跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/03/16 03:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴怡樺
研究生(外文):Yi-Hua Lai
論文名稱:黃單胞菌 Xanthomonas axonopodis 效應蛋白XopAI的結構與功能分析
論文名稱(外文):Structure-Function Analysis on the Effector Protein XopAI from Xanthomonas axonopodis
指導教授:劉俊宏劉俊宏引用關係
指導教授(外文):Jyung-Hurng Liu
口試委員:陳曄胡念仁
口試日期:2017-07-25
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生命科學系所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:93
中文關鍵詞:第三型分泌系統XopAIADP-核糖基轉移酶
外文關鍵詞:Type III secretion systemXopAIADP-ribosyl transferase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:276
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
第三型分泌系統(Type III secretion system , T3SS)是多數革蘭氏陰性菌中經由多種蛋白複合體形成的跨膜通道,可經由分泌蛋白或把具有致病活性的蛋白直接注入宿主細胞中發揮致病作用。柑橘潰瘍病是黃桿菌所引起的細菌疾病,經由第三型分泌系統進行感染,雖然對人體無害,但潰瘍嚴重影響柑橘樹的生長能力,由黃單胞菌(Xanthomonas axonopodis pv. Citri,Xac)引起,會導致植物葉子脫掉落,柑橘植物的果實早熟而掉落。XopAI蛋白引起植物細菌性潰瘍的機制目前尚不清楚,我們希望經由以下實驗確定XopAI蛋白的致病機制,首先經由重組XopAI蛋白在大腸桿菌中表達,用Ni2+柱純化並結晶進行結構分析。經由序列比對我們發現XopAI C-末端區域與假單胞菌的效應物HopU1預測的ADP-核糖基轉移酶結構區段相似,利用iGEMDOCKv2.1軟體模擬分子對接預測,我們篩選出NAD +,NADP,ADP三種cofactors進行螢光分析實驗。我們利用螢光光譜法確定XopAI蛋白會與NAD +結合,這結果類似於先前研究的效應蛋白HopU1的ADP-核糖基轉移酶結構區段,進而影響植物生長和代謝。
Type III secretion system is a protein appendage found in several Gram-negative bacteria. In pathogenic bacteria, the needle-like structure is used as a sensor probe to detect the presence of eukaryotic organisms and secrete proteins that help the bacteria infect them. Citrus canker is a disease affecting the bacterium species caused by the bacterium Xanthomonas axonopodis. While not harmful to humans, canker serious affects the vitality of citrus trees, causing leaves and fruit to drop prematurely. Although a fruit infected with canker is safe to eat, it will be too unsightly to be sold. The disease is caused by Xanthomonas axonopodis pv. citri (Xac) and leads to defoliation, and premature fruit drop of the citrus plant. The mechanism by which XopAI proteins cause plant bacterial ulcers is not yet known. The recombinant XopAI protein was expressed in E.coli, purified by using Ni2+ column and crystallized. The crystals belonged to space group P41212 and diffracted resolution to 1.63 Å. Because the C-terminal region of XopAI has similarity to the ADP-ribosyl transferase domains of the effector HopU1 of Pseudomonas syringae, we performed fluorescent spectroscopic analyses using three potential cofactors (NAD+, NADP+, and ADP) in order to determine the binding preference of XopAI.
第一章 前言 1
一、 細菌第三型分泌系統(T3SS, Type III secretion system) 1
(一) 第三型分泌系統概述 1
(二) T3SS之結構特性 1
(三) T3SS蛋白組成 2
(四) T3SS的感染途徑 2
二、 柑橘潰瘍 3
(一) 柑橘潰瘍病概述 3
(二) 柑橘潰瘍病病徵 3
(三) 柑橘潰瘍病分類 4
(四) 柑橘潰瘍病寄主 4
(五) 柑橘潰瘍病形態 4
三、 黃單胞菌屬(Xanthomonas) 4
(一) 黃單孢菌屬(Xanthomonas)概述 4
(二) 黃單孢菌形態和生長 5
四、 羅斯曼摺疊(Rossmann fold) 5
五、 丁香假單胞菌(Pseudomonas syringae) 5
六、 ADP-核醣基化(ADP-Ribosylation) 6
(一) 催化機制 6
七、 研究動機 7
第二章 材料與方法 8
一、 實驗流程 8
二、 實驗材料與方法 8
(一) 蛋白質可溶性測試 8
(二) SDS-PAGE分析 11
(三) 蛋白質大量表現 14
(四) 鎳親和性管柱純化 15
(五) 蛋白質濃縮 20
(六) 蛋白質透析 21
(七) 蛋白質定量 22
(八) 蛋白質結晶實驗 23
(九) X-ray晶體繞射實驗數據收集與處理 24
(十) 電腦模擬分子對接實驗 27
(十一) 螢光光譜分析法 (Fluorescence spectroscopy) 28
(十二) 蛋白質熱穩定性分析 (Thermostability measurements) 30
第三章 結果 32
一、 XopAI蛋白大量表現與純化 32
(一) XopAI蛋白可溶性測試與大量表現 32
(二) XopAI蛋白藉由親和性管柱進行純化 32
(三) XopAI蛋白透析與濃縮 33
二、 XopAI蛋白晶體結構 33
(一) XopAI蛋白結晶條件篩選 33
(二) XopAI蛋白結晶 33
(三) 經由X-ray繞射數據分析與晶格判斷 34
(四) 利用分子取代法 (molecular replacement) 進行XopAI蛋白結構解析 34
三、 蛋白質結構比較分析 35
(一) XopAI蛋白與相似蛋白序列比對 35
四、 電腦模擬分子對接尋找輔因子(cofactor) 36
五、 XopAI螢光光譜分析 36
六、 XopAI蛋白與輔因子(cofactor)之熱穩定性分析 37
第四章 討論 38
一、 蛋白質的表現與純化 38
二、 蛋白質透析 38
三、 XopAI蛋白結晶實驗 39
四、 XopAI蛋白結構分析 39
五、 蛋白質序列結構比較分析 40
六、 電腦模擬分子對接分析 41
七、 XopAI螢光光譜分析 42
八、 XopAI蛋白與輔因子(cofactor)之熱穩定性分析 43
第五章 結論 44
表次 45
圖次 51
附錄 78
參考文獻 91
1.蘇鴻基, et al., 植物保護圖鑑系列 9─ 柑橘保護 (下冊). 行政院農業委員會動植物防疫檢疫局. 台北, 台灣, 2003.
2.陳宇謙, 柑桔潰瘍病之非農藥防治. 臺灣大學植物病理與微生物學研究所學位論文, 2009: p. 1-79.
3.吳文川, et al., 柑橘潰瘍病及其病原菌. 台灣柑橘之研究與發展研討會專刊:, 1995: p. 221-243.
4.Nguyen, L., et al., Phylogenetic analyses of the constituents of Type III protein secretion systems. J. Mol. Microbiol. Biotechnol, 2000. 2(2): p. 125-44.
5.Gong, H., et al., Differential expression of Salmonella type III secretion system factors InvJ, PrgJ, SipC, SipD, SopA and SopB in cultures and in mice. Microbiology, 2010. 156(1): p. 116-127.
6.Tosi, T., et al., Structural basis of eukaryotic cell targeting by type III secretion system (T3SS) effectors. Research in microbiology, 2013. 164(6): p. 605-619.
7.Aizawa, S.-I., Bacterial flagella and type III secretion systems. FEMS Microbiology Letters, 2001. 202(2): p. 157-164.
8.Berg, J.M., et al., Biochemistry. Eighth edition. ed. 1 volume (various pagings).
9.Boch, J. and U. Bonas, Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annual review of phytopathology, 2010. 48: p. 419-436.
10.Boch, J., et al., Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 2009. 326(5959): p. 1509-1512.
11.Akeda, Y. and J.E. Galán, Chaperone release and unfolding of substrates in type III secretion. Nature, 2005. 437(7060): p. 911-915.
12.Leyns, F., et al., The host range of the genusXanthomonas. The Botanical Review, 1984. 50(3): p. 308-356.
13.Van den Mooter, M. and J. Swings, Numerical analysis of 295 phenotypic features of 266 Xanthomonas strains and related strains and an improved taxonomy of the genus. International Journal of Systematic and Evolutionary Microbiology, 1990. 40(4): p. 348-369.
14.Lee, Y.-A., Y.-H. Liu, and H.-L. Liu, First report of bacterial leaf blight of coriander caused by Xanthomonas campestris pv. coriandri in Taiwan. Plant disease, 2004. 88(8): p. 910-910.
15.Lee, Y.A., K.P. Chen, and Y.C. Chang, First report of bacterial leaf blight of white‐flowered calla lily caused by Xanthomonas campestris pv. zantedeschiae in Taiwan. Plant Pathology, 2005. 54(2): p. 239-239.
16.Ryan, R.P., et al., Pathogenomics of Xanthomonas: understanding bacterium–plant interactions. Nature Reviews Microbiology, 2011. 9(5): p. 344-355.
17.Chan, J.W. and P.H. Goodwin, The molecular genetics of virulence of Xanthomonas campestris. Biotechnology advances, 1999. 17(6): p. 489-508.
18.Schaad, N.W., et al., Emended classification of xanthomonad pathogens on citrus. Papers in Plant Pathology, 2006: p. 96.
19.Shaad, N., J. Jones, and W. Chun, Laboratory Guide for Identification of Plant Pthogenic Bacteria, 3rd edn. St Paul, MN, 2001, USA: APS Press.
20.Hanukoglu, I., Proteopedia: Rossmann fold: A beta‐alpha‐beta fold at dinucleotide binding sites. Biochemistry and Molecular Biology Education, 2015. 43(3): p. 206-209.
21.Hanukoglu,I;Gutfinget,T. In cDNA sequence of adrenodoxin reductase-identification of a consensus sequence that distinguishes between type-I NAD AND NADP binding-sites, faseb journal, federation amer soc exp boil 9650 rockville pike,vethesda,MD 20814-3998:1988;pp A356-A356.
22.Büttner, D. and S.Y. He, Type III protein secretion in plant pathogenic bacteria. Plant physiology, 2009. 150(4): p. 1656-1664.
23.Hann, D.R., S. Gimenez-Ibanez, and J.P. Rathjen, Bacterial virulence effectors and their activities. Current opinion in plant biology, 2010. 13(4): p. 388-393.
24.Lindeberg, M., et al., Closing the circle on the discovery of genes encoding Hrp regulon members and type III secretion system effectors in the genomes of three model Pseudomonas syringae strains. Molecular plant-microbe interactions, 2006. 19(11): p. 1151-1158.
25.Guo, M., et al., The majority of the type III effector inventory of Pseudomonas syringae pv. tomato DC3000 can suppress plant immunity. Molecular plant-microbe interactions, 2009. 22(9): p. 1069-1080.
26.Jeong, B.-r., et al., Structure function analysis of an ADP-ribosyltransferase type III effector and its RNA-binding target in plant immunity. Journal of Biological Chemistry, 2011. 286(50): p. 43272-43281.
27.Block, A., et al., The Pseudomonas syringae type III effector HopG1 targets mitochondria, alters plant development and suppresses plant innate immunity. Cellular microbiology, 2010. 12(3): p. 318-330.
28.Fu, Z.Q., et al., A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity. Nature, 2007. 447(7142): p. 284-288.
29.Laing, S., et al., ADP-ribosylation of arginine. Amino acids, 2011. 41(2): p. 257-269.
30.Irwin, J.J., et al., ZINC: a free tool to discover chemistry for biology. Journal of chemical information and modeling, 2012. 52(7): p. 1757-1768.
31.Lauer, S.A. and J.P. Nolan, Development and characterization of Ni‐NTA‐bearing microspheres. Cytometry Part A, 2002. 48(3): p. 136-145.
32.Ran, L., et al., Interaction Research on an Antiviral Molecule that Targets the Coat Protein of Southern rice black-streaked dwarf virus. International Journal of Biological Macromolecules, 2017.
33.Greenwood, N. and A. Earnshaw, Chemistry of the Elements 2nd Edition1997: Butterworth-Heinemann.
34.Ma, J.C. and D.A. Dougherty, The cation− π interaction. Chemical reviews, 1997. 97(5): p. 1303-1324.
35.Bellsolell, L.s., et al., Magnesium binding to the bacterial chemotaxis protein CheY results in large conformational changes involving its functional surface. Journal of molecular biology, 1994. 238(4): p. 489-495.
36.Abrikosov, A.A., L.P. Gorkov, and I.E. Dzyaloshinski, Methods of quantum field theory in statistical physics2012: Courier Corporation.
37.Mueller-Dieckmann, C., et al., Structure of the ecto-ADP-ribosyl transferase ART2. 2 from rat. Journal of molecular biology, 2002. 322(4): p. 687-696.
38.Ravulapalli, R., et al., Characterization of Vis toxin, a novel ADP-ribosyltransferase from Vibrio splendidus. Biochemistry, 2015. 54(38): p. 5920-5936.
39.Shibuya, T. Searching protein 3-D structures in linear time. in Annual International Conference on Research in Computational Molecular Biology. 2009. Springer.
40.Wodak, S.J. and J. Janin, Computer analysis of protein-protein interaction. Journal of molecular biology, 1978. 124(2): p. 323-342.
41.Vivian, J.T. and P.R. Callis, Mechanisms of tryptophan fluorescence shifts in proteins. Biophysical journal, 2001. 80(5): p. 2093-2109.
42.Liu, C. and X. Yu, ADP-Ribosyltransferases and Poly ADP-Ribosylation. Current Protein and Peptide Science, 2015. 16(6): p. 491-501.
43.Rehm, C., et al., Investigation of a Quadruplex-Forming Repeat Sequence Highly Enriched in Xanthomonas and Nostoc sp. PloS one, 2015. 10(12): p. e0144275.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top