|
1.Alcock, R. E. ; Sweetman A., and Jones K. C., Assessment of organic contaminant fate in waste water treatment plants I: Selected compounds and physicochemical properties. Chemosphere. 1999, 38(10), 2247-2262. 2.Elmund, G. K. ; Morrison S. M. ; Grant D. W., and Nevins M. P., Role of excreted chlortetracycline in modifying the decomposition process in feedlot waste. Bulletin of Environmental Contamination and Toxicology. 1971, 6(2), 129-132. 3.Lin, A. Y.-C. ; Yu T.-H., and Lateef S. K., Removal of pharmaceuticals in secondary wastewater treatment processes in Taiwan. Journal of Hazardous Materials. 2009, 167(1), 1163-1169. 4.Lin, Y. C. ; Lai W. W. P. ; Tung H. H., and Lin A. Y. C., Occurrence of pharmaceuticals, hormones, and perfluorinated compounds in groundwater in Taiwan. Environmental Monitoring and Assessment. 2015, 187(5), 19. 5.Zhang, Q. Q. ; Ying G. G. ; Pan C. G. ; Liu Y. S., and Zhao J. L., Comprehensive evaluation of antibiotics emission and fate in the river basins of china: Source analysis, multimedia modeling, and linkage to bacterial resistance. Environmental Science & Technology. 2015, 49(11), 6772-6782. 6.Halling-Sorensen, B., Inhibition of aerobic growth and nitrification of bacteria in sewage sludge by antibacterial agents. Archives of Environmental Contamination and Toxicology. 2001, 40(4), 451-460. 7.Arvand, M. ; Ansari R., and Heydari L., Electrocatalytic oxidation and differential pulse voltammetric determination of sulfamethoxazole using carbon nanotube paste electrode. Materials Science & Engineering C-Materials for Biological Applications. 2011, 31(8), 1819-1825. 8.Feurle, G. E. and Marth T., An evaluation of antimicrobial treatment for whipples-disease - tetracycline versus trimethoprim-sulfamethoxazole. Digestive Diseases and Sciences. 1994, 39(8), 1642-1648. 9.Wormser, G. P. and Keusch G. T., Drugs five years later: Trimethoprim-sulfamethoxazole in the united states. Annals of Internal Medicine. 1979, 91(3), 420-429. 10.Souza, C. D. ; Braga O. C. ; Vieira I. C., and Spinelli A., Electroanalytical determination of sulfadiazine and sulfamethoxazole in pharmaceuticals using a boron-doped diamond electrode. Sensors and Actuators B-Chemical. 2008, 135(1), 66-73. 11.Kielhofner, M. A., Trimethoprim-sulfamethoxazole - pharmacokinetics, clinical uses, and adverse reactions. Texas Heart Institute Journal. 1990, 17(2), 86-93. 12.Brain, R. A. ; Johnson D. J. ; Richards S. M. ; Sanderson H. ; Sibley P. K., and Solomon K. R., Effects of 25 pharmaceutical compounds to Lemna gibba using a seven‐day static‐renewal test. Environmental toxicology and chemistry. 2004, 23(2), 371-382. 13.Nagaraja, P. ; Naik S. ; Shrestha A., and Shivakumar A., A sensitive spectrophotometric method for the determination of sulfonamides in pharmaceutical preparations, in Acta Pharmaceutica. 2007,333. 14.Hajian, R. ; Haghighi R., and Shams N., Combination of ratio derivative spectrophotometry with simultaneous standard additions method for determination of sulfamethoxazole and trimethoprim. Asian Journal of Chemistry. 2010, 22(8), 6569-6579. 15.Tzanavaras, P. D. and Themelis D. G., Review of recent applications of flow injection spectrophotometry to pharmaceutical analysis. Analytica Chimica Acta. 2007, 588(1), 1-9. 16.Shamsa, F. and Amani L., Determination of sulfamethoxazole and trimethoprim in pharmaceuticals by visible and UV spectrophotometry. Iranian Journal of Pharmaceutical Research. 2010, Volume 5(Number 1), 31-36. 17.Ying, Z. ; Agarwal K. C. ; Beylot M. ; Soloviev M. V. ; David F. ; Reider M. ; Tserng K. Y., and Brunengraber H., Assay of the acetyl-coa probe acetyl-sulfamethoxazole and of sulfamethoxazole by gas-chromatography mass-spectrometry. Analytical Biochemistry. 1993, 212(2), 481-486. 18.Teshima, D. ; Otsubo K. ; Makino K. ; Itoh Y., and Oishi R., Simultaneous determination of sulfamethoxazole and trimethoprim in human plasma by capillary zone electrophoresis. Biomedical Chromatography. 2004, 18(1), 51-54. 19.Pereira, A. V. and Cass Q. B., High-performance liquid chromatography method for the simultaneous determination of sulfamethoxazole and trimethoprim in bovine milk using an on-line clean-up column. Journal of Chromatography B. 2005, 826(1–2), 139-146. 20.Mistri, H. N. ; Jangid A. G. ; Pudage A. ; Shah A., and Shrivastav P. S., Simultaneous determination of sulfamethoxazole and trimethoprim in microgram quantities from low plasma volume by liquid chromatography-tandem mass spectrometry. Microchemical Journal. 2010, 94(2), 130-138. 21.Msagati, T. A. M. and Ngila J. C., Voltammetric detection of sulfonamides at a poly(3-methylthiophene) electrode. Talanta. 2002, 58(3), 605-610. 22.N., N., Simultaneous determination of sulfamethoxazole and trimethoprim in pharmaceutical formulations by square wave voltammetry. Int J Pharm Pharm Sci, Vol 6, Issue 9, 2014, 438-442. 23.Chasta, H. and Goyal R. N., A simple and sensitive poly-1,5-diaminonaphthalene modified sensor for the determination of sulfamethoxazole in biological samples. Electroanalysis. 2015, 27(5), 1229-1237. 24.Cesarino, I. ; Cesarino V., and Lanza M. R. V., Carbon nanotubes modified with antimony nanoparticles in a paraffin composite electrode: Simultaneous determination of sulfamethoxazole and trimethoprim. Sensors and Actuators B-Chemical. 2013, 188, 1293-1299. 25.Sgobbi, L. F. ; Razzino C. A., and Machado S. A. S., A disposable electrochemical sensor for simultaneous detection of sulfamethoxazole and trimethoprim antibiotics in urine based on multiwalled nanotubes decorated with Prussian blue nanocubes modified screen-printed electrode. Electrochimica Acta. 2016, 191, 1010-1017. 26.Meshki, M. ; Behpour M., and Masoum S., Application of Fe doped ZnO nanorods-based modified sensor for determination of sulfamethoxazole and sulfamethizole using chemometric methods in voltammetric studies. Journal of Electroanalytical Chemistry. 2015, 740, 1-7. 27.Zhao, Y. ; Yuan F. ; Quan X. ; Yu H. T. ; Chen S. ; Zhao H. M. ; Liu Z. Y., and Hilal N., An electrochemical sensor for selective determination of sulfamethoxazole in surface water using a molecularly imprinted polymer modified BDD electrode. Analytical Methods. 2015, 7(6), 2693-2698. 28.Cai, M. Z. ; Zhu L. ; Ding Y. P. ; Wang J. X. ; Li J. S., and Du X. Y., Determination of sulfamethoxazole in foods based on CeO2/chitosan nanocomposite-modified electrodes. Materials Science & Engineering C-Materials for Biological Applications. 2012, 32(8), 2623-2627. 29.Chen, L. G. ; Zhang X. P. ; Sun L. ; Xu Y. ; Zeng Q. L. ; Wang H. ; Xu H. Y. ; Yu A. M. ; Zhang H. Q., and Ding L., Fast and selective extraction of sulfonamides from honey based on magnetic molecularly imprinted polymer. Journal of Agricultural and Food Chemistry. 2009, 57(21), 10073-10080. 30.Ozkorucuklu, S. P. ; Sahin Y., and Alsancak G., Voltammetric behaviour of sulfamethoxazole on electropolymerized-molecularly imprinted overoxidized polypyrrole. Sensors. 2008, 8(12), 8463-8478. 31.de Prada, A. G. V. ; Martinez-Ruiz P. ; Reviejo A. J., and Pingarron J. M., Solid-phase molecularly imprinted on-line preconcentration and voltammetric determination of sulfamethazine in milk. Analytica Chimica Acta. 2005, 539(1-2), 125-132. 32.Andrade, L. S. ; Rocha-Filho R. C. ; Cass Q. B., and Fatibello-Filho O., Simultaneous differential pulse voltammetric determination of sulfamethoxazole and trimethoprim on a boron-doped diamond electrode. Electroanalysis. 2009, 21(13), 1475-1480. 33.Andrade, L. S. ; Rocha R. C. ; Cass Q. B., and Fatibello O., A novel multicommutation stopped-flow system for the simultaneous determination of sulfamethoxazole and trimethoprim by differential pulse voltammetry on a boron-doped diamond electrode. Analytical Methods. 2010, 2(4), 402-407. 34.Joseph, R. and Kumar K. G., Differential pulse voltammetric determination and catalytic oxidation of sulfamethoxazole using 5,10,15,20-tetrakis (3-methoxy-4-hydroxy phenyl) porphyrinato Cu (II) modified carbon paste sensor. Drug Testing and Analysis. 2010, 2(5-6), 278-283. 35.Bard, A. J., electrochemical methods: fundamentals and applications, in 2nd Edition, New York, John Wiley & Sons. 2001. 36.胡啟章,電化學原理與方法,2011。 37.J., W., Analytical electrochemistry,. New York. 2000. 38.Kissinger, P. and Heineman W. R., Laboratory techniques in electroanalytical chemistry, revised and expanded, 1996: CRC press 39.Orazem, M. E. and Tribollet B., Electrochemical impedance spectroscopy, Vol. 48. 2011: John Wiley & Sons 40.Lee, C. ; Wei X. D. ; Kysar J. W., and Hone J., Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008, 321(5887), 385-388. 41.Orlita, M. ; Faugeras C. ; Plochocka P. ; Neugebauer P. ; Martinez G. ; Maude D. K. ; Barra A. L. ; Sprinkle M. ; Berger C. ; de Heer W. A., and Potemski M., Approaching the dirac point in high-mobility multilayer epitaxial graphene. Physical Review Letters. 2008, 101(26), 4. 42.Balandin, A. A. ; Ghosh S. ; Bao W. Z. ; Calizo I. ; Teweldebrhan D. ; Miao F., and Lau C. N., Superior thermal conductivity of single-layer graphene. Nano Letters. 2008, 8(3), 902-907. 43.Novoselov, K. S. ; Geim A. K. ; Morozov S. V. ; Jiang D. ; Zhang Y. ; Dubonos S. V. ; Grigorieva I. V., and Firsov A. A., Electric field effect in atomically thin carbon films. Science. 2004, 306(5696), 666-669. 44.Berger, C. ; Song Z. M. ; Li X. B. ; Wu X. S. ; Brown N. ; Naud C. ; Mayou D. ; Li T. B. ; Hass J. ; Marchenkov A. N. ; Conrad E. H. ; First P. N., and de Heer W. A., Electronic confinement and coherence in patterned epitaxial graphene. Science. 2006, 312(5777), 1191-1196. 45.Wintterlin, J. and Bocquet M. L., Graphene on metal surfaces. Surface Science. 2009, 603(10-12), 1841-1852. 46.Land, T. A. ; Michely T. ; Behm R. J. ; Hemminger J. C., and Comsa G., STM investigation of single layer graphite structures produced on Pt(111) by hydrocarbon decomposition. Surface Science. 1992, 264(3), 261-270. 47.Kim, K. S. ; Zhao Y. ; Jang H. ; Lee S. Y. ; Kim J. M. ; Kim K. S. ; Ahn J. H. ; Kim P. ; Choi J. Y., and Hong B. H., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature. 2009, 457(7230), 706-710. 48.Eizenberg, M. and Blakely J. M., Carbon monolayer phase condensation on ni(111). Surface Science. 1979, 82(1), 228-236. 49.Schafhaeutl, C., On the combinations of carbon with silicon and iron, and other metals, forming the different species of cast iron, steel, and malleable iron. Philosophical Magazine Series 3. 1840, 16(106), 570-590. 50.Brodie, B. C., On the atomic weight of graphite. Phil. Trans. R. Soc. Lond. 1859 vol. 149, 249-259 51.Hummers, W. S. and Offeman R. E., Preparation of graphitic oxide. Journal of the American Chemical Society. 1958, 80(6), 1339-1339. 52.Chen, H. ; Muller M. B. ; Gilmore K. J. ; Wallace G. G., and Li D., Mechanically strong, electrically conductive, and biocompatible graphene paper. Advanced Materials. 2008, 20(18), 3557. 53.Park, S. ; An J. H. ; Jung I. W. ; Piner R. D. ; An S. J. ; Li X. S. ; Velamakanni A., and Ruoff R. S., Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Letters. 2009, 9(4), 1593-1597. 54.Tung, V. C. ; Allen M. J. ; Yang Y., and Kaner R. B., High-throughput solution processing of large-scale graphene. Nat Nano. 2009, 4(1), 25-29. 55.Stankovich, S. ; Dikin D. A. ; Piner R. D. ; Kohlhaas K. A. ; Kleinhammes A. ; Jia Y. ; Wu Y. ; Nguyen S. T., and Ruoff R. S., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 2007, 45(7), 1558-1565. 56.Shin, H. J. ; Kim K. K. ; Benayad A. ; Yoon S. M. ; Park H. K. ; Jung I. S. ; Jin M. H. ; Jeong H. K. ; Kim J. M., and Choi J. Y., Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Advanced Functional Materials. 2009, 19(12), 1987-1992. 57.Gao, W. ; Alemany L. B. ; Ci L., and Ajayan P. M., New insights into the structure and reduction of graphite oxide. Nature Chemistry. 2009, 1(5), 403-408. 58.Li, X. L. ; Wang H. L. ; Robinson J. T. ; Sanchez H. ; Diankov G., and Dai H. J., Simultaneous nitrogen doping and reduction of graphene oxide. Journal of the American Chemical Society. 2009, 131(43), 15939-15944. 59.Long, D. H. ; Li W. ; Ling L. C. ; Miyawaki J. ; Mochida I., and Yoon S. H., Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide. Langmuir. 2010, 26(20), 16096-16102. 60.Fernandez-Merino, M. J. ; Guardia L. ; Paredes J. I. ; Villar-Rodil S. ; Solis-Fernandez P. ; Martinez-Alonso A., and Tascon J. M. D., Vitamin c is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. Journal of Physical Chemistry C. 2010, 114(14), 6426-6432. 61.Pan, Y. H. ; Shang L. ; Zhao F. Q., and Zeng B. Z., A novel electrochemical 4-nonyl-phenol sensor based on molecularly imprinted poly (o-phenylenediamine-co-o-toluidine)-nitrogen-doped graphene nanoribbons-ionic liquid composite film. Electrochimica Acta. 2015, 151, 423-428. 62.Zhu, X. F. ; Xu J. K. ; Duan X. M. ; Lu L. M. ; Zhang K. X. ; Gao Y. S. ; Dong L. Q., and Sun H., Facile fabrication of three-dimensional graphene microspheres using beta-cyclodextrin aggregates as substrates and their application for midecamycin sensing. Rsc Advances. 2015, 5(94), 77469-77477. 63.Zhang, X. ; Zhang Y. C., and Zhang J. W., A highly selective electrochemical sensor for chloramphenicol based on three-dimensional reduced graphene oxide architectures. Talanta. 2016, 161, 567-573. 64.Lomeda, J. R. ; Doyle C. D. ; Kosynkin D. V. ; Hwang W. F., and Tour J. M., Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. Journal of the American Chemical Society. 2008, 130(48), 16201-16206. 65.Villar-Rodil, S. ; Paredes J. I. ; Martinez-Alonso A., and Tascon J. M. D., Preparation of graphene dispersions and graphene-polymer composites in organic media. Journal of Materials Chemistry. 2009, 19(22), 3591-3593. 66.McAllister, M. J. ; Li J. L. ; Adamson D. H. ; Schniepp H. C. ; Abdala A. A. ; Liu J. ; Herrera-Alonso M. ; Milius D. L. ; Car R. ; Prud'homme R. K., and Aksay I. A., Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chemistry of Materials. 2007, 19(18), 4396-4404. 67.Wu, Z. S. ; Ren W. C. ; Gao L. B. ; Liu B. L. ; Jiang C. B., and Cheng H. M., Synthesis of high-quality graphene with a pre-determined number of layers. Carbon. 2009, 47(2), 493-499. 68.Williams, G. ; Seger B., and Kamat P. V., TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. Acs Nano. 2008, 2(7), 1487-1491. 69.Matsumoto, Y. ; Koinuma M. ; Kim S. Y. ; Watanabe Y. ; Taniguchi T. ; Hatakeyama K. ; Tateishi H., and Ida S., Simple photoreduction of graphene oxide nanosheet under mild conditions. Acs Applied Materials & Interfaces. 2010, 2(12), 3461-3466. 70.Plavsic, M. ; Krznaric D., and Cosovic B., The electrochemical processes of copper in the presence of triton x-100. Electroanalysis. 1994, 6(5-6), 469-474. 71.Ghoreishi, S. M. ; Behpour M. ; Jafari N., and Khoobi A., Determination of tyrosine in the presence of sodium dodecyl sulfate using a gold nanoparticle modified carbon paste electrode. Analytical Letters. 2013, 46(2), 299-311. 72.Ghoreishi, S. M. ; Behpour M. ; Mousavi S. ; Khoobi A., and Ghoreishi F. S., Simultaneous electrochemical determination of dopamine, ascorbic acid and uric acid in the presence of sodium dodecyl sulphate using a multi-walled carbon nanotube modified carbon paste electrode. Rsc Advances. 2014, 4(72), 37979-37984. 73.Stadlober, M. ; Kalcher K. ; Raber G., and Neuhold C., Anodic stripping voltammetric determination of titanium(IV) using a carbon paste electrode modified with cetyltrimethylammonium bromide. Talanta. 1996, 43(11), 1915-1924. 74.Kuila, T. ; Mishra A. K. ; Khanra P. ; Kim N. H., and Lee J. H., Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials. Nanoscale. 2013, 5(1), 52-71. 75.Zhou, N. ; Li J. H. ; Chen H. ; Liao C. Y., and Chen L. X., A functional graphene oxide-ionic liquid composites-gold nanoparticle sensing platform for ultrasensitive electrochemical detection of Hg2+. Analyst. 2013, 138(4), 1091-1097. 76.Xu, Y. X. ; Sheng K. X. ; Li C., and Shi G. Q., Highly conductive chemically converted graphene prepared from mildly oxidized graphene oxide. Journal of Materials Chemistry. 2011, 21(20), 7376-7380. 77.Pei, S. and Cheng H.-M., The reduction of graphene oxide. Carbon. 2012, 50(9), 3210-3228. 78.Chekin, F. ; Boukherroub R., and Szunerits S., MoS2/reduced graphene oxide nanocomposite for sensitive sensing of cysteamine in presence of uric acid in human plasma. Materials Science & Engineering C-Materials for Biological Applications. 2017, 73, 627-632. 79.Lu, J. ; Do I. ; Drzal L. T. ; Worden R. M., and Lee I., Nanometal-decorated exfoliated graphite nanoplatelet based glucose biosensors with high sensitivity and fast response. Acs Nano. 2008, 2(9), 1825-1832. 80.Zhang, X. ; Ma L. X., and Zhang Y. C., Electrodeposition of platinum nanosheets on C-60 decorated glassy carbon electrode as a stable electrochemical biosensor for simultaneous detection of ascorbic acid, dopamine and uric acid. Electrochimica Acta. 2015, 177, 118-127. 81.Chen, X. J. ; Wang Y. Y. ; Zhou J. J. ; Yan W. ; Li X. H., and Zhu J. J., Electrochemical impedance immunosensor based on three-dimensionally ordered macroporous gold film. Analytical Chemistry. 2008, 80(6), 2133-2140. 82.Babic, S. ; Horvat A. J. M. ; Pavlovic D. M., and Kastelan-Macan M., Determination of pK(a) values of active pharmaceutical ingredients. Trac-Trends in Analytical Chemistry. 2007, 26(11), 1043-1061. 83.Lan, Y. K. ; Chen T. C. ; Tsai H. J. ; Wu H. C. ; Lin J. H. ; Lin I. K. ; Lee J. F., and Chen C. S., Adsorption behavior and mechanism of antibiotic sulfamethoxazole on carboxylic-functionalized carbon nanofibers-encapsulated ni magnetic nanoparticles. Langmuir. 2016, 32(37), 9530-9539. 84.Bushby, S., Synergy of trimethoprim-sulfamethoxazole. Canadian Medical Association Journal. 1975, 112(13 Spec No), 63. 85.Reeves, D. S. and Wilkinson P. J., The pharmacokinetics of trimethoprim and trimethoprim/sulphonamide combinations, including penetration into body tissues. Infection. 1979, 7(4), S330-S341. 86.Laube, N. ; Mohr B., and Hesse A., Laser-probe-based investigation of the evolution of particle size distributions of calcium oxalate particles formed in artificial urines. Journal of Crystal Growth. 2001, 233(1–2), 367-374.
|