跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 01:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖佩瑄
研究生(外文):Pei-Hsuan Liao
論文名稱:結合暗醱酵細菌與光合紫色不含硫細菌進行共醱酵產氫試驗
論文名稱(外文):Hydrogen production by co-culture of dark-fermentation bacteria and photosynthetic purple non-sulfur bacteria
指導教授:洪俊雄洪俊雄引用關係
指導教授(外文):Chun-Hsiung Hung
口試委員:張怡塘張育傑
口試委員(外文):Yi-tang ChangYu-jie Chang
口試日期:2017-06-08
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:116
中文關鍵詞:生物產氫共醱酵Clostridium pasteurianumRhodopseudomonas palustris
外文關鍵詞:bio-hydrogenco-culture fermentationClostridium pasteurianumRhodopseudomonas palustris
相關次數:
  • 被引用被引用:0
  • 點閱點閱:381
  • 評分評分:
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:0
暗醱酵細菌以及光醱酵紫色不含硫細菌皆能夠在厭氧條件下利用有機物來產生氫氣,差別僅在於是否提供照光,尤其是紫色不含硫細菌可能可以直接利用暗醱酵細菌醱酵後所產生的酸性代謝副產物(揮發性脂肪酸)來進行光醱酵產氫,因此整合暗與光醱酵之單槽式暗光醱酵系統已被認為是一種新穎的能源再利用方式。
為測試整合暗與光醱酵之單槽式系統之表現,本研究選用暗醱酵菌株Clostridium pasteurianum CH5,此菌株利用葡萄糖醱酵產氫後主要代謝副產物為乙酸及丁酸。另一方面紫色不含硫細菌則選用能夠利用乙酸及丁酸行光醱酵產氫的菌株C6以及G11,兩菌株皆屬於Rhodopseudomonas palustris。C6以及G11以1 g L-1丁酸當作單一碳源時有最大氫氣累積量產生,分別是208.8及183.1 mL H2 L-1 culture,其基質轉換率分別為0.98和0.82 mol H2 mol-1 butyrate。
由於在前人研究中,暗醱酵細菌與紫色不含硫細菌混合共醱酵產氫之生長最佳生長條件並未被研究仔細,故本研究先分別測試菌株在穩定生長期以及對數生長期之下醱酵產氫試驗。初始條件為CH5以1:1(v/v)分別與C6和G11分別進行共醱酵產氫試驗,以15 g L-1 glucose為單一碳源,LED燈照度設定於6,000-7,000 lux,恆溫培養在30°C,並以轉速120 rpm震盪。結果顯示,在對數生長期之下所進行的共醱酵反應可以取得較高的基質轉換率,CH5+C6和CH5+G11分別為2.54和1.74 mol H2 mol-1 glucose。另一方面,若在穩定生長期之下的混合生長則可有較高的氫氣累積產量1485 mL H2 L-1 culture(CH5+C6)。C6為本研究中較不會因為生長期選用不同而大幅影響共醱酵產氫之紫色不含硫細菌,且其醱酵產氫能力比G11佳,因此後續研究皆以CH5+C6進行。
在批次實驗設計中,對數生長期菌株能取得較高的基質轉換率,反應約60小時後產氫氣表現趨近平緩;穩定生長期菌株能夠產生較高氫氣累積產量,反應可持續產氣100小時。本研究目的為獲取最大氫氣累積產量,故選擇穩定生長期之CH5+C6進行後續實驗。
為探討光照對於混合生長之影響,本研究透過遮光罩之設置來探討是否能提供兩種微生物各自偏好之醱酵環境。無遮光(百分之百照光)之厭氧暗醱酵CH5相較百分之百遮光(無照光)之厭氧暗醱酵CH5少26%最終氫氣累積產量,推測光照有可能會影響CH5的代謝途徑,理論上暗醱酵產氫的機制中並不需要提光光能,僅需要有機物質以及適合細菌生長之環境即可進行醱酵產氫,然而並無明確研究指出光照是否會改變暗醱酵細菌的代謝途徑,此推論尚經由其他實驗來釐清。
百分之百遮光(無照光)之光醱酵C6比無遮光(百分之百照光)之光醱酵C6最終氫氣累積產量少55%,產氣表現中69%為二氧化碳,僅16%為氫氣,同時反應多消耗了4.56 g L-1的葡萄糖,推測百分之百遮光(無照光)之光醱酵C6因沒能有足夠的光能去驅動細胞膜上的電子傳遞鏈,故無法使細胞內累積ATP以提供給細胞生長,更沒有多餘ATP供給給固氮酶去合成氫氣。
百分之五十遮光的CH5+C6比無遮光(百分之百照光)之CH5+C6提升67%氫氣累積產量,比百分之百遮光(無照光)之CH5+C6提升588%氫氣累積產量。百分之五十遮光的CH5+C6和百分之百遮光(無照光)之CH5+C6皆可去除基質中60%以上的葡萄糖,無遮光(百分之百照光)之CH5+C6與百分之五十照光的CH5+C6產氣組成以氫氣為主,而百分之百遮光(無照光)之CH5+C6產氣組成則是以二氧化碳為主。推測百分之百遮光(無照光)之CH5+C6內,CH5行暗醱酵產氫,而C6因無足夠光能推動電子傳遞,故無法順利進行光醱酵反應,使得其氣體組成以二氧化碳為主。百分之五十遮光CH5+C6營造適合兩菌株醱酵產氫之環境,成功提升最終氫氣累積產量達1581 mL H2 L-1 culture,去除基質中61%的葡萄糖,且降解26% sCOD,其基質轉換率為1.309 mol H2 mol-1 glucose。
Conversions of organic substrates to biohydrogen through separated dark-fermentation or photo- fermentation are both being recognized as promising clean energy production techniques. With or without illumination, both fermentations could produce hydrogen gas under anaerobic condition. Therefore, it is possible to enforce dark- and photo-fermentations to occur in the same reactor and it might have advantages over separated fermentation by reducing overall reactor volume since hydrogen-producing PNSB (Photosynthetic purple non-sulfur bacteria) could directly utilize the VFAs formed by dark fermentation.
With this motivation, experiments of separated fermentation mode were established. CH5 is a strain of dark-fermentation bacteria (DFB), Clostridium pasteurianum, was found to have optimally cumulative amount of hydrogen when fed with 15 g L-1 glucose and it also produced significant amount of butyrate and acetic. Selecting two PNSB were C6 and G11, Rhodopseudomonas palustris, utilize not only butyrate but also acetate for bio-hydrogen. In the same time, when butyrate was used as sole carbon source, the two isolated PNSB strains could successfully produce 208.8 and 183.1 mL H2 L-1 culture (1 g/L butyric acid), its hydrogen yield were 0.82 and 0.98 mol H2 mol-1 butyrate, respectively.
The growth status of hydrogen-producing microorganism in the time of combination was still not clearly explored. In this study, the stable growth period and the logarithmic growth phase of the strain were selected respectively. The anaerobic bioreactor were incubated at 30°C, at 120 rpm on an incubating shaker under 6-7 klux of light illumination using LED lamps. The inoculate at DFB/PNSB ratio were 1:1 (v/v) in co-culture medium (15 g/L glucose). There are maximum hydrogen yield 2.54 and 1.74 mol H2 mol-1 glucose were obtained by log phase of CH5+C6 and CH5+G11, respectively. Stationary phase of CH5+C6 yield maximum accumulative hydrogen production of 1485 mL H2 L-1 culture. C6 is better than G11 go further co-culture with CH5 by shelter of bioreactor experiment.
Log phase test has the higher hydrogen yield, after culture 60 hours gas performance was approaching flat. Stationary phase test has the highest accumulative hydrogen production, it could continue to produce gas for 100 hours. For acquisition more accumulative hydrogen production, stationary phase of CH5+C6 got on subsequent study.
In order to investigate the effect of light on co-culture fermentation, the shelter of bioreactor by differ cover area in this study. Through differ bioreactor cover area look forward to creating different environment for bacteria co-fermentation. 0% shelter of CH5 has 26% less accumulative hydrogen production than 100% shelter of CH5, it need more study and test to provide whether light supply can change the metabolism of CH5. 100% shelter of C6 has 55% less accumulative hydrogen production and use up more 4.56 g L-1 glucose than 0% shelter of C6. The 69% of gas composition was carbon dioxide, but only 16% was hydrogen produced by 100% shelter of C6. It speculated the 100% shelter of C6 that without light offering energy to promote electronic chain on membrane of PNSB, there are no enough ATP for cell growth not to mention for bio-hydrogen produced.
50% shelter of CH5+C6 promoted 67% accumulative hydrogen production than 0% shelter of CH5+C6, it also upgraded 588% accumulative hydrogen production than 100% shelter of CH5+C6. It could remove 60% glucose in 50% shelter of CH5+C6 and 100% shelter of CH5+C6. Main gas composition in 0% shelter of CH5+C6 and 50% shelter of CH5+C6 were hydrogen, in 100% shelter of CH5+C6 was carbondioxide.
It is success for shelter of bioreactor to promote bio-hydrogen of co-culture fermentation. The 50% shelter of CH5+C6 consumed 26% sCOD, the accumulative hydrogen production of 1581 mL H2 L-1 culture, and the hydrogen yield was 1.309 mol H2 mol-1 glucose.
摘要 i
ABSTRACT iii
目錄 v
表目錄 viii
圖目錄 x
第一章 前言 1
第一節 研究緣起及目的 1
第二節 研究架構概述 2
第二章 文獻回顧 3
第一節 氫能源發展歷史 3
一、 能源沿革 3
二、 化石能源對於環境的衝擊 6
三、 氫能源 7
四、 永續經營 10
第二節 生物氫能 11
一、 生質氫能(Biohydrogen) 11
二、 產氫微生物 17
三、 綜觀各生物氫能優勢 18
第三節 暗醱酵產氫微生物 20
一、 暗醱酵產氫微生物 20
二、 暗醱酵產氫微生物- Clostridium sp. 20
三、 Clostridium sp.利用不同基質醱酵 22
第四節 光醱酵產氫微生物 24
一、 光醱酵產氫微生物 24
二、 光醱酵產氫微生物- Rhodopseudomonas sp. 24
三、 Rhodopseudomonas sp.利用不同基質醱酵 26
第五節 整合暗與光醱酵系統程序 28
一、 單槽式共醱酵產氫 30
二、 多槽式醱酵產氫 32
第六節 影響醱酵產氫系統因子 34
一、 影響暗醱酵產氫因子 34
二、 影響光合產氫因子 37
三、 影響混合醱酵系統因子 40
第七節 文獻閱讀心得 43
第三章 材料與方法 44
第一節 實驗架構 44
第二節 實驗設備 45
第三節 實驗方法 46
一、 植種來源以及培養條件 46
二、 遮光罩製備 50
第四節 分析分法 51
一、 樣本前處理 51
二、 去氧核醣核酸(Deoxyribonucleic Acid, DNA)萃取 51
三、 去氧核醣核酸(Deoxyribonucleic Acid, DNA)濃度測定 51
四、 微生物菌群結構分析 52
第五節 水質分析 55
一、 樣本採集及保存 55
二、 溶解性化學需氧量(Soluble Chemical Oxygen Demand, sCOD) 55
三、 酚-硫酸法(Phenol-Sulfuric Acid Method) 56
四、 酸鹼值測定(pH) 57
五、 胞子染色法(Endospore Staining) 57
六、 O.D.(Optical Density)值與細胞乾重 58
七、 氣體總累積量測定及氣體組成分析 59
八、 揮發性脂肪酸測定 62
九、 光照強度測量 64
第六節 尋找暗光醱酵共同培養最佳化之批次實驗設計 65
一、 菌株生長特性 65
二、 紫色不含硫細菌利用不同基質產氫表現 65
三、 不同生長期菌株進行共醱酵產氫表現 66
四、 遮光罩對於共醱酵產氫表現影響 67
第四章 結果與討論 68
第一節 菌株菌種分析 68
第二節 菌株生長特性 70
一、 生長速率之測定 70
二、 不同生長期菌株於預培養基中之生長曲線 73
三、 CH5之胞子染色 75
第三節 紫色不含硫細菌利用不同基質產氫表現 77
第四節 不同生長期菌株進行共醱酵產氫表現 82
一、 穩定生長期之菌株進行醱酵產氫表現 83
二、 對數生長期之菌株進行醱酵產氫表現 87
三、 不同生長期菌株於共醱酵產氫之綜合探討 90
第五節 遮光罩對於共醱酵產氫之影響 93
一、 光罩設備與生物反應器結合 93
二、 遮光罩對於共醱酵產氫之影響 94
第五章 結論與建議 101
第一節 結論 101
第二節 建議 103
參考文獻 104
中文文獻
TechNews (2017) 2017年PERC電池產能增至 25GW,產出總量倍增. In.

吳晟 (2004) 明日綠色能源之星─氫能源. URL http://energymonthly.tier.org.tw/outdatecontent.asp?ReportIssue=200402&Page=33

吳耿東 (2007),生質能概論,林業研究專訊 ,14卷3期:,第5-9頁。

廖家榮 (2009) 微觀世界-發現氫元素. URL
http://140.112.166.87/blog/?p=1087

林祐生, and 李文乾 (2009) 何謂生質酒精. URL
https://scitechvista.nat.gov.tw/zh-tw/articles/C/0/9/10/1/1190.htm

梁志銘 (2003),以分子生物方法探討活性污泥中紫色不含硫光和作用細菌。碩士學位,國立中興大學。

橘川武郎 (2015) 氫氣革命,改變能源結構—氫能源的應用之路. URL http://www.nippon.com/hk/currents/d00167/?pnum=1

科學大解碼團隊 (2007) 環保再生能源–地熱能. URL https://scitechvista.nat.gov.tw/zh-tw/Video/C/4/10/1/520.htm

經濟部能源局 (2009) 再生能源發展條例。

經濟部能源局 (2016) 新能源政策。

行政院環境保護署 (2008) 水之氫離子濃度指數(pH值)測定方法 (NIEA W424.52A)。

行政院環境保護署 (2009) 水中化學需氧量檢測方法 - 密閉式重鉻酸鉀回流法 (NIEA W517.52B)。

許淑娟 (2006),不同能量厭氧培養下紫色不含硫光合作用細菌除磷能力之探討。碩士論文,國立中興大學。

鄭景鴻 (2012),暗醱酵產氫系統指標微生物組成及功能鑑定分析。博士學位,國立中興大學。

陳冠宇 (2016),結合暗醱酵與光醱酵程序之共同產氫試驗。碩士論文,國立中興大學。

陳欣沛 (2016) 應用生命週期評估方法探討水力發電. URL http://highscope.ch.ntu.edu.tw/wordpress/?p=73321

陳正昇 (2010) 核分裂(Nuclear fission). URL http://highscope.ch.ntu.edu.tw/wordpress/?p=17756

黃柄橓 (2016) 淺談氫能源技術發展. URL http://www.energyedu.tw/column.php?action=detail&cid=3&id=11

英文文獻
Akkerman, I., Janssen, M., Rocha, J., and Wijffels, R. H. (2002) Photobiological hydrogen production: photochemical efficiency and bioreactor design. International Journal of Hydrogen Energy 27: 1195-1208.

Argun, H., and Kargi, F. (2010a) Photo-fermentative hydrogen gas production from dark fermentation effluent of ground wheat solution: Effects of light source and light intensity. International Journal of Hydrogen Energy 35: 1595-1603.

Argun, H., and Kargi, F. (2010b) Bio-hydrogen production from ground wheat starch by continuous combined fermentation using annular-hybrid bioreactor. International Journal of Hydrogen Energy 35: 6170-6178.

Argun, H., and Kargi, F. (2011) Bio-hydrogen production by different operational modes of dark and photo-fermentation: An overview. International Journal of Hydrogen Energy 36: 7443-7459.

Argun, H., Kargi, F., and Kapdan, I. (2008) Light fermentation of dark fermentation effluent for bio-hydrogen production by different Rhodobacter species at different initial volatile fatty acid (VFA) concentrations. International Journal of Hydrogen Energy 33: 7405-7412.

Aryal, S. (2015) Endospore Staining- Principle, Reagents, Procedure and Result. In.

Asada, Y., Tokumoto, M., Aihara, Y., Oku, M., Ishimi, K., Wakayama, T., Miyake, J., Tomiyama, M., and Kohno, H. (2006) Hydrogen production by co-cultures of Lactobacillus and a photosynthetic bacterium, Rhodobacter sphaeroides RV. International Journal of Hydrogen Energy 31: 1509-1513.

Barbosa, M. J., Rocha, J. M. S., Tramper, J., and Wijffels, R. H. (2001) Acetate as a carbon source for hydrogen production by photosynthetic bacteria. Journal of Biotechnology 85: 25-33.

Basak, N., and Das, D. (2007) The Prospect of Purple Non-Sulfur (PNS) Photosynthetic Bacteria for Hydrogen Production: The Present State of the Art. 23: 31-42.

Basak, N., Jana, A. K., Das, D., and Saikia, D. (2014) Photofermentative molecular biohydrogen production by purple-non-sulfur (PNS) bacteria in various modes: The present progress and future perspective. International Journal of Hydrogen Energy 39: 6853-6871.

Berntner, L. B., Peccia, J., and Zimmerman, J. B. (2010) Challenges in Developing Biohydrogen as a Sustainable Energy Source: Implications for a Research Agenda. 44: 2243-2254.

Chen, C.-Y., Lee, C.-M., and Chang, J.-S. (2006) Feasibility study on bioreactor strategies for enhanced photohydrogen production from Rhodopseudomonas palustris WP3-5 using optical-fiber-assisted illumination systems. International Journal of Hydrogen Energy 31: 2345–2355.

Chen, C., Lu, W., Wu, J., and Chang, J. (2007) Enhancing phototrophic hydrogen production of Rhodopseudomonas palustris via statistical experimental design. International Journal of Hydrogen Energy 32: 940-949.

Chen, W.-M., Kim, H., and Yamaguchi, H. (2014) Renewable energy in eastern Asia: Renewable energy policy review and comparative SWOT analysis for promoting renewable energy in Japan, South Korea, and Taiwan. Energy Policy 74: 319-329.

Cheng, J., Ding, L., Xia, A., Lin, R., Li, Y., Zhou, J., and Cen, K. (2015) Hydrogen production using amino acids obtained by protein degradation in waste biomass by combined dark- and photo-fermentation. Bioresource Technology 179: 13-19.

Cheng, J., Su, H., Zhou, J., Song, W., and Cen, K. (2011) Hydrogen production by mixed bacteria through dark and photo fermentation. International Journal of Hydrogen Energy 36: 450-457.

Cheong, D., and Hansen, C. (2006) Acidogenesis characteristics of natural, mixed anaerobes converting carbohydrate-rich synthetic wastewater to hydrogen. Process Biochemistry 41: 1736-1745.

Chin, H. L., Chen, Z. S., and Chou, C. P. (2003) Fedbatch operation using Clostridium acetobutylicum suspension culture as biocatalyst for enhancing hydrogen production. Biotechnology progress 19: 383-388.

Chyi-How Lay, B. S., Ya-Chun Cheng, Chin-Chao Chen And Chiu-Yue Lin (2012) Effect of pH switch operation on anaerobic hydrogen production. 8.

Collet, C., Adler, N., Schwitzguébel, J.-P., and Péringer, P. (2004) Hydrogen production by Clostridium thermolacticum during continuous fermentation of lactose. International Journal of Hydrogen Energy 29: 1479-1485.

Cooper, C. D., and Alley, F. C. (2006) Air Pollution Control. 台北, 台灣.

Dabrock, B., Bahl, H., and Gottschalk, G. (1992) Parameters Affecting Solvent Production by Clostridium pasteurianum. APPLIED AND ENVIRONMENTAL MICROBIOLOGY 58: 1233-1239.

Das, D., and Veziroǧlu, T. N. (2001) Hydrogen production by biological processes: a survey of literature. International Journal of Hydrogen Energy 26: 13-28.

Ding, J., Liu, B.-F., Ren, N.-Q., Xing, D.-F., Guo, W.-Q., Xu, J.-F., and Xie, G.-J. (2009) Hydrogen production from glucose by co-culture of Clostridium Butyricum and immobilized Rhodopseudomonas faecalis RLD-53. International Journal of Hydrogen Energy 34: 3647-3652.

DSMZ (2008) PYG MEDIUM (B). URL https://www.dsmz.de/microorganisms/medium/pdf/DSMZ_Medium1139.pdf

Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F. (1956) Colorimetric Method for Determination of Sugars and Related Substances.

Dutta, S. (2014) A review on production, storage of hydrogen and its utilization as an energy resource. Journal of Industrial and Engineering Chemistry 20: 1148-1156.

Dworkin, M., and Gutnick, D. (2012) Sergei Winogradsky: a founder of modern microbiology and the first microbial ecologist. FEMS microbiology reviews 36: 364-379.

Energy, B. (2016) BP Energy Outlook to 2035. BP Energy.

Evvyernie, D., Morimoto, K., Karita, S., Kimura, T., Sakka, K., and Ohmiya, K. (2001) Conversion of chitinous wastes to hydrogen gas by Clostridium paraputrificum M-21. Journal of Bioscience and Bioengineering 91: 339-343.

Fang, H. H. P., Zhu, H., and Zhang, T. (2006) Phototrophic hydrogen production from glucose by pure and co-cultures of Clostridium butyricum and Rhodobacter sphaeroides. International Journal of Hydrogen Energy 31: 2223-2230.

Fascetti, E., D'addario, E., Todini, O., and Robertiello, A. (1998) Photosynthetic hydrogen evolution with volatile organic acids derived from the fermentation of source selected municipal solid wastes. International Journal of Hydrogen Energy 23: 753-760.

Ferchichi, M., Crabbe, E., Hintz, W., Gil, G.-H., and Almadidy, A. (2005) Influence of Culture Parameters on Biological Hydrogen Production by Clostridium saccharoperbutylacetonicum ATCC 27021. World Journal of Microbiology and Biotechnology 21: 855-862.

Fiβler, J., Schirra, C., Kohring, G.-W., and Giffhorn, F. (1994) Hydrogen production from aromatic acids by Rhodopseudomonas palustris. Applied Microbiology and Biotechnology 41: 395-399.

Ghosh, S., Dairkee, U. K., Chowdhury, R., and Bhattacharya, P. (2016) Hydrogen from food processing wastes via photofermentation using Purple Non-sulfur Bacteria (PNSB) – A review. Energy Conversion and Management.

Gorwa, M.-F., Croux, C., and Soucaille, P. (1996) Molecular characterization and transcriptional analysis of the putative hydrogenase gene of Clostridium acetobutylicum ATCC 824. J Bacteriol 178: 2668-2675.

Guo, X. M., Trably, E., Latrille, E., Carrère, H., and Steyer, J.-P. (2010) Hydrogen production from agricultural waste by dark fermentation: A review. International Journal of Hydrogen Energy 35: 10660-10673.

Hallenbeck, P. C. (2005) Fundamentals of the fermentative production of hydrogen. Water Science and Technology 52: 21-29.

Hallenbeck, P. C., and Ghosh, D. (2009) Advances in fermentative biohydrogen production: the way forward? Trends in Biotechnology 27: 287-297.

Hillmer, P., and Gest, H. (1977) H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: H2 production by growing cultures. J Bacteriol 129: 724-731.

Holladay, J. D., Hu, J., King, D. L., and Wang, Y. (2009) An overview of hydrogen production technologies. Catalysis Today 139: 244-260.

Hu, H., Li, H., and Xu, X. (2008) Alternative cold response modes in Chlorella (Chlorophyta, Trebouxiophyceae) from Antarctica. Phycologia 47: 28-34.

Igarashi, R. Y. (2003) Nitrogen Fixation: The Mechanism of the Mo-Dependent Nitrogenase. Critical Reviews in Biochemistry and Molecular Biology 38: 351-384.

Jayasinghearachchi, H. S., Singh, S., Sarma, P. M., Aginihotri, A., and Lal, B. (2010) Fermentative hydrogen production by new marine Clostridium amygdalinum strain C9 isolated from offshore crude oil pipeline. International Journal of Hydrogen Energy 35: 6665-6673.

Jo, J. H., and Kim, W. (2016) Carbon material distribution and flux analysis under varying glucose concentrations in hydrogen-producing Clostridium tyrobutyricum JM1. J Biotechnol 228: 103-111.

Kadafa, A. A. (2012) Environmental Impacts of Oil Exploration and Exploitation in the Niger Delta of Nigeria. 12.

Kapdan, I. K., and Kargi, F. (2006) Bio-hydrogen production from waste materials. Enzyme and Microbial Technology 38: 569-582.

Kars, G., Gunduz, U., Yucel, M., Turker, L., and Eroglu, I. (2006) Hydrogen production and transcriptional analysis of nifD, nifK and hupS genes in Rhodobacter sphaeroides O.U.001 grown in media with different concentrations of molybdenum and iron. International Journal of Hydrogen Energy 31: 1536-1544.

Khanal, S. (2003) Biological hydrogen production: effects of pH and intermediate products. International Journal of Hydrogen Energy.

Koku, H., Eroğlu, İ., Gündüz, U., Yücel, M., and Türker, L. (2002) Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides. International Journal of Hydrogen Energy 27: 1315-1329.

Lang, F. S., and Oesterhelt, D. (1989) Microaerophilic growth and induction of the photosynthetic reaction center in Rhodopseudomonas viridis. J Bacteriol 171: 2827-2834.

Laocharoen, S., and Reungsang, A. (2014) Isolation, characterization and optimization of photo-hydrogen production conditions by newly isolated Rhodobacter sphaeroides KKU-PS5. International Journal of Hydrogen Energy 39: 10870-10882.

Lay, C.-H., Wu, J.-H., Hsiao, C.-L., Chang, J.-J., Chen, C.-C., and Lin, C.-Y. (2010) Biohydrogen production from soluble condensed molasses fermentation using anaerobic fermentation. International Journal of Hydrogen Energy 35: 13445-13451.

Lee, J.-Y. (2012) Effects of pH and Carbon Sources on Biohydrogen Production by Co-Culture of Clostridium butyricum and Rhodobacter sphaeroides. Journal of Microbiology and Biotechnology 22: 400-406.

Lee, J. Z., Klaus, D. M., Maness, P.-C., and Spear, J. R. (2007) The effect of butyrate concentration on hydrogen production via photofermentation for use in a Martian habitat resource recovery process. International Journal of Hydrogen Energy 32: 3301-3307.

Lee, Y. J., Miyahara, T., and Noike, T. (2002) Effect of pH on microbial hydrogen fermentation. Journal of Chemical Technology and Biotechnology 77: 694-698.

Lin, C. Y., and Lay, C. H. (2004) Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora. International Journal of Hydrogen Energy 29: 41-45.

Liu, B.-F., Ren, N.-Q., Tang, J., Ding, J., Liu, W.-Z., Xu, J.-F., Cao, G.-L., Guo, W.-Q., and Xie, G.-J. (2010) Bio-hydrogen production by mixed culture of photo- and dark-fermentation bacteria. International Journal of Hydrogen Energy 35: 2858-2862.

Lo, Y.-C., Chen, C.-Y., Lee, C.-M., and Chang, J.-S. (2010) Sequential dark–photo fermentation and autotrophic microalgal growth for high-yield and CO2-free biohydrogen production. International Journal of Hydrogen Energy 35: 10944-10953.

Lo, Y.-C., Chen, C.-Y., Lee, C.-M., and Chang, J.-S. (2011) Photo fermentative hydrogen production using dominant components (acetate, lactate, and butyrate) in dark fermentation effluents. International Journal of Hydrogen Energy 36: 14059-14068.

Long, S., Jones, D. T., and Woods, D. R. (1984) Initiation of solvent production, clostridial stage and endospore formation in Clostridium acetobutylicum P262. Applied Microbiology and Biotechnology 20: 256-261.

Lu, Y., Chi, X., Li, Z., Yang, Q., Li, F., Liu, S., Gan, Q., and Qin, S. (2010) Isolation and characterization of a stress-dependent plastidial Δ12 fatty acid desaturase from the Antarctic microalga Chlorella vulgaris NJ-7. Lipids 45: 179-187.

Manzano-Agugliaro, F., Alcayde, A., Montoya, F. G., Zapata-Sierra, A., and Gil, C. (2013) Scientific production of renewable energies worldwide: An overview. Renewable and Sustainable Energy Reviews 18: 134-143.

Marin, G. D., Naterer, G. F., and Gabriel, K. (2010) Rail transportation by hydrogen vs. electrification – Case study for Ontario Canada, I: Propulsion and storage. International Journal of Hydrogen Energy 35: 6084-6096.

Masset, J., Hiligsmann, S., Hamilton, C., Beckers, L., Franck, F., and Thonart, P. (2010) Effect of pH on glucose and starch fermentation in batch and sequenced-batch mode with a recently isolated strain of hydrogen-producing Clostridium butyricum CWBI1009. International Journal of Hydrogen Energy 35: 3371-3378.

Mathews, J., and Wang, G. (2009) Metabolic pathway engineering for enhanced biohydrogen production. International Journal of Hydrogen Energy 34: 7404-7416.

McKinlay, J. B., and Harwood, C. S. (2011) Calvin cycle flux, pathway constraints, and substrate oxidation state together determine the H2 biofuel yield in photoheterotrophic bacteria. MBio 2.

Mosey, F. E. (1983) Mathematical Modelling of the Anaerobic Digestion Process: Regulatory Mechanisms for the Formation of Short-Chain Volatile Acids from Glucose. Water Science and Technology 15: 209-232.

Mu, Y., Zheng, X., Yu, H., and Zhu, R. (2006) Biological hydrogen production by anaerobic sludge at various temperatures. International Journal of Hydrogen Energy 31: 780-785.

Nath, K., and Das, D. (2004) Improvement of fermentative hydrogen production: various approaches. Appl Microbiol Biotechnol 65: 520-529.

Ni, M., Leung, D. Y. C., Leung, M. K. H., and Sumathy, K. (2006) An overview of hydrogen production from biomass. Fuel Processing Technology 87: 461-472.

Nicholson, W. L., Munakata, N., Horneck, G., Melosh, H. J., and Setlow, P. (2000) Resistance of Bacillus Endospores to Extreme Terrestrial and Extraterrestrial Environments. Microbiology and Molecular Biology Reviews 64: 548-572.

Nielsen, A. T., Liu, W.-T., Filipe, C., Grady, L., Molin, S., and Stahl, D. A. (1999) Identification of a Novel Group of Bacteria in Sludge from a Deteriorated Biological Phosphorus Removal Reactor. APPLIED AND ENVIRONMENTAL MICROBIOLOGY 65: 1251-1258.

Oh, Y.-K., Raj, S. M., Jung, G. Y., and Park, S. (2011) Current status of the metabolic engineering of microorganisms for biohydrogen production. Bioresource Technology 102: 8357-8367.

Oh, Y.-K., Seol, E.-H., Kim, M.-S., and Park, S. (2004) Photoproduction of hydrogen from acetate by a chemoheterotrophic bacterium Rhodopseudomonas palustris P4. International Journal of Hydrogen Energy.

Oh, Y.-K., Seol, E.-H., Lee, E. Y., and Park, S. (2002) Fermentative hydrogen production by a new chemoheterotrophic bacterium Rhodopseudomonas Palustris P4. International Journal of Hydrogen Energy 27: 1373-1379.

Ozmihci, S., and Kargi, F. (2010) Effects of starch loading rate on performance of combined fed-batch fermentation of ground wheat for bio-hydrogen production. International Journal of Hydrogen Energy 35: 1106-1111.

Pattra, S., Sangyoka, S., Boonmee, M., and Reungsang, A. (2008) Bio-hydrogen production from the fermentation of sugarcane bagasse hydrolysate by Clostridium butyricum. International Journal of Hydrogen Energy 33: 5256-5265.

Peters, J. W., Lanzilotta, W. N., Lemon, B. J., and Seefeldt, L. C. (1998) X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution. Science 282: 1853-1858.

Pfennig, N. (1978) Rhodocyclus purpureus gen. nov. and sp. nov., a Ring-Shaped, Vitamin B12-Requiring Member of the Family Rhodospirillaceae. International Journal of Systematic and Evolutionary Microbiology 28: 283-288.

Pintucci, C., Padovani, G., Giovannelli, A., Traversi, M. L., Ena, A., Pushparaj, B., and Carlozzi, P. (2015) Hydrogen photo-evolution by Rhodopseudomonas palustris 6A using pre-treated olive mill wastewater and a synthetic medium containing sugars. Energy Conversion and Management 90: 499-505.

Redwood, M. D., Paterson-Beedle, M., and Macaskie, L. E. (2008) Integrating dark and light bio-hydrogen production strategies: towards the hydrogen economy. Reviews in Environmental Science and Bio/Technology 8: 149.

Regan, J. M., Harrington, G. W., and Noguera, D. R. (2002) Ammonia- and Nitrite-Oxidizing Bacterial Communities in a Pilot-Scale Chloraminated Drinking Water Distribution System. APPLIED AND ENVIRONMENTAL MICROBIOLOGY 68: 73-81.

Ren, N., Liu, B., Ding, J., Guo, W., Cao, G., and Xie, G. (2008) The effect of butyrate concentration on photo-hydrogen production from acetate by Rhodopseudomonas faecalis RLD-53. International Journal of Hydrogen Energy 33: 5981-5985.

Sasikala, K., Ramana, C. V., and Raghuveer Rao, P. (1991) Environmental regulation for optimal biomass yield and photoproduction of hydrogen by Rhodobacter sphaeroides O.U. 001. International Journal of Hydrogen Energy 16: 597-601.

Sasikala, K., Ramana, C. V., Raghuveer Rao, P., and Subrahmanyam, M. (1990) Effect of gas phase on the photoproduction of hydrogen and substrate conversion efficiency in the photosynthetic bacterium Rhodobacter sphaeroides O.U. 001. International Journal of Hydrogen Energy 15: 795-797.

Shafiee, S., and Topal, E. (2009) When will fossil fuel reserves be diminished? Energy Policy 37: 181-189.

Shi, X., and Yu, H. (2006) Continuous production of hydrogen from mixed volatile fatty acids with Rhodopseudomonas capsulata. International Journal of Hydrogen Energy 31: 1641-1647.

Sonenshein, A. L. (2000) Endospore-forming bacteria: an overview. In Prokaryotic development: American Society of Microbiology, pp. 133-150.

Su, H., Cheng, J., Zhou, J., Song, W., and Cen, K. (2009) Combination of dark- and photo-fermentation to enhance hydrogen production and energy conversion efficiency. International Journal of Hydrogen Energy 34: 8846-8853.

Sucheera Laocharoen, A. R. A. P. P. (2015) Bioaugmentation of Lactobacillus delbrueckii ssp. bulgaricus TISTR 895 to enhance bio-hydrogen production of Rhodobacter sphaeroides KKU-PS5.

Sun, Q., Xiao, W., Xi, D., Shi, J., Yan, X., and Zhou, Z. (2010) Statistical optimization of biohydrogen production from sucrose by a co-culture of Clostridium acidisoli and Rhodobacter sphaeroides. International Journal of Hydrogen Energy 35: 4076-4084.

Tao, Y., Chen, Y., Wu, Y., He, Y., and Zhou, Z. (2007) High hydrogen yield from a two-step process of dark- and photo-fermentation of sucrose. International Journal of Hydrogen Energy 32: 200-206.

Tsygankov, A. S., Serebryakova, L. T., Sveshnikov, D. A., Rao, K. K., Gogotov, I. N., and Hall, D. O. (1997) Hydrogen photoproduction by three different nitrogenases in whole cells of Anabaena variabilis and the dependence on pH. International Journal of Hydrogen Energy 22: 859-867.

Wang, J., and Wan, W. (2009) Factors influencing fermentative hydrogen production: A review. International Journal of Hydrogen Energy 34: 799-811.

Wong, Y. M., Wu, T. Y., and Juan, J. C. (2014) A review of sustainable hydrogen production using seed sludge via dark fermentation. Renewable and Sustainable Energy Reviews 34: 471-482.

Wu, S. C., Liou, S. Z., and Lee, C. M. (2012a) Correlation between bio-hydrogen production and polyhydroxybutyrate (PHB) synthesis by Rhodopseudomonas palustris WP3-5. Bioresource Technology 113: 44-50.

Wu, S. C., Lu, P. F., Lin, Y. C., Chen, P. C., and Lee, C. M. (2012b) Bio-hydrogen production enhancement by co-cultivating Rhodopseudomonas palustris WP3-5 and Anabaena sp. CH3. International Journal of Hydrogen Energy 37: 2231-2238.

Yang, W. W., and Ponce, A. (2011) Validation of a Clostridium endospore viability assay and analysis of Greenland ices and Atacama Desert soils. Appl Environ Microbiol 77: 2352-2358.

Yokoi, H., Mori, S., Hirose, J., Hayashi, S., and Takasaki, Y. (1998) H2 production from starch by a mixed culture of Clostridium butyricum and Rhodobacter sp. M19. Biotechnology Letters 20: 895-899.

Zagrodnik, R., and Laniecki, M. (2015) The role of pH control on biohydrogen production by single stage hybrid dark- and photo-fermentation. Bioresource Technology 194: 187-195.

Zagrodnik, R., and Laniecki, M. (2016) An unexpected negative influence of light intensity on hydrogen production by dark fermentative bacteria Clostridium beijerinckii. Bioresource Technology 200: 1039-1043.

Zannoni, D., and Philippis, R. D. (2014) Microbial bioenergy: hydrogen production: Springer.

Zhang, M.-L., Fan, Y.-T., Xing, Y., Pan, C.-M., Zhang, G.-S., and Lay, J.-J. (2007) Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. Biomass and Bioenergy 31: 250-254.

Zhao, X., Xing, D., Fu, N., Liu, B., and Ren, N. (2011) Hydrogen production by the newly isolated Clostridium beijerinckii RZF-1108. Bioresour Technol 102: 8432-8436.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊