跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/08 01:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:方翟
研究生(外文):Ti Fang
論文名稱:提升人工纖維素水解酵素聚合體分解效率之策略分析
論文名稱(外文):Improvement strategy of artificial cellulosomes’ efficiency
指導教授:黃介辰
口試委員:李思禹張瑞仁
口試日期:2017-07-19
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生命科學系所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:58
中文關鍵詞:木質纖維素纖維素水解酵素複合體支架蛋白纖維素水解酵素
外文關鍵詞:lignocellulosecellulosomescaffolding proteincellulase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:251
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為解決能源危機,各國都在努力開發各種替代能源,其中,生質能源特別有其開發價值,因為全球利用光合作用所生成的生物質量(Biomass)就有1,730億噸,且利用率僅不到10%。以台灣為例,一般可用於再生能源生產的生物質量多為稻草、雜草、廢木料等等,這些農業廢棄物每年都會產生,但目前的處理方式多為燃燒,浪費了這些生物質量,還會造成環境汙染,若能轉換為生質能源,將不啻為一解決問題的方法。天然的纖維素被包覆在結構複雜的木質纖維素(lignocellulose)之中,若僅透過纖維素分解酵素(cellulase)將其分解,須花費較長的時間,因此還得與木聚醣酵素(xylanase)等各種不同功能的酵素合作才能減少分解時間。其機制為:先分解外層的木質纖維素,使內部纖維素裸露出來,再藉endo-glucosidase和exo-glucosidase等纖維素分解酵素的水解,將纖維素醣化為葡萄糖。在先前的研究中指出,來自Clostridium thermocellum的纖維素水解酵素複合體(cellulosome),可以將纖維素水解酵素結合在一個支架蛋白上,使酵素的距離拉近而產生加乘作用,讓水解效率提升。該複合體的結構分為兩部分,其一為支架蛋白(scaffolding protein),其二為各種水解酵素。而本實驗從中選擇三個水解酵素及支架蛋白相關基因透過OGAB(Ordered Gene Assembly in Bacillus subtilis)方法,分別構築並表現在Bacillus subtilis上作為研究,探討支架蛋白與水解酵素的關係及不同組合與作用時間對效率的影響,期望透過纖維素水解酵素複合體分解木質纖維素,以提升生物質量的利用進而減緩能源危機的發生。

本研究由蛋白活性測試發現,木質纖維素水解酵素若單獨使用時,cipA對xynC的結合效率高於celA與celK,所以xynC在有cipA時效果較佳;另外也發現,celA、celK與xynC似乎彼此有交互作用,若同時用於木質纖維素水解,比單一酵素的效率高出三至六倍。
The possibility of exhaustion of fossil fuels has drawn global attention to the issue of exploring renewable alternatives to fossil fuel. Lately, various renewable energy sources have been offered as alternatives to petroleum, such as bioethanol. It is a biofuel produced from grasses, wood, algae, or other plants. Lignocellulosic biomass is the non-edible portion of the plant, which is underutilized, but could be used for biofuel production. The structure complexity of lignocellulose makes it recalcitrant to be hydrolysised. How to enhance the efficiency of cellulose degradation is a crucial issue for futher application. It has been discovered that cellulosome could enhance the efficiency of cellulose degradation through cellulases assembling on scaffolding protein and interact with cellulose. The cellulose hydrolysis efficiency could be increased by proximity synergy of cellulases. Though Clostridium thermocellum could produce cellulosome, but the culturing condition should be anaerobic and that it’s difficult to handle for application. According to a proteome-wide analysis of Clostridium thermocellum ATCC27405, five cellulosomal genes including one exo-glucosidase gene (celK), one endo-glucosidase gene (celA), one xylanase gene (xynC), one scaffolding protein gene (cipA) and one anchoring protein gene (sdbA) were cloned and co-expressed in Bacillus subtilis WB800 by a method named ordered gene assembly in Bacillus subtilis (OGAB) to produce designer cellulosome in order to exploit the potential for enzyme industry. To instigate cellulose interaction, cellulosome were mixed in different way and different time for enhancing cellulose hydrolysis activity.
第一章、前言 1
第ㄧ節、生質能源 2
第二節、木質纖維素 2
第三節、木質纖維素分解酵素 4
第四節、纖維素酵素複合體(cellulosome) 7
第五節、Clostridium thermocellum 9
第六節、Bacillus subtilis 9
第七節、合成生物學 10
第二章、研究目的、策略及架構 14
第一節、研究目的 15
第二節、研究策略 15
一、基因重組宿主的選擇策略─Bacillus subtilis WB800 15
二、木質纖維素水解酵素生產基因群之選擇策略 16
第三節、研究架構 18
第三章、研究材料及方法 17
第一節、研究材料 18
ㄧ、菌種與質體 18
二、藥品及酵素 18
第二節、研究方法 18
一、培養基配製 18
二、試劑與緩衝溶液 21
三、DNA之製備 22
四、質體之構築與選殖(cloning) 25
五、Ordered Gene Assembly in Bacillus subtilis (OGAB) method 27
六、表現蛋白確認 31
七、纖維素分解酵素複合體活性分析 33
第四章、研究結果與討論 35
第一節、Cellulosome相關基因片段與使用之基質 35
第二節、收集蛋白並分析比較各別酵素活性 36
一、表現單一纖維素水解酵素與菌液之酵素活性比較 37
二、表現混和纖維素水解酵素之菌株的酵素活性比較 39
三、酵素混和液與單一酵素之效率比較 41
四、酵素混和液與支架蛋白的交互作用分析 43
五、單一酵素與混和酵素之效率分析 45
六、以稻稈為基質探討木質纖維素水解酵素之效率 47
第五章、初步結果與未來展望 53
第六章、參考文獻 54
Bayer, E. A., et al. (2004). "The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides." Annu Rev Microbiol 58: 521-554.

Carvalho, A. L., et al. (2003). "Cellulosome assembly revealed by the crystal structure of the cohesin-dockerin complex." Proc Natl Acad Sci U S A 100(24): 13809-13814.

Doi, R. H. and A. Kosugi (2004). "Cellulosomes: plant-cell-wall-degrading enzyme complexes." Nat Rev Microbiol 2(7): 541-551.

Dror, T. W., et al. (2003). "Regulation of the cellulosomal CelS (cel48A) gene of Clostridium thermocellum is growth rate dependent." J Bacteriol 185(10): 3042-3048.

Fontes, C. M. and H. J. Gilbert (2010). "Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates." Annu Rev Biochem 79: 655-681.

Gilbert, H. J. (2007). "Cellulosomes: microbial nanomachines that display plasticity in quaternary structure." Mol Microbiol 63(6): 1568-1576.

Gold, N. D. and V. J. Martin (2007). "Global view of the Clostridium thermocellum cellulosome revealed by quantitative proteomic analysis." J Bacteriol 189(19): 6787-6795.

Han, S. J., et al. (1995). "Characterization of a bifunctional cellulase and its structural gene. The cell gene of Bacillus sp. D04 has exo- and endoglucanase activity." J Biol Chem 270(43): 26012-26019.

Handelsman, T., et al. (2004). "Cohesin-dockerin interaction in cellulosome assembly: a single Asp-to-Asn mutation disrupts high-affinity cohesin-dockerin binding." FEBS Lett 572(1-3): 195-200.

Itaya, M., et al. (2008). "Bottom-up genome assembly using the Bacillus subtilis genome vector." Nat Methods 5(1): 41-43.

Johnson, E. A., et al. (1982). "Saccharification of complex cellulosic substrates by the cellulase system from Clostridium thermocellum." Appl Environ Microbiol 43(5): 1125-1132.

Kataeva, I., et al. (1999). "Cloning and sequence analysis of a new cellulase gene encoding CelK, a major cellulosome component of Clostridium thermocellum: evidence for gene duplication and recombination." J Bacteriol 181(17): 5288-5295.

Kosugi, A., et al. (2002). "Cell-surface-anchoring role of N-terminal surface layer homology domains of Clostridium cellulovorans EngE." J Bacteriol 184(4): 884-888.

Morais, S., et al. (2010). "Cellulase-xylanase synergy in designer cellulosomes for enhanced degradation of a complex cellulosic substrate." MBio 1(5).

Morais, S., et al. (2010). "Contribution of a xylan-binding module to the degradation of a complex cellulosic substrate by designer cellulosomes." Appl Environ Microbiol 76(12): 3787-3796.

Morais, S., et al. (2011). "Assembly of xylanases into designer cellulosomes promotes efficient hydrolysis of the xylan component of a natural recalcitrant cellulosic substrate." MBio 2(6).

Nishizaki, T., et al. (2007). "Metabolic engineering of carotenoid biosynthesis in Escherichia coli by ordered gene assembly in Bacillus subtilis." Appl Environ Microbiol 73(4): 1355-1361.

Salamitou, S., et al. (1994). "Subcellular localization of Clostridium thermocellum ORF3p, a protein carrying a receptor for the docking sequence borne by the catalytic components of the cellulosome." J Bacteriol 176(10): 2828-2834.

Schwarz, W. H. (2001). "The cellulosome and cellulose degradation by anaerobic bacteria." Appl Microbiol Biotechnol 56(5-6): 634-649.

Spiers, A. J. and P. L. Bergquist (1992). "Expression and regulation of the RepA protein of the RepFIB replicon from plasmid P307." J Bacteriol 174(23): 7533-7541.

Tamaru, Y. and R. H. Doi (1999). "Three surface layer homology domains at the N terminus of the Clostridium cellulovorans major cellulosomal subunit EngE." J Bacteriol 181(10): 3270-3276.

Tsai, S. L., et al. (2010). "Surface display of a functional minicellulosome by intracellular complementation using a synthetic yeast consortium and its application to cellulose hydrolysis and ethanol production." Appl Environ Microbiol 76(22): 7514-7520.

Tsai, S. L., et al. (2009). "Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production." Appl Environ Microbiol 75(19): 6087-6093.

Tsuge, K., et al. (2003). "One step assembly of multiple DNA fragments with a designed order and orientation in Bacillus subtilis plasmid." Nucleic Acids Res 31(21): e133.

Tsuge, K., et al. (2007). "Production of the non-ribosomal peptide plipastatin in Bacillus subtilis regulated by three relevant gene blocks assembled in a single movable DNA segment." J Biotechnol 129(4): 592-603.

Wang, T. Y., et al. (2011). "Functional characterization of cellulases identified from the cow rumen fungus Neocallimastix patriciarum W5 by transcriptomic and secretomic analyses." Biotechnol Biofuels 4: 24.

Wen, F., et al. (2010). "Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol." Appl Environ Microbiol 76(4): 1251-1260.

Xu, Q., et al. (2013). "Improving activity of minicellulosomes by integration of intra- and intermolecular synergies." Biotechnol Biofuels 6(1): 126.

Zverlov, V. V., et al. (2005). "Two new major subunits in the cellulosome of Clostridium thermocellum: xyloglucanase Xgh74A and endoxylanase Xyn10D." Microbiology 151(Pt 10): 3395-3401.

Zverlov, V. V., et al. (1998). "Multidomain structure and cellulosomal localization of the Clostridium thermocellum cellobiohydrolase CbhA." J Bacteriol 180(12): 3091-3099.

薛乃綺. (2016). 人工纖維素分解酵素複合體於枯草桿菌與其酵素和支架蛋白間的相互作用分析. (碩士論文Construct artificial cellulosomes in Bacillus subtilis and cellulase-scaffolding interaction analysis), 國立中興大學, 台灣台中市南區. http://handle.ncl.edu.tw/11296/ndltd/67184090610089034322
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊