|
1.Parthiban, V., M.M. Gromiha, and D. Schomburg, CUPSAT: prediction of protein stability upon point mutations. Nucleic Acids Research, 2006. 34: p. W239-W242. 2.Deutsch, C. and B. Krishnamoorthy, Four-body scoring function for mutagenesis. Bioinformatics, 2007. 23(22): p. 3009-3015. 3.Zhou, H.Y. and Y.Q. Zhou, Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction. Protein Science, 2002. 11(11): p. 2714-2726. 4.Worth, C.L., R. Preissner, and T.L. Blundell, SDM-a server for predicting effects of mutations on protein stability and malfunction. Nucleic Acids Research, 2011. 39: p. W215-W222. 5.Guerois, R., J.E. Nielsen, and L. Serrano, Predicting changes in the stability of proteins and protein complexes: A study of more than 1000 mutations. Journal of Molecular Biology, 2002. 320(2): p. 369-387. 6.Capriotti, E., P. Fariselli, and R. Casadio, I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Research, 2005. 33: p. W306-W310. 7.Cheng, J.L., A. Randall, and P. Baldi, Prediction of protein stability changes for single-site mutations using support vector machines. Proteins-Structure Function and Bioinformatics, 2006. 62(4): p. 1125-1132. 8.Teng, S.L., A.K. Srivastava, and L.J. Wang, Sequence feature-based prediction of protein stability changes upon amino acid substitutions. Bmc Genomics, 2010. 11: p. 8. 9.Giollo, M., et al., NeEMO: a method using residue interaction networks to improve prediction of protein stability upon mutation. Bmc Genomics, 2014. 15. 10.Fariselli, P., et al., INPS: predicting the impact of non-synonymous variations on protein stability from sequence. Bioinformatics, 2015. 31(17): p. 2816-2821. 11.Huang, L.T., M.M. Gromiha, and S.Y. Ho, iPTREE-STAB: interpretable decision tree based method for predicting protein stability changes upon mutations. Bioinformatics, 2007. 23(10): p. 1292-1293. 12.Yin, S.Y., F. Ding, and N.V. Dokholyan, Eris: an automated estimator of protein stability. Nature Methods, 2007. 4(6): p. 466-467. 13.Pires, D.E.V., D.B. Ascher, and T.L. Blundell, mCSM: predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics, 2013. 30(3): p. 335-342. 14.Chen, C.W., J. Lin, and Y.W. Chu, iStable: off-the-shelf predictor integration for predicting protein stability changes. Bmc Bioinformatics, 2013. 14: p. 14. 15.Pires, D.E.V., D.B. Ascher, and T.L. Blundell, DUET: a server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Research, 2014. 42(W1): p. W314-W319. 16.Folkman, L., et al., EASE-MM: Sequence-Based Prediction of Mutation-Induced Stability Changes with Feature-Based Multiple Models. Journal of Molecular Biology, 2016. 428(6): p. 1394-1405. 17.Dehouck, Y., et al., Fast and accurate predictions of protein stability changes upon mutations using statistical potentials and neural networks: PoPMuSiC-2.0. Bioinformatics, 2009. 25(19): p. 2537-2543. 18.Masso, M. and I.I. Vaisman, Accurate prediction of stability changes in protein mutants by combining machine learning with structure based computational mutagenesis. Bioinformatics, 2008. 24(18): p. 2002-2009. 19.Laimer, J., et al., MAESTRO - multi agent stability prediction upon point mutations. Bmc Bioinformatics, 2015. 16: p. 13. 20.Gromiha, M.M., et al., ProTherm: Thermodynamic database for proteins and mutants. Nucleic Acids Research, 1999. 27(1): p. 286-288. 21.Frank, E., et al., Data mining in bioinformatics using Weka. Bioinformatics, 2004. 20(15): p. 2479-2481. 22.Breiman, L., Random forests. Machine Learning, 2001. 45(1): p. 5-32. 23.Ho, T.K., Random decision forests, in Proceedings of the Third International Conference on Document Analysis and Recognition (Volume 1) - Volume 1. 1995, IEEE Computer Society. p. 278. 24.Breiman, L., Bagging Predictors. Machine Learning, 1996. 24(2): p. 123-140. 25.Ho, T.K., The random subspace method for constructing decision forests. Ieee Transactions on Pattern Analysis and Machine Intelligence, 1998. 20(8): p. 832-844. 26.Fiser, A. and A. Sali, MODELLER: Generation and refinement of homology-based protein structure models. Macromolecular Crystallography, Pt D, 2003. 374: p. 461-491. 27.Berendsen, H.J.C., D. van der Spoel, and R. van Drunen, GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 1995. 91(1): p. 43-56. 28.Schymkowitz, J., et al., The FoldX web server: an online force field. Nucleic Acids Research, 2005. 33: p. W382-W388. 29.Cavallo, L., J. Kleinjung, and F. Fraternali, POPS: a fast algorithm for solvent accessible surface areas at atomic and residue level. Nucleic Acids Research, 2003. 31(13): p. 3364-3366. 30.Kabsch, W. and C. Sander, Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 1983. 22(12): p. 2577-637. 31.Wallace, A.C., R.A. Laskowski, and J.M. Thornton, LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng, 1995. 8(2): p. 127-34. 32.Stormo, G.D., et al., Use of the ‘Perceptron’ algorithm to distinguish translational initiation sites in E. coli. Nucleic Acids Research, 1982. 10(9): p. 2997-3011. 33.Eddy, S.R., Profile hidden Markov models. Bioinformatics, 1998. 14(9): p. 755-63. 34.Soding, J., Protein homology detection by HMM-HMM comparison. Bioinformatics, 2005. 21(7): p. 951-60. 35.Quan, L., Q. Lv, and Y. Zhang, STRUM: structure-based prediction of protein stability changes upon single-point mutation. Bioinformatics, 2016. 32(19): p. 2936-2946.
|