跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2024/12/14 05:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳彥鈞
研究生(外文):Yen-Chun Chen
論文名稱:還原氧化石墨烯修飾電極應用於環境感測器之探討
論文名稱(外文):An Electrochemical Sensor for Environmental Detection Based on Reduced Graphene Oxide Modified Electrodes
指導教授:陳佳吟陳佳吟引用關係
口試委員:魏玉麟黃景帆
口試日期:2017-06-29
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:118
中文關鍵詞:磺胺甲噁唑還原氧化石墨烯電化學傳感器修飾電極環境感測
外文關鍵詞:sulfamethoxazloereduced of graphene oxideelectrochemical sensormodified electrodeenvironmental sensing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:246
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
人體和畜牧業使用的抗生素在環境中的持續累積日益受到重視,多數抗生素經過排泄後部分是以原型排出,存在於醫院和畜牧場的廢水及污泥中,接著穿過廢水處理廠後,進入到水體環境。這些抗生素可能導致細菌產生抗藥性、對非目標生物和微生物生態產生毒害或不良影響,因此開發出靈敏、準確,可用於現場的追蹤或檢測技術來監測環境中的抗生素越發重要。傳統的檢測技術如分光光度法、電泳、色譜法等精密儀器多數不利於現地偵測,阻礙了原位檢測的實際應用發展。而電化學技術具較低成本、高效率和樣品前處理簡單可用於現場檢測之方法。因此本研究旨在開發用於快速檢測磺胺甲噁唑(sulfamethoxazole, SMZ)的電化學傳感器,透過還原氧化石墨烯修飾電極,利用其電荷轉移率高,背景干擾低,表面積高之特性,並在pH、掃描模式和施加電位等條件進行最佳化,在最適實驗條件下pH 6、微分脈衝伏安法(Differential pulse voltammetry, DPV掃描模式),偵測線性範圍為0.5 μM-50 μM,偵測極限為0.04 μM。另外,加入cetyltrimethylammonium bromide (CTAB)可以增加電化學訊號。甲氧芐啶(trimethoprim,TMP)為與磺胺甲噁唑常共存於處方籤之抗生素,當同時存在於樣品時,還原氧化石墨烯修飾電極對磺胺甲噁唑之偵測仍然是十分穩定,實具有同時偵測兩項抗生素之潛力。於環境基質中,回收率在101.9∼108.4%之間。除良好偵測性及選擇性外,還原氧化石墨烯修飾電極也具有操作穩定性,具優良潛力應用於水體環境中磺胺甲噁唑之追蹤與檢測。
Continuous accumulation of consumed human and veterinary antibiotics in the recipient environment has drawn increasing attention. A great percentage of the excreted antibiotics remains intact forms and enters the natural aquatic systems via the effluent and sludge from wastewater treatment plants, hospitals, and livestock farms. These released antibiotics may lead to bacterial resistance proliferation, contamination or adverse impacts on non-target organisms and microbial ecosystems. Therefore, it is essential to develop sensitive on-site detection techniques for monitoring these antibiotics in the environment. However, delicate instrumentation and complex sample pretreatment requirement of conventional analytical techniques such as spectrophotometry, electrophoresis, and chromatography have hindered their practical applications of real time and in situ sensing task. On the other hand, electrochemical techniques has been served as a sensitive method for on-site monitoring with low cost, high efficiency, and minimum sample pretreatment necessity. In the present study, an electrochemical sensor for rapid determination of sulfamethoxazole (SMZ), one of the most widely used antibiotics, has been developed. Reduced graphene oxide was used to modify the electrodes owing to its high charge mobility, low background noise, and high surface area. The response was optimized in terms of pH, scan mode, and applied potential. Under the optimized experimental conditions, the detection linear range is 0.5 μM-50 μM, the detection limit is 0.04 μM. Recovery in environmental media ranges from 101.9 to 108.4%. Further, addition of cetyltrimethylammonium bromide (CTAB) enhanced the electrochemical response of sulfamethoxazole detection. In the presence of trimethoprim (TMP), a common coexisting antibiotics with sulfamethoxazole, stable responses of SMZ detection makes simultaneous SMZ and TMP determination possible. Collectively, the modified electrodes exhibit great selectivity, sensitivity, and stability, and thus renders it a promising sensor toward detecting sulfamethoxazole in the aquatic system.
目錄
摘要 i
Abstract iii
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1新興污染物 3
2.1.1抗生素之特性 3
2.1.2磺胺甲噁唑之特性(Sulfamethoxazole, SMZ) 4
2.2 磺胺甲噁唑之感測發展 5
2.3 電化學原理 8
2.4 電化學分析方法 10
2.4.1線性掃描伏安法(Linear sweep voltammetry, LSV) 10
2.4.2循環伏安法(Cyclic voltammetry, CV) 13
2.4.2微分脈衝伏安法(Differential pulse voltammetry, DPV) 15
2.4.3 方波伏安法(Square wave voltammetry, SWV) 17
2.4.4電化學阻抗頻譜法(Electrochemistry impedance spectroscopy, EIS) 18
2.5 石墨烯之介紹 22
2.5.1 氧化石墨烯之介紹 22
2.5.2 還原氧化石墨烯之介紹 23
2.5.2.1化學還原法 24
2.5.2.2熱還原法 25
2.5.2.3光還原法 25
第三章 實驗藥品設備與方法 27
3.1實驗藥品與設備 27
3.1.1實驗藥品 27
3.1.2實驗設備 28
3.2實驗步驟及方法 31
3.2.1 氧化石墨烯 (Graphene Oxide, GO) 33
3.2.2 低度氧化石墨烯(Mildly Oxidized Graphene Oxide, moGO) 35
3.2.3 vitamin C還原氧化石墨烯 (Vitamin C Reduced Graphene Oxide, VCrGO) 37
3.2.4 Hydrazine monohydrate還原氧化石墨烯 (Hydrazine Monohydrate Reduced Graphene Oxide, HrGO) 39
3.3傳感器製備 41
3.3.1氧化石墨烯修飾電極之製備 41
3.3.2低度氧化石墨烯修飾電極之製備 42
3.3.3 vitamin C還原氧化石墨烯修飾電極之製備 43
3.3.4 Hydrazine monohydrate還原氧化石墨烯修飾電極之製備 44
3.4待測溶液之配置 45
3.4.1磷酸緩衝溶液之配製 45
3.4.2 黃血鹽溶液之配製 45
3.4.3磺胺甲噁唑溶液之配製 46
3.5感測特性分析 46
3.5.1 感測系統 46
3.5.2 循環伏安法 46
3.5.2.1 電極之特性比較 47
3.5.2.2 電極對磺胺甲噁唑之感測性比較 47
3.5.2.3 電極對磺胺甲噁唑之掃描速率變化研究 47
3.5.2.4 修飾薄膜穩定度測試 48
3.5.3電化學阻抗頻譜法 48
3.5.4 微分脈衝伏安法 48
3.5.4.1 電極對檢測磺胺甲噁唑之pH變化研究 48
3.5.4.2電極修飾膜厚對檢測磺胺甲噁唑之研究 49
3.5.4.電極對檢測不同濃度磺胺甲噁唑之研究 49
3.5.5. CTAB對磺胺甲噁唑在rGO/SPE上的電化學行為影響 49
3.5.6實際樣品之再現性 50
3.5.7實驗之流程 50
第四章 結果與討論 53
4.1氧化石墨烯(GO)、低度氧化石墨烯(moGO)與還原氧化石墨烯(VCrGO)之製備與鑑定 53
4.1.1氧化石墨烯(GO)、低度氧化石墨烯(moGO)與還原氧化石墨烯(VCrGO)之XPS圖譜 55
4.1.2氧化石墨烯(GO)、低度氧化石墨烯(moGO)、hydrazine還原氧化石墨烯(HrGO)與vitamin C還原氧化石墨烯(VCrGO)之Raman光譜 58
4.1.3氧化石墨烯(GO)、低度氧化石墨烯(moGO)、hydrazine還原氧化石墨烯(HrGO)與vitamin C還原氧化石墨烯(VCrGO)之UV-vis圖譜 61
4.1.4氧化石墨烯(GO)、低度氧化石墨烯(moGO)與還原氧化石墨烯(VCrGO)之FE-SEM圖 63
4.2電極之電化學表徵 68
4.2.1 VCrGO修飾電極之CV表現 68
4.2.2不同修飾電極之CV表現 70
4.2.2電極之EIS表現 71
4.2.3電極對磺胺甲噁唑靈敏度比較 72
4.3 磺胺甲噁唑在電極上之反應與實驗最佳化 76
4.3.1掃描速率影響之研究 76
4.3.2 pH 值影響之研究 80
4.3.3 DPV與SWV感測磺胺甲噁唑之探討 86
4.3.4 VCrGO/SPE對不同濃度磺胺甲噁唑之感測 88
4.3.5 VCrGO 修飾電極穩定度測試 91
4.3.6 CTAB對磺胺甲噁唑在VCrGO/SPE上的電化學行為影響 93
4.3.7 VCrGO/SPE與CTAB、SDS(sodium dodecyl sulfate)存在與否對不同濃度磺胺甲噁唑之感測 95
4.4 實際樣品分析 98
4.4.1 磺胺甲噁唑與甲氧芐啶TMP (trimethoprim)之分析 98
4.4.2實際樣品檢測與回收率 102
第五章 結論與建議 103
5.1結論 103
5.2 建議 104
參考文獻 105
1.Alcock, R. E. ; Sweetman A., and Jones K. C., Assessment of organic contaminant fate in waste water treatment plants I: Selected compounds and physicochemical properties. Chemosphere. 1999, 38(10), 2247-2262.
2.Elmund, G. K. ; Morrison S. M. ; Grant D. W., and Nevins M. P., Role of excreted chlortetracycline in modifying the decomposition process in feedlot waste. Bulletin of Environmental Contamination and Toxicology. 1971, 6(2), 129-132.
3.Lin, A. Y.-C. ; Yu T.-H., and Lateef S. K., Removal of pharmaceuticals in secondary wastewater treatment processes in Taiwan. Journal of Hazardous Materials. 2009, 167(1), 1163-1169.
4.Lin, Y. C. ; Lai W. W. P. ; Tung H. H., and Lin A. Y. C., Occurrence of pharmaceuticals, hormones, and perfluorinated compounds in groundwater in Taiwan. Environmental Monitoring and Assessment. 2015, 187(5), 19.
5.Zhang, Q. Q. ; Ying G. G. ; Pan C. G. ; Liu Y. S., and Zhao J. L., Comprehensive evaluation of antibiotics emission and fate in the river basins of china: Source analysis, multimedia modeling, and linkage to bacterial resistance. Environmental Science & Technology. 2015, 49(11), 6772-6782.
6.Halling-Sorensen, B., Inhibition of aerobic growth and nitrification of bacteria in sewage sludge by antibacterial agents. Archives of Environmental Contamination and Toxicology. 2001, 40(4), 451-460.
7.Arvand, M. ; Ansari R., and Heydari L., Electrocatalytic oxidation and differential pulse voltammetric determination of sulfamethoxazole using carbon nanotube paste electrode. Materials Science & Engineering C-Materials for Biological Applications. 2011, 31(8), 1819-1825.
8.Feurle, G. E. and Marth T., An evaluation of antimicrobial treatment for whipples-disease - tetracycline versus trimethoprim-sulfamethoxazole. Digestive Diseases and Sciences. 1994, 39(8), 1642-1648.
9.Wormser, G. P. and Keusch G. T., Drugs five years later: Trimethoprim-sulfamethoxazole in the united states. Annals of Internal Medicine. 1979, 91(3), 420-429.
10.Souza, C. D. ; Braga O. C. ; Vieira I. C., and Spinelli A., Electroanalytical determination of sulfadiazine and sulfamethoxazole in pharmaceuticals using a boron-doped diamond electrode. Sensors and Actuators B-Chemical. 2008, 135(1), 66-73.
11.Kielhofner, M. A., Trimethoprim-sulfamethoxazole - pharmacokinetics, clinical uses, and adverse reactions. Texas Heart Institute Journal. 1990, 17(2), 86-93.
12.Brain, R. A. ; Johnson D. J. ; Richards S. M. ; Sanderson H. ; Sibley P. K., and Solomon K. R., Effects of 25 pharmaceutical compounds to Lemna gibba using a seven‐day static‐renewal test. Environmental toxicology and chemistry. 2004, 23(2), 371-382.
13.Nagaraja, P. ; Naik S. ; Shrestha A., and Shivakumar A., A sensitive spectrophotometric method for the determination of sulfonamides in pharmaceutical preparations, in Acta Pharmaceutica. 2007,333.
14.Hajian, R. ; Haghighi R., and Shams N., Combination of ratio derivative spectrophotometry with simultaneous standard additions method for determination of sulfamethoxazole and trimethoprim. Asian Journal of Chemistry. 2010, 22(8), 6569-6579.
15.Tzanavaras, P. D. and Themelis D. G., Review of recent applications of flow injection spectrophotometry to pharmaceutical analysis. Analytica Chimica Acta. 2007, 588(1), 1-9.
16.Shamsa, F. and Amani L., Determination of sulfamethoxazole and trimethoprim in pharmaceuticals by visible and UV spectrophotometry. Iranian Journal of Pharmaceutical Research. 2010, Volume 5(Number 1), 31-36.
17.Ying, Z. ; Agarwal K. C. ; Beylot M. ; Soloviev M. V. ; David F. ; Reider M. ; Tserng K. Y., and Brunengraber H., Assay of the acetyl-coa probe acetyl-sulfamethoxazole and of sulfamethoxazole by gas-chromatography mass-spectrometry. Analytical Biochemistry. 1993, 212(2), 481-486.
18.Teshima, D. ; Otsubo K. ; Makino K. ; Itoh Y., and Oishi R., Simultaneous determination of sulfamethoxazole and trimethoprim in human plasma by capillary zone electrophoresis. Biomedical Chromatography. 2004, 18(1), 51-54.
19.Pereira, A. V. and Cass Q. B., High-performance liquid chromatography method for the simultaneous determination of sulfamethoxazole and trimethoprim in bovine milk using an on-line clean-up column. Journal of Chromatography B. 2005, 826(1–2), 139-146.
20.Mistri, H. N. ; Jangid A. G. ; Pudage A. ; Shah A., and Shrivastav P. S., Simultaneous determination of sulfamethoxazole and trimethoprim in microgram quantities from low plasma volume by liquid chromatography-tandem mass spectrometry. Microchemical Journal. 2010, 94(2), 130-138.
21.Msagati, T. A. M. and Ngila J. C., Voltammetric detection of sulfonamides at a poly(3-methylthiophene) electrode. Talanta. 2002, 58(3), 605-610.
22.N., N., Simultaneous determination of sulfamethoxazole and trimethoprim in pharmaceutical formulations by square wave voltammetry. Int J Pharm Pharm Sci, Vol 6, Issue 9, 2014, 438-442.
23.Chasta, H. and Goyal R. N., A simple and sensitive poly-1,5-diaminonaphthalene modified sensor for the determination of sulfamethoxazole in biological samples. Electroanalysis. 2015, 27(5), 1229-1237.
24.Cesarino, I. ; Cesarino V., and Lanza M. R. V., Carbon nanotubes modified with antimony nanoparticles in a paraffin composite electrode: Simultaneous determination of sulfamethoxazole and trimethoprim. Sensors and Actuators B-Chemical. 2013, 188, 1293-1299.
25.Sgobbi, L. F. ; Razzino C. A., and Machado S. A. S., A disposable electrochemical sensor for simultaneous detection of sulfamethoxazole and trimethoprim antibiotics in urine based on multiwalled nanotubes decorated with Prussian blue nanocubes modified screen-printed electrode. Electrochimica Acta. 2016, 191, 1010-1017.
26.Meshki, M. ; Behpour M., and Masoum S., Application of Fe doped ZnO nanorods-based modified sensor for determination of sulfamethoxazole and sulfamethizole using chemometric methods in voltammetric studies. Journal of Electroanalytical Chemistry. 2015, 740, 1-7.
27.Zhao, Y. ; Yuan F. ; Quan X. ; Yu H. T. ; Chen S. ; Zhao H. M. ; Liu Z. Y., and Hilal N., An electrochemical sensor for selective determination of sulfamethoxazole in surface water using a molecularly imprinted polymer modified BDD electrode. Analytical Methods. 2015, 7(6), 2693-2698.
28.Cai, M. Z. ; Zhu L. ; Ding Y. P. ; Wang J. X. ; Li J. S., and Du X. Y., Determination of sulfamethoxazole in foods based on CeO2/chitosan nanocomposite-modified electrodes. Materials Science & Engineering C-Materials for Biological Applications. 2012, 32(8), 2623-2627.
29.Chen, L. G. ; Zhang X. P. ; Sun L. ; Xu Y. ; Zeng Q. L. ; Wang H. ; Xu H. Y. ; Yu A. M. ; Zhang H. Q., and Ding L., Fast and selective extraction of sulfonamides from honey based on magnetic molecularly imprinted polymer. Journal of Agricultural and Food Chemistry. 2009, 57(21), 10073-10080.
30.Ozkorucuklu, S. P. ; Sahin Y., and Alsancak G., Voltammetric behaviour of sulfamethoxazole on electropolymerized-molecularly imprinted overoxidized polypyrrole. Sensors. 2008, 8(12), 8463-8478.
31.de Prada, A. G. V. ; Martinez-Ruiz P. ; Reviejo A. J., and Pingarron J. M., Solid-phase molecularly imprinted on-line preconcentration and voltammetric determination of sulfamethazine in milk. Analytica Chimica Acta. 2005, 539(1-2), 125-132.
32.Andrade, L. S. ; Rocha-Filho R. C. ; Cass Q. B., and Fatibello-Filho O., Simultaneous differential pulse voltammetric determination of sulfamethoxazole and trimethoprim on a boron-doped diamond electrode. Electroanalysis. 2009, 21(13), 1475-1480.
33.Andrade, L. S. ; Rocha R. C. ; Cass Q. B., and Fatibello O., A novel multicommutation stopped-flow system for the simultaneous determination of sulfamethoxazole and trimethoprim by differential pulse voltammetry on a boron-doped diamond electrode. Analytical Methods. 2010, 2(4), 402-407.
34.Joseph, R. and Kumar K. G., Differential pulse voltammetric determination and catalytic oxidation of sulfamethoxazole using 5,10,15,20-tetrakis (3-methoxy-4-hydroxy phenyl) porphyrinato Cu (II) modified carbon paste sensor. Drug Testing and Analysis. 2010, 2(5-6), 278-283.
35.Bard, A. J., electrochemical methods: fundamentals and applications, in 2nd Edition, New York, John Wiley & Sons. 2001.
36.胡啟章,電化學原理與方法,2011。
37.J., W., Analytical electrochemistry,. New York. 2000.
38.Kissinger, P. and Heineman W. R., Laboratory techniques in electroanalytical chemistry, revised and expanded, 1996: CRC press
39.Orazem, M. E. and Tribollet B., Electrochemical impedance spectroscopy, Vol. 48. 2011: John Wiley & Sons
40.Lee, C. ; Wei X. D. ; Kysar J. W., and Hone J., Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008, 321(5887), 385-388.
41.Orlita, M. ; Faugeras C. ; Plochocka P. ; Neugebauer P. ; Martinez G. ; Maude D. K. ; Barra A. L. ; Sprinkle M. ; Berger C. ; de Heer W. A., and Potemski M., Approaching the dirac point in high-mobility multilayer epitaxial graphene. Physical Review Letters. 2008, 101(26), 4.
42.Balandin, A. A. ; Ghosh S. ; Bao W. Z. ; Calizo I. ; Teweldebrhan D. ; Miao F., and Lau C. N., Superior thermal conductivity of single-layer graphene. Nano Letters. 2008, 8(3), 902-907.
43.Novoselov, K. S. ; Geim A. K. ; Morozov S. V. ; Jiang D. ; Zhang Y. ; Dubonos S. V. ; Grigorieva I. V., and Firsov A. A., Electric field effect in atomically thin carbon films. Science. 2004, 306(5696), 666-669.
44.Berger, C. ; Song Z. M. ; Li X. B. ; Wu X. S. ; Brown N. ; Naud C. ; Mayou D. ; Li T. B. ; Hass J. ; Marchenkov A. N. ; Conrad E. H. ; First P. N., and de Heer W. A., Electronic confinement and coherence in patterned epitaxial graphene. Science. 2006, 312(5777), 1191-1196.
45.Wintterlin, J. and Bocquet M. L., Graphene on metal surfaces. Surface Science. 2009, 603(10-12), 1841-1852.
46.Land, T. A. ; Michely T. ; Behm R. J. ; Hemminger J. C., and Comsa G., STM investigation of single layer graphite structures produced on Pt(111) by hydrocarbon decomposition. Surface Science. 1992, 264(3), 261-270.
47.Kim, K. S. ; Zhao Y. ; Jang H. ; Lee S. Y. ; Kim J. M. ; Kim K. S. ; Ahn J. H. ; Kim P. ; Choi J. Y., and Hong B. H., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature. 2009, 457(7230), 706-710.
48.Eizenberg, M. and Blakely J. M., Carbon monolayer phase condensation on ni(111). Surface Science. 1979, 82(1), 228-236.
49.Schafhaeutl, C., On the combinations of carbon with silicon and iron, and other metals, forming the different species of cast iron, steel, and malleable iron. Philosophical Magazine Series 3. 1840, 16(106), 570-590.
50.Brodie, B. C., On the atomic weight of graphite. Phil. Trans. R. Soc. Lond. 1859 vol. 149, 249-259
51.Hummers, W. S. and Offeman R. E., Preparation of graphitic oxide. Journal of the American Chemical Society. 1958, 80(6), 1339-1339.
52.Chen, H. ; Muller M. B. ; Gilmore K. J. ; Wallace G. G., and Li D., Mechanically strong, electrically conductive, and biocompatible graphene paper. Advanced Materials. 2008, 20(18), 3557.
53.Park, S. ; An J. H. ; Jung I. W. ; Piner R. D. ; An S. J. ; Li X. S. ; Velamakanni A., and Ruoff R. S., Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Letters. 2009, 9(4), 1593-1597.
54.Tung, V. C. ; Allen M. J. ; Yang Y., and Kaner R. B., High-throughput solution processing of large-scale graphene. Nat Nano. 2009, 4(1), 25-29.
55.Stankovich, S. ; Dikin D. A. ; Piner R. D. ; Kohlhaas K. A. ; Kleinhammes A. ; Jia Y. ; Wu Y. ; Nguyen S. T., and Ruoff R. S., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 2007, 45(7), 1558-1565.
56.Shin, H. J. ; Kim K. K. ; Benayad A. ; Yoon S. M. ; Park H. K. ; Jung I. S. ; Jin M. H. ; Jeong H. K. ; Kim J. M., and Choi J. Y., Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Advanced Functional Materials. 2009, 19(12), 1987-1992.
57.Gao, W. ; Alemany L. B. ; Ci L., and Ajayan P. M., New insights into the structure and reduction of graphite oxide. Nature Chemistry. 2009, 1(5), 403-408.
58.Li, X. L. ; Wang H. L. ; Robinson J. T. ; Sanchez H. ; Diankov G., and Dai H. J., Simultaneous nitrogen doping and reduction of graphene oxide. Journal of the American Chemical Society. 2009, 131(43), 15939-15944.
59.Long, D. H. ; Li W. ; Ling L. C. ; Miyawaki J. ; Mochida I., and Yoon S. H., Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide. Langmuir. 2010, 26(20), 16096-16102.
60.Fernandez-Merino, M. J. ; Guardia L. ; Paredes J. I. ; Villar-Rodil S. ; Solis-Fernandez P. ; Martinez-Alonso A., and Tascon J. M. D., Vitamin c is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. Journal of Physical Chemistry C. 2010, 114(14), 6426-6432.
61.Pan, Y. H. ; Shang L. ; Zhao F. Q., and Zeng B. Z., A novel electrochemical 4-nonyl-phenol sensor based on molecularly imprinted poly (o-phenylenediamine-co-o-toluidine)-nitrogen-doped graphene nanoribbons-ionic liquid composite film. Electrochimica Acta. 2015, 151, 423-428.
62.Zhu, X. F. ; Xu J. K. ; Duan X. M. ; Lu L. M. ; Zhang K. X. ; Gao Y. S. ; Dong L. Q., and Sun H., Facile fabrication of three-dimensional graphene microspheres using beta-cyclodextrin aggregates as substrates and their application for midecamycin sensing. Rsc Advances. 2015, 5(94), 77469-77477.
63.Zhang, X. ; Zhang Y. C., and Zhang J. W., A highly selective electrochemical sensor for chloramphenicol based on three-dimensional reduced graphene oxide architectures. Talanta. 2016, 161, 567-573.
64.Lomeda, J. R. ; Doyle C. D. ; Kosynkin D. V. ; Hwang W. F., and Tour J. M., Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. Journal of the American Chemical Society. 2008, 130(48), 16201-16206.
65.Villar-Rodil, S. ; Paredes J. I. ; Martinez-Alonso A., and Tascon J. M. D., Preparation of graphene dispersions and graphene-polymer composites in organic media. Journal of Materials Chemistry. 2009, 19(22), 3591-3593.
66.McAllister, M. J. ; Li J. L. ; Adamson D. H. ; Schniepp H. C. ; Abdala A. A. ; Liu J. ; Herrera-Alonso M. ; Milius D. L. ; Car R. ; Prud'homme R. K., and Aksay I. A., Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chemistry of Materials. 2007, 19(18), 4396-4404.
67.Wu, Z. S. ; Ren W. C. ; Gao L. B. ; Liu B. L. ; Jiang C. B., and Cheng H. M., Synthesis of high-quality graphene with a pre-determined number of layers. Carbon. 2009, 47(2), 493-499.
68.Williams, G. ; Seger B., and Kamat P. V., TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. Acs Nano. 2008, 2(7), 1487-1491.
69.Matsumoto, Y. ; Koinuma M. ; Kim S. Y. ; Watanabe Y. ; Taniguchi T. ; Hatakeyama K. ; Tateishi H., and Ida S., Simple photoreduction of graphene oxide nanosheet under mild conditions. Acs Applied Materials & Interfaces. 2010, 2(12), 3461-3466.
70.Plavsic, M. ; Krznaric D., and Cosovic B., The electrochemical processes of copper in the presence of triton x-100. Electroanalysis. 1994, 6(5-6), 469-474.
71.Ghoreishi, S. M. ; Behpour M. ; Jafari N., and Khoobi A., Determination of tyrosine in the presence of sodium dodecyl sulfate using a gold nanoparticle modified carbon paste electrode. Analytical Letters. 2013, 46(2), 299-311.
72.Ghoreishi, S. M. ; Behpour M. ; Mousavi S. ; Khoobi A., and Ghoreishi F. S., Simultaneous electrochemical determination of dopamine, ascorbic acid and uric acid in the presence of sodium dodecyl sulphate using a multi-walled carbon nanotube modified carbon paste electrode. Rsc Advances. 2014, 4(72), 37979-37984.
73.Stadlober, M. ; Kalcher K. ; Raber G., and Neuhold C., Anodic stripping voltammetric determination of titanium(IV) using a carbon paste electrode modified with cetyltrimethylammonium bromide. Talanta. 1996, 43(11), 1915-1924.
74.Kuila, T. ; Mishra A. K. ; Khanra P. ; Kim N. H., and Lee J. H., Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials. Nanoscale. 2013, 5(1), 52-71.
75.Zhou, N. ; Li J. H. ; Chen H. ; Liao C. Y., and Chen L. X., A functional graphene oxide-ionic liquid composites-gold nanoparticle sensing platform for ultrasensitive electrochemical detection of Hg2+. Analyst. 2013, 138(4), 1091-1097.
76.Xu, Y. X. ; Sheng K. X. ; Li C., and Shi G. Q., Highly conductive chemically converted graphene prepared from mildly oxidized graphene oxide. Journal of Materials Chemistry. 2011, 21(20), 7376-7380.
77.Pei, S. and Cheng H.-M., The reduction of graphene oxide. Carbon. 2012, 50(9), 3210-3228.
78.Chekin, F. ; Boukherroub R., and Szunerits S., MoS2/reduced graphene oxide nanocomposite for sensitive sensing of cysteamine in presence of uric acid in human plasma. Materials Science & Engineering C-Materials for Biological Applications. 2017, 73, 627-632.
79.Lu, J. ; Do I. ; Drzal L. T. ; Worden R. M., and Lee I., Nanometal-decorated exfoliated graphite nanoplatelet based glucose biosensors with high sensitivity and fast response. Acs Nano. 2008, 2(9), 1825-1832.
80.Zhang, X. ; Ma L. X., and Zhang Y. C., Electrodeposition of platinum nanosheets on C-60 decorated glassy carbon electrode as a stable electrochemical biosensor for simultaneous detection of ascorbic acid, dopamine and uric acid. Electrochimica Acta. 2015, 177, 118-127.
81.Chen, X. J. ; Wang Y. Y. ; Zhou J. J. ; Yan W. ; Li X. H., and Zhu J. J., Electrochemical impedance immunosensor based on three-dimensionally ordered macroporous gold film. Analytical Chemistry. 2008, 80(6), 2133-2140.
82.Babic, S. ; Horvat A. J. M. ; Pavlovic D. M., and Kastelan-Macan M., Determination of pK(a) values of active pharmaceutical ingredients. Trac-Trends in Analytical Chemistry. 2007, 26(11), 1043-1061.
83.Lan, Y. K. ; Chen T. C. ; Tsai H. J. ; Wu H. C. ; Lin J. H. ; Lin I. K. ; Lee J. F., and Chen C. S., Adsorption behavior and mechanism of antibiotic sulfamethoxazole on carboxylic-functionalized carbon nanofibers-encapsulated ni magnetic nanoparticles. Langmuir. 2016, 32(37), 9530-9539.
84.Bushby, S., Synergy of trimethoprim-sulfamethoxazole. Canadian Medical Association Journal. 1975, 112(13 Spec No), 63.
85.Reeves, D. S. and Wilkinson P. J., The pharmacokinetics of trimethoprim and trimethoprim/sulphonamide combinations, including penetration into body tissues. Infection. 1979, 7(4), S330-S341.
86.Laube, N. ; Mohr B., and Hesse A., Laser-probe-based investigation of the evolution of particle size distributions of calcium oxalate particles formed in artificial urines. Journal of Crystal Growth. 2001, 233(1–2), 367-374.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊