|
1.Akiyoshi, D.E., Klee, H., Amasino, R.M., Nester, E.W., and Gordon, M.P. (1984). T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc Natl Acad Sci U S A 81, 5994-5998. 2.Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1997). Basic local alignment search tool. J Mol Biol 215, 403-410. 3.Ananiadou, S., Sullivan, D., Black, W., Levow, G.A., Gillespie, J.J., Mao, C., Pyysalo, S., Kolluru, B., Tsujii, J., and Sobral, B. (2011). Named entity recognition for bacterial Type IV secretion systems. PLoS one 6, e14780. 4.Baron, C., and Zambryski, P.C. (1995). The plant response in pathogenesis, symbiosis, and wounding: variations on a common theme? Annu Rev Genet 29, 107-129. 5.Benson, D.A., Karsch-Mizrachi, I., Clark, K., Lipman, D.J., Ostell, J., and Sayers, E.W. (2012). GenBank. Nucleic Acids Res 40, D48-D53. 6.Bevan, M.W., and Chilton, M.D. (1982). T-DNA of the Agrobacterium Ti and Ri plasmids. Annu Rev Genet 16, 357-384. 7.Bourras, S., Rouxel, T., and Meyer, M. (2015) Agrobacterium tumefaciens gene transfer: how a plant pathogen hacks the nuclei of plant and nonplant organisms. Phytopathology 105, 1288-1301. 8.Brencic, A., and Winans, S.C. (2005). Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiol Mol Biol Rev 69, 155-194. 9.Burr, T.J., and Reid, C.L. (1994). Biological control of grape crown gall with non-tumorigenic Agrobacterium vitis strain F2/5. Am J Enol Vitic 45, 213-219. 10.Burr, T.J., Bazzi, C., Sule, S., and Otten, L. (1998). Crown gall of grape: biology of Agrobacterium vitis and the development of disease control strategies. Plant Dis 82, 1288-1297. 11.Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and Madden, T. (2009). BLAST+: architecture and applications. BMC Bioinformatics. 10, 421. 12.Caplan, A.B., Van Montagu, M., and Schell, J. (1985). Genetic analysis of integration mediated by single T-DNA borders. J Bacteriol 161, 655-664. 13.Cascales, E., and Christie, P.J. (2004). Definition of a bacterial type IV secretion pathway for a DNA substrate. Science 304, 1170-1173. 14.Cavara, F. (1897). Tuberculosi della vite. Intorno alla eziologia di alcune malattie di piante cultivate. Le Stazioni Sperimentale Agraric Itliana 30, 483-487. 15.Cho, S.T., Chang, H.H., Egamberdieva, D., Kamilova, F., Lugtenberg, B., and Kuo, C.H. (2015). Genome analysis of Pseudomonas fluorescens PCL1751: a rhizobacterium that controls root diseases and alleviates salt stress for its plant host. PLoS ONE 10, e0140231. 16.Christie, P.J. (1997). Agrobacterium tumefaciens T-complex transport apparatus: aparadigm for a new family of multifunctional transporters in eubacteria. J Bacteriol 179, 3085-3094. 17.Christie, P.J. (2004). Type IV secretion: the Agrobacterium VirB4/D4 and related conjugation systems. Biochim Biophys Acta 1694, 219-234. 18.Christie, P.J. (2016). The mosaic type IV secretion systems. EcoSal Plus 7, 1-22. 19.Christie, P.J., Atmakuri, K., Krishnamoorthy, V., Jakubowski, S., and Cascales, E. (2005). Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol 59, 451-485. 20.Christie, P.J., and Cascales, E. (2005). Structural and dynamic properties of bacterial type IV secretion systems. Mol Membr Biol 22, 51-61. 21.Christie, P.J., Whitaker, N., and González-Rivera, C. (2014). Mechanism and structure of the bacterial type IV secretion systems. Biochim Biophys Acta 1843, 1578-1591. 22.Citovsky, V., Guralnick, B., Simon, M.N., and Wall, J.S. (1997). The molecular structure of Agrobacterium VirE2-single stranded DNA complexes involved in nuclear import. J Mol Biol 271, 718-727. 23.Darling, A.C.E., Mau, B., Blattner, F.R., and Perna, N.T. (2004). Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14, 1394-1403. 24.DeCleene, M., and DelLey, J. (1976). The host range of crown gall. Bot Rev 42, 389-466. 25.Diaz, J., Bernal, A., Pomar, F., and Merino, F. (2001). Induction of shikimate dehydrogenase and peroxidase in pepper (Capsicum annum L.) seedlings in response to copper stress and its relation to lignification. Plant Sci 161, 179-188. 26.Duban, M.E., Lee, K., and Lynn, D.G. (1993). Strategies in pathogenesis: mechanistic specificity in the detection of generic signals. Mol Microbiol 7, 637-645. 27.Durrenberger, F., Cameri, A., Hohn, B., and Koukolikova-Nicola, Z. (1989). Covalently bound VirD2 protein of Agrobacterium tumefaciens protects the T-DNA from exonucleolytic degradation. Proc Natl Acad Sci U S A 86, 9154-9158. 28.Edgar, R.C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32, 1792-1797. 29.Engstrom, P., Zambryski, P., Van Montagu, M., and Stachel, S. (1987). Characterization of Agrobacterium tumefaciens virulence proteins induced by the plant factor acetosyringone. J Mol Biol 197, 635-645. 30.Escobar, M.A., and Dandekar, A.M. (2003). Agrobacterium tumefaciens as an agent of disease. Trends Plant Sci 8, 380-386. 31.Felsenstein, J. (1989). PHYLIP-phylogeny inference package (version 3.2). Cladistics 5, 164-166. 32.Fuller, C.W., Middendorf, L.R., Benner, S.A., Church, G.M., Harris, T., Huang, X., Jovanovich, S.B., Nelson, J.R., Schloss, J.A., Schwartz, D.C., Vezenov, D.V. (2009). The challenges of sequencing by synthesis. Nat Biotechnol 27, 1013–1023. 33.Fullwood, M.J, Wei, C.L., Liu, E.T., and Ruan, Y. (2009). Next-generation DNA sequencing of paired-end tags (PET) for transcriptome and genome analyses. Genome Res 19, 521-532. 34.Gelvin, S.B. (2003). Agrobacterium-mediated plant transformation: the biology behind the "gene-jockeying" tool. Microbiol Mol Biol Rev 67, 16-23. 35.Gelvin, S.B. (2010). Plant proteins involved in Agrobacterium-mediated genetic transformation. Annu Rev Phytopathol 48, 45-68. 36.Gelvin, S.B. (2014). Traversing the cell: Agrobacterium T-DNA journey to the host genome. Front Plant Sci 3, 52. 37.Gietl, C., Koukolikova-Nicola, Z., and Hohn, B. (1987). Mobilization of T-DNA from Agrobacterium to plant cells involves a protein that binds single-stranded DNA. Proc Natl Acad Sci U S A 84, 9006-9010. 38.Gohlke, J., and Deeken, R. (2014). Plant responses to Agrobacterium tumefaciens and crown gall development. Front Plant Sci 5, 155. 39.Guindon, S., and Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52, 696-704. 40.Guyon, P., Chilton, M.D., Petit, A., and Tempe, J. (1980). Agropine in "null-type" crown gall tumors: evidence for generality of the opine concept. Proc Natl Acad Sci U S A 77, 2693-2697. 41.Hepburn, A.G., White, J., Pearson, L., Maunders, M.J., Clarke, L.E., Prescott, A.G., and Blundy, K.S. (1985). The use of pNJ5000 as an intermediate vector for the genetic manipulation of Agrobacterium Ti-plasmids. J Gen Microbiol 131, 2961-2969. 42.Herlache, T.C., and Triplett, E.W. (2002). Expression of a crown gall biological control phenotype in an avirulent strain of Agrobacterium vitis by addition of the trifolitoxin production and resistance genes. BMC Biotechnol 2, 2. 43.Herlache, T.C., Zhang, H.S., Ried, C.L., Carle, S.A., Basaran, P., Thaker, M., Burr, A.T., and Burr, T.J. (2001). Mutations that affect Agrobacterium vitis induced grape necrosis also alter its ability to cause a hypersensitive response on tobacco. Phytopathology 91, 966-972. 44.Howard, E.A., Winsor, B.A., De Vos, G., and Zambryski, P. (1989). Activation of the T-DNA transfer process in Agrobacterium results in the generation of a T-strand-protein complex: Tight association of VirD2 with the 5’ends of T-strands. Proc Natl Acad Sci U S A 86, 4017-4021. 45.Hu, X., Zhao, J., Degrado, W.F., and Binns, A.N. (2013). Agrobacterium tumefaciens recognizes its host environment using ChvE to bind diverse plant sugars as virulence signals. Proc Natl Acad Sci U S A 110, 678-683. 46.Hyatt, D., Chen, G.L., Locascio, P.F., Land, M.L., Larimer, F.W., and Hauser, L.J. (2010). Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119-130. 47.Jataswal, R.K., Veluthambi, K., Gelvin, S.B., and Slightom, J.L. (1987). Double-stranded cleavage of T-DNA and generation of single-stranded T-DNA molecules in Escherichia coli by a virD-encoded border-specific endonuclease from Agrobacterium tumefaciens. J Bacteriol 169, 5035-5045. 48.Kanehisa, M., and Goto, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28, 27-30. 49.Kanehisa, M., Goto, S., Furumichi, M., Tanabe, M., and Hirakawa, M. (2010). KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 38, D355-D360. 50.Kanehisa, M., Sato, Y., and Morishima, K. (2016). BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 428, 726-731. 51.Klee, H., Montoya, A., Horodyski, F., Lichtenstein, C., Garfinkel, D., Fuller, S., Flores, C., Peschon, J., Nester, E., and Gordon, M. (1984). Nucleotide sequence of the tms genes of the pTiA6NC octopine Ti plasmid: two gene products involved in plant tumorigenesis. Proc Natl Acad Sci U S A 81, 1728-1732. 52.Koboldt, D.C., Steinberg, K.M., Larson, D.E., Wilson, R.K., and Mardis, E.R. (2013). The next-generation sequencing revolution and its impact on genomics. Cell 155, 27-38. 53.Krenek, P., Samajova, O., Luptovciak, I., Doskocilova, A., Komis, G., and Samaj, J. (2015). Transient plant transformation mediated by Agrobacterium tumefaciens: principles, methods and applications. Biotechnol Adv 33, 1024-1042. 54.Ku, C., Lo, W.S., Chen, L.L., and Kuo, C.H. (2013). Complete genomes of two dipteran-associated spiroplasmas provided insights into the origin, dynamics, and impacts of viral invasion in Spiroplasma. Genome Biol Evol 5, 1151-1164. 55.Lacroix, B., and Citovsky, V. (2013). The roles of bacterial and host plant factors in Agrobacterium-mediated genetic transformation. Int J Dev Biol 57, 467-481. 56.Lacroix, B., Kozlovsky, S.V., and Citovsky, V. (2008). Recent patents on Agrobacterium-mediated gene and protein transfer, for research and biotechnology. Recent Pat DNA Gene Seq 2, 69-81. 57.Lagesen, K., Hallin, P., AndreasRodland, E., Staerfeldt, H.H., Rognes, T., and Ussery, D.W. (2007). RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35, 3100-3108. 58.Lai, E.M., Shih, H.W., Wen, S.R., Cheng, M.W., Hwang, H.H., and Chiu, S.H. (2006). Proteomic analysis of Agrobacterium tumefaciens response to the vir gene inducer acetosyringone. Proteomics 6, 4130-4136. 59.Lang, J., Vigouroux, A., Planamente, S., El Sahili, A., Blin, P., and Aumont-Nicaise, M. (2014) Agrobacterium uses a unique ligand-binding mode for trapping opines and acquiring a competitive advantage in the niche construction on plant host. PLoS Pathog 10, e1004444. 60.Lehoczky, J. (1968). Spread of Agrobacterium tumefaciens in the vessels of the grapevine after natural infection. Phytopathology 63, 239-246. 61.Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 25, 1754-1760. 62.Li, Y., Gronquist, M.R., Hao, G., Holden, M.R., Eberhard, A., Scott, R.A., Savka, M.A., Szegedi, E., Sule, S., and Burr, T.J. (2006). Chromosome and plasmid-encoded N-acyl-homoserine lactones produced by Agrobacterium vitis wild type and mutants that differ in their interactions with grape and tobacco. Physiol Mol Plant Pathol 67, 284-290. 63.Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., and 1000 Genome Project Data Processing Subgroup. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078-2079. 64.Liu, L., Li, Y., Li, S., Hu, N., He, Y., Pong, R., Lin, D., Lu, L., and Law, M. (2012). Comparison of next-generation sequencing systems. J Biomed Biotechnol 2012, 251364. 65.Li, L., Stoeckert, C.J., and Roos, D.S. (2003). OrthoMCL: Identification of ortholog groups for eukaryotic genomes. Genome Res 13, 2178-2189. 66.Lo, W.S., Chen, L.L., Chung, W.C., Gasparich, G., and Kuo, C.H. (2013). Comparative genome analysis of Spiroplasma melliferum IPMB4A, a honeybee-associated bacterium. BMC Genomics 14, 22. 67.Loman, N.J., Constantinidou, C., Chan, J.Z., Halachev, M., Sergeant, M., Penn, C.W., Robinson, E.R., and Pallen, M.J. (2012). High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity. Nat Rev Microbiol 10, 599-606. 68.Lo, W.S., Gasparich, G.E., and Kuo, C.H. (2015). Found and lost: the fates of horizontally acquired genes in arthropod-symbiotic Spiroplasma. Genome Biol Evol 7, 2458-2472. 69.Lowe, T.M., and Eddy, S.R. (1997). tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25, 955-964. 70.Mandouri, H., Petit, A., Oger, P., and Dessaux, Y. (2002). Engineered rhizosphere: the trophic bias generated by opine-inducing plants is independent of the opine type, the soil origin, and the plant species. Appl Environ Microbiol 68, 2562-2566. 71.Margulies, M., Egholm, M., Altman, W.E., Attiya, S., Bader, J.S., Bemben, L.A., Berka, J., Braverman, M.S., Chen, Y.J., Chen, Z., Dewell, S.B., Du, L., Fierro, J.M., Gomes, X.V., Godwin, B.C., He, W., Helgesen, S., Ho, C.H., Irzyk, G.P., Jando, S.C., Alenquer, M.L., Jarvie, T.P., Jirage, K.B., Kim, J.B., Knight, J.R., Lanza, J.R., Leamon, J.H., Lefkowitz, S.M., Lei, M., Li, J., Lohman, K.L., Lu, H., Makhijani, V.B., McDade, K.E., McKenna, M.P., Myers, E.W., Nickerson, E., Nobile, J.R., Plant, R., Puc, B.P., Ronan, M.T., Roth, G.T., Sarkis, G.J., Simons, J.F., Simpson, J.W., Srinivasan, M., Tartaro, K.R., Tomasz, A., Vogt, K.A., Volkmer, G.A., Wang, S.H., Wang, Y., Weiner, M.P., Yu, P., Begley, R.F., and Rothberg, J.M. (2005). Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376-380. 72.Miranda, A., Janssen, G., Hodges, L., Peralta, E.G., and Ream, W. (1992). Agrobacterium tumefaciens transfers extremely long T-DNAs by a unidirectional mechanism. J Bacteriol 174, 2288-2297. 73.Montoya, A.L., Chilton, M.D., Gordon, M.P., Sciaky, D., and Nester, E.W. (1977). Octopine and nopaline metabolism in Agrobacterium tumefaciens and crown gall tumor cells: role of plasmid genes. J Bacteriol 129, 101-107. 74.Montoya, A.L., Moore, L.W., Gordon, M.P., and Nester, E.W. (1978). Multiple genes coding for octopine-degrading enzymes in Agrobacterium. J Bacteriol 136, 909-915. 75.Moore, L. W., and G. Warren. (1979). Agrobacterium radiobacter strain K84 and biological control of crown gall. Annu Rev Phytopathol 17, 163-179. 76.Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A.C., and Kanehisa, M. (2007). KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35, W182-W185. 77.Nester, E.W. (2014). Agrobacterium: nature’s genetic engineer. Font Plant Sci 5, 730 78.Newell, C.A. (2000). Plant transformation technology. Developments and applications. Mol Biotechnol 16, 53-65. 79.Ormeño-Orrillo, E., Servín-Garcidueñas, L.E., Rogel, M.A., González, V., Martínez-Romero, J., and Martínez-Romero, E. (2015). Taxonomy of Rhizobia and agrobacteria from the Rhizobiaceae family in light of genomics. Syst Appl Microbiol 38, 287-291. 80.Otten, L., de Ruffray, P., Momol, E.A., Momol, M.T., and Burr, T.J. (1996). Phylogenetic relationships between Agrobacterium vitis isolates and their Ti plasmid. Mol Plant Microbe Interact 9, 782-786. 81.Pitzschke, A., and Hirt, H. (2010). New insights into an old story: Agrobacterium-induced tumour formation in plants by plant transformation. EMBO J 29, 1021-1032. 82.Reinhardt, J.A., Baltrus, D.A., Nishimura, M.T., Jeck, W.R., Jones, C.D., and Dangl, J.L. (2009). De novo assembly using low-coverage short read sequence data from the rice pathogen Pseudomonas syringae pv. oryzae. Genome Res 19, 294-305. 83.Robinson, J.T., Thorvaldsdottir, H., Winckler, W., Guttman, M., Lander, E.S., Getz, G., and Mesirov, J.P. (2011). Integrative genomics viewer. Nat Biotech 29, 24-26. 84.Sanger, F., and Coulson, A.R. (1975). A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 94, 441-448. 85.Shendure, J., and Ji, H. (2008). Next-generation DNA sequencing. Nat Biotechnol 26, 1135-1145. 86.Shendure, J., Mitra, R.D., Varma, C., and Church, G.M. (2004). Advanced sequencing technologies: Methods and goals. Nat Rev Genet 5, 335-344. 87.Shi, Y., Lee, L.Y., and Gelvin, S.B. (2014). Is VIP1 important for Agrobacterium-mediated transformation? Plant J 79, 848-860. 88.Singer, K., Shiboleth, Y.M., Li, J., and Tzfira, T. (2012). Formation of complex extrachromosomal T-DNA structures in Agrobacterium tumefaciens-infected plants. Plant Physiol 160, 511-522. 89.Slater, S.C., Goldman, B.S., Goodner, B., Setubal, J.C., Farrand, S.K., Nester, E.W., Burr, T.J., Banta, L., Dickerman, A.W., Paulsen, I., Otten, L., Suen, G., Welch, R., Almeida, N.F., Arnold, F., Burton, O.T., Du, Z., Ewing, A., Godsy, E., Heisel, S., Houmiel, K.L., Jhaveri, J., Lu, J., Miller, N.M., Norton, S., Chen, Q., Phoolcharoen, W., Ohlin, V., Ondrusek, D., Pride, N., Stricklin, S.L., Sun, J., Wheeler, C., Wilson, L., Zhu, H., and Wood, D.W. (2009). Genome sequences of three Agrobacterium biovars help elucidate the evolution of multichromosome genomes in bacteria. J Bacteriol 191, 2501-2511. 90.Smith, E.F., and Townsend, C.O. (1907). A plant tumor of bacterial origin. Science 25, 671-673. 91.Srinivasan, R., and Gothandam, K.M. (2016). Synergistic action of D-glucose and acetosyringone on Agrobacterium strains for efficient Dunaliella transformation. PLoS One 11, e0158322. 92.Stachel, S.E., and Zambryski, P.C. (1989). Bacteria-yeast conjugation. Generic trans-kingdom sex? Nature 340, 190-191. 93.Staphorst, J.L., van Zyl, F.G.H., Strijdom, B.W., and Groenewold, Z.E. (1985). Agrocinproducing pathogenic and nonpathogenic biotype-3 strains of Agrobacterium tumefaciens active against biotype-3 pathogens. Curr Microbiol 12, 45-52. 94.Sule, S., Cursino, L., Zheng, D., Hoch, H.C., and Burr, T.J. (2009). Surface motility and associated surfactant production in Agrobacterium vitis. Lett Appl Microbiol 49, 596-601. 95.Suzuki, K., Hattori, Y., Uraji, M., Ohta, N., Iwata, K., Murata, K., Kato, A., and Yoshida, K. (2000). Complete nucleotide sequence of a plant tumor-inducing Ti plasmid. Gene 242, 331-336. 96.Swain, M.T., Tsai, I.J., Assefa, S.A., Newbold, C., Berriman, M., and Otto, T.D. (2012). A post-assembly genome-improvement toolkit (PAGIT) to obtain annotated genomes from contigs. Nat Protoc 7, 1260-1284. 97.Tatusov, R.L., Fedorova, N., Jackson, J., Jacobs, A., Kiryutin, B., Koonin, E., Krylov, D., Mazumder, R., Mekhedov, S., Nikolskaya, A., Rao. B.S., Smirnov, S., Sverdlov. A., Vasudevan, S., Wolf, Y., Yin, J., and Natale, D. (2003). The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4, 41. 98.Tatusov, R.L., Koonin, E.V., and Lipman, D.J. (1997). A genomic perspective on protein families. Science. 278, 631-637. 99.Toro, N., Datta, A., Yanofsky, M., and Nester, E. (1988). Role of the overdrive sequence in T-DNA border cleavage in Agrobacterium. Proc Natl Acad Sci U S A 85, 8558-8562. 100.Treangen, T.J., and Salzberg, S.L. (2011). Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet 13, 36-46. 101.Trokter, M., Felisberto-Rodrigues, C., Christie, P. J., and Waksman, G. (2014). Recent advances in the structural and molecular biology of type IV secretion systems. Curr Opin Struct Biol 27, 16-23. 102.Tzfira, T., and Citovsky, V. (2006). Agrobacterium-mediated genetic transformation of plants; biology and biotechnology. Curr Opine Biotechnol 17, 147-154. 103.Van Dijk, E.L., Auger, H., Jaszczyszyn, Y., and Thermes, C. (2014). Ten years of next-generation sequencing technology. Trends Genet 30, 418-426. 104.Wang, Y., Peng, W., Zhou, X., Huang, F., Shao, L., and Luo, M. (2014). The putative Agrobacterium transcriptional activator-like virulence protein VirD5 may target T-complex to prevent the degradation of coat proteins in the plant cell nucleus. New Phytol 203, 1266-1281. 105.Wang, K. Stachel, S.E., Timmerman, B., Montagu, V.M., and Zambryski, P.C. (1987). Site-specific nick in the T-DNA border sequence as a result of Agrobacterium vir gene expression. Science 235, 587-591. 106.Yang, Y.L., Li, J.Y., Wang, J.H., and Wang, H.M. (2009). Mutations affecting chemotaxis of Agrobacterium vitis strain E26 also alter attachment to grapevine roots and biocontrol of crown gall disease. Plant Pathol 58, 594-605. 107.Yanofsky, M.F., Porter, S.G., Young, C., Albright, L.M. Gordon, M.P., and Nester, E.W. (1986). The virD operon of Agrobacterium tumefaciens encodes a site-specific endonuclease. Cell 47, 471-477. 108.Young, C., and Nester, E.W. (1988). Association of the VirD2 protein with the 5’ end of T-strand in Agrobacterium tumefaciens. J Baceriol 170, 3367-3374. 109.Zerbino, D.R., and Birney, E. (2008). Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18, 821-829. 110.Zheng D., and Burr T.J. (2013). An Sfp-type PPTase and associated polyketide and nonribosomal peptide synthases in Agrobacterium vitis are essential for induction of tobacco hypersensitive response and grape necrosis. Mol Plant Microbe Interact 26, 812-822. 111.Ziemienowicz, A. (2014). Agrobacterium-mediated plant transformation: Factors, applications and recent advances. Biocatal Agric Biotechnol 3, 95-102.
|