol. 58(7), pp.2015-2022.
Pang, H., Li, Y., Guan, L., Lu, Q., and Gao, F. (2011). "TiO2/Ni nanocomposites: Biocompatible and recyclable magnetic photocatalysts". Catalysis Communications, vol. 12(7), pp.611-615.
Priyanka, K. P., Revathy, V. R., Rosmin, P., Thrivedu, B., Elsa, K. M., Nimmymol, J., Balakrishna, K. M., and Varghese, T. (2016). "Influence of La doping on structural and optical properties of TiO2 nanocrystals". Materials Characterization, vol. 113, pp.144-151.
Suri, R. P. S., Liu, J., Hand, D. W., Crittenden, J. C., Perram, D. L., and Mullins, M. E. (1993). "Heterogeneous photocatalytic oxidation of hazardous organic contaminants in water". Water Environment Research, vol. 65(5), pp.665-673.
Tian, Z., Yu, N., Cheng, Y., Wang, Z., Chen, Z., and Zhang, L. (2017). "Hydrothermal synthesis of graphene/TiO2/CdS nanocomposites as efficient visible-light-driven photocatalysts". Materials Letters, vol. 194, pp.172-175.
Walling, C., and Goosen, A. (1973). "Mechanism of the ferric ion catalyzed decomposition of hydrogen peroxide. Effect of organic substrates". Journal of the American Chemical Society, vol. 95(9), pp.2987-2991.
Wang, L., Zhang, C., Gao, F., Mailhot, G., and Pan, G. (2017). "Algae decorated TiO2/Ag hybrid nanofiber membrane with enhanced photocatalytic activity for Cr(VI) removal under visible light". Chemical Engineering Journal, vol. 314, pp.622-630.
Wang, W. Y., and Ku, Y. (2007). "Effect of solution pH on the adsorption and photocatalytic reaction behaviors of dyes using TiO2 and Nafion-coated TiO2". Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 302(1–3), pp.261-268.
Wu, J., Pu, W., Yang, C., Zhang, M., and Zhang, J. (2013). "Removal of benzotriazole by heterogeneous photoelectro-Fenton like process using ZnFe2O4 nanoparticles as catalyst". Journal of Environmental Sciences, vol. 25(4), pp.801-807.
Xu, L., and Wang, J. (2012). "Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient Fenton-Like heterogeneous catalyst for degradation of 4-chlorophenol". Environmental Science & Technology, vol. 46(18), pp.10145-10153.
Xu, T., Zhu, R., Zhu, G., Zhu, J., Liang, X., Zhu, Y., and He, H. (2017). "Mechanisms for the enhanced photo-Fenton activity of ferrihydrite modified with BiVO4 at neutral pH". Applied Catalysis B: Environmental, vol. 212, pp.50-58.
Yang, X., Chen, W., Huang, J., Zhou, Y., Zhu, Y., and Li, C. (2015). "Rapid degradation of methylene blue in a novel heterogeneous Fe3O4 @rGO@TiO2-catalyzed photo-Fenton system". Scientific Reports, vol. 5, p.10632.
Yao, Y., Qin, J., Cai, Y., Wei, F., Lu, F., and Wang, S. (2014). "Facile synthesis of magnetic ZnFe2O4–reduced graphene oxide hybrid and its photo-Fenton-like behavior under visible iradiation". Environmental Science and Pollution Research, vol. 21(12), pp.7296-7306.
Yeganeh, M., Shahtahmasebi, N., Kompany, A., Karimipour, M., Razavi, F., Nasralla, N. H. S., and Šiller, L. (2017). "The magnetic characterization of Fe doped TiO2 semiconducting oxide nanoparticles synthesized by sol–gel method". Physica B: Condensed Matter, vol. 511, pp.89-98.
Zafiriou, O. C., Joussot-Dubien, J., Zepp, R. G., and Zika, R. G. (1984). "Photochemistry of natural waters". Environmental Science & Technology, vol. 18(12), pp.358A-371A.
Zelekew, O. A., Kuo, D.-H., Yassin, J. M., Ahmed, K. E., and Abdullah, H. (2017). "Synthesis of efficient silica supported TiO2/Ag2O heterostructured catalyst with enhanced photocatalytic performance". Applied Surface Science, vol. 410, pp.454-463.
Zepp, R. G. (1988). "Factors affecting the photochemical treatment of hazardous waste". Environmental Science & Technology, vol. 22(3), pp.256-257.
Zhao, W., Liu, N., Wang, H., and Mao, L. (2017). "Sacrificial template synthesis of core-shell SrTiO3/TiO2 heterostructured microspheres photocatalyst". Ceramics International, vol. 43(6), pp.4807-4813.
Zhou, B., Zhao, X., Liu, H., Qu, J., and Huang, C. P. (2010). "Visible-light sensitive cobalt-doped BiVO4 (Co-BiVO4) photocatalytic composites for the degradation of methylene blue dye in dilute aqueous solutions". Applied Catalysis B: Environmental, vol. 99(1–2), pp.214-221.

Electronic Resources
Colour IndexTM Online. (2016). from www.colour-index.com
Others
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top