跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/09 22:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林哲宇
研究生(外文):Zhe-Yu Lin
論文名稱:台灣西南海域深海甲烷冷泉與周緣生態系之生物多樣性暨食物網模式建構
論文名稱(外文):Biodiversity and trophic models of the deep-water methane seeps and their surrounding ecosystems off southwestern Taiwan
指導教授:林幸助林幸助引用關係陳宣汶陳宣汶引用關係
指導教授(外文):Hsing-Juh LinHsuan-Wien Chen
口試委員:劉莉蓮
口試委員(外文):Li-Lian Liu
口試日期:2017-07-20
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生命科學系所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:196
中文關鍵詞:甲烷冷泉天然氣水合物深海生物群集組成穩定性同位素食物網模式
外文關鍵詞:methane seepgas hydratescommunity compositionstable isotopestrophic models
相關次數:
  • 被引用被引用:2
  • 點閱點閱:741
  • 評分評分:
  • 下載下載:61
  • 收藏至我的研究室書目清單書目收藏:0
甲烷冷泉廣泛分布於全世界各地的大陸邊緣,其所在地不僅蘊藏著豐富的天然氣水合物資源,同時亦存在密度極高的化學自營性與共生性物種。這些物種經常大量聚集以利用冷泉能量,並供給其他冷泉當地或非當地物種許多生態功能,成為深海環境中的生物熱點。為了在開發天然氣水合物資源前建立當地生物資源基準線,並評估能源開發對深海生態系的衝擊。本研究自2013年至2016年,於南海大陸斜坡北坡進行共8次的生物採集與環境因子調查。除了量化當地的生物多樣性外,亦探討底棲群集組成並解釋生物與環境因子之間的關係。此外,藉由碳、氮穩定性同位素追蹤異營性消費者的食物來源、估算甲烷冷泉能量貢獻、比較冷泉與非冷泉生物群集之營養區位。最後,以Ecopath模式探討食物網中的能量流向,並說明甲烷冷泉於深海環境中的重要性。接著,以Ecosim模擬開發天然氣水合物後,冷泉與周緣深海生態系可能的變動情形。群集分析顯示雖然南海大陸斜坡深處營養貧瘠,但其物種多樣性與均勻度皆很高,無論是食底泥碎屑者或是懸浮濾食者皆傾向棲息於食物相對較多之處。同位素分析顯示南海大陸斜坡的深海生態系具有4-5個營養階層。大型底棲魚類與石蟹會進入冷泉區,並將甲烷碳源輸出至周圍環境。冷泉群集的營養多樣性與區位寬度皆大於非冷泉群集,且兩者營養區位不重疊。網絡分析顯示有冷泉的深海生態系具高生產力與生物量,故其所有能量流皆大於無冷泉的深海生態系。訊息理論指數顯示無冷泉的深海生態系較有冷泉的深海生態系穩定;但有冷泉的深海生態系遭遇擾動後的回復力較強。未考量冷泉區面積大小與冷泉底內動物的前提下,Ecopath with Ecosim模擬顯示冷泉貽貝生物量的降幅於水合物開採十年後不超過50%,則對於系統總能量無明顯衝擊,且能兼顧冷泉與周緣深海功能群生物量,使群集組成不會有明顯變動。此結果支持中度開採干擾使生態系不會生產過剩從而增加系統成熟度,最終還能提升平均營養傳輸效率。
Methane seeps occur at the passive continental margins around the world. These seepages not only embrace abundant gas-hydrate resources but also nurture massive chemoautotrophic or chemosymbiotic species. The chemoautotrophic/symbiotic species could use the energy directly from the gas-hydrate and then transfer them to other associated seep or non-seep fauna. Consequently, seepages become the hotspots of biomass and biodiversity in deep-sea. In order to establish the baseline of the biological resources before the gas-hydrate resources mining, and assess the impacts of exploitation on deep-sea ecosystems, we collected biological environmental data from the northern continental slope of South China Sea in eight research cruises between 2013 and 2016. In addition to estimate the local/regional biodiversity, we investigated the community of megabenthos as well as their relationships with environmental factors. Furthermore, we used the ratios of δ13C and δ15N stable isotopes to trace the food sources of the heterotrophic consumers, to estimate the trophic contributions of the methane seep, and to compare the trophic niches of the seep and non-seep communities. For studying the pathways of energy flows and revealing the importance of methane seeps in the deep sea, the Ecopath models of the seep and its surrounding ecosystems were constructed. Finally, we utilized the temporal module Ecosim to simulate the potential distutbances of the seep and peripheral ecosystems after commercial mining for gas-hydrates. The results showed that both the species diversity and evenness were very high in spite of low nutrition on the continental slopes. Moreover, both these suspensivores and depositivores preferred to inhabit places where had relatively more food. The results of stable isotope analysis illustrated 4-5 trophic levels in the deep-sea ecosystems we sampled. Large benthic fish and lithodid crab ever entered into the sites of methane seeps and exported the methane-derived carbon to surroundings. On the other hand, both the trophic diversity and isotopic niche widths of the seep community were greater than non-seep community. However, the niches of seep and non-seep communities did not overlap. The results of network analysis indicated that energy flows were greater in the deep-sea ecosystem with seep rather than without seep because of the higher productivity and biomass. The indices of information theory displayed that the deep-sea ecosystem without seep was more stable, nevertheless, the deep-sea ecosystem with seep had higher resilience after the disturbance. According to the Ecopath models from Ecosim without considering area sizes and infauna of the methane seeps, if the reduction in the biomass of seep mussels is less than 50% within the 10 years after gas hydrates mining, there will be no obvious impact on the total energy flows of the system, the biomass of seep and other deep-sea groups, and community structure. In conclution, the intermediate disturbance of mining can increase the maturity level and the geometric mean trophic transfer efficiency at the same time in the modeling ecosystem.
第一章、前言 1
1. 天然氣水合物與冷泉生態系 1
2. 碳、氮穩定性同位素 2
3. 食物網模式 4
4. 台灣西南海域研究現況 6
5. 研究動機與目標 7
第二章、材料與方法 9
1. 研究地點與時間 9
2. 海上作業 13
2.1. 環境因子 13
2.1.1. 水文與顆粒性有機質 13
2.1.2. 沉積性有機質 13
2.2. 生物因子 13
3. 實驗室樣本處理 14
3.1. 環境因子 14
3.1.1 顆粒性有機質 14
3.1.2. 沉積性有機質 14
3.2. 生物因子 14
3.2.1. 動物樣本鑑定與處理 14
3.3. 碳、氮穩定性同位素樣本製作 15
3.4. 穩定性同位素值測定 16
4. 數據分析 17
4.1. 生物多樣性 17
4.1.1. 豐富度 17
4.1.2. 多樣性指數 17
4.2. 穩定性同位素分析 19
4.2.1. 營養階層 19
4.2.2. 同位素區位 19
4.2.3. 碳同位素-雙來源混合模式 21
4.2.4. 雙重同位素-三來源混合模式 21
4.3. 統計分析 23
4.3.1. 單變量分析 23
4.3.2. 多變量分析 23
5. 生態系食物網模式 25
5.1. 模式時間與空間範圍 25
5.2. 食物網模式原理與假設 25
5.3. 功能群設定與參數輸入 26
5.3.1. 大型底棲雜食性魚類 27
5.3.2. 冷泉相關性底棲魚類 27
5.3.3. 冷泉相關性石蟹類 28
5.3.4. 其他底棲性甲殼類 28
5.3.5. 垂直洄游性魚類 28
5.3.6. 底棲性海星 29
5.3.7. 冷泉鎧甲蝦類 29
5.3.8. 半深海浮游性蝦類 29
5.3.9. 冷泉多毛類 29
5.3.10. 中層浮游性甲殼類 30
5.3.11. 凝膠狀中型浮游動物 30
5.3.12. 底棲邊界層中型浮游動物 30
5.3.13. 底棲懸浮濾食性無脊椎動物 31
5.3.14. 底棲食底泥碎屑性無脊椎動物 31
5.3.15. 冷泉貽貝 31
5.3.16. 海洋雪花 31
5.3.17. 底棲性碎屑 31
5.4. 模式平衡與驗證 32
5.5. 模式輸出與網絡分析 33
5.5.1. 有效營養階層 33
5.5.2. Lindeman spine食物鏈物質傳輸模式 33
5.5.3. 綜合營養衝擊與關鍵生物指數 34
5.5.4. 生態系指數 35
5.5.5. 開發影響評估 38

第三章、結果 42
1. 環境因子 42
1.1. 水文資料 42
1.2. 海床沉積物與地形粗糙度 43
1.3. 環境因子組成分析 43
2. 生物因子 51
2.1. 生物多樣性 51
2.2. 底棲生物群集結構 51
2.2.1. 分類群相對豐度組成 51
2.2.2. 集群分析與多元尺度分析 52
2.2.3. SIMPER 52
2.2.4. DistLM and Distance-based redundancy analysis (dbRDA) 52
3. 穩定性同位素分析 62
3.1. 穩定性同位素組成 62
3.1.1. 顆粒性有機質與沉積性有機質 62
3.1.2. 巨型動物群集 62
3.2. 營養階層 63
3.3. 同位素區位 63
3.4. 碳同位素-雙來源混合模式 63
3.5. 雙重同位素-多來源混合模式 64
4. 生態系食物網模式 76
4.1. 模式平衡與驗證 76
4.2. 營養結構與能量流 76
4.2.1. 營養結構 76
4.2.2. 能量流 77
4.3. 綜合營養衝擊與關鍵生物指數 78
4.4. 生態系指數 78
5. 天然氣水合物開發影響評估 91
5.1. 生物量與營養階層 91
5.2. 群集組成 92
5.3. 生態系指數 92
5.4. 生態功能與結構 93
第四章、討論 116
1. 群集組成與影響因子 116
1.1. 環境因子 116
1.2. 生物多樣性與底棲群集組成 116
1.3. 分類群組成與環境因子 118
2. 穩定性同位素與食物網 121
2.1. 營養來源與營養階層 121
2.2. 同位素區位 124
2.3. 甲烷冷泉貢獻 125
2.4. 同位素食物網 126
3. 生態系食物網模式 128
3.1. 有冷泉與無冷泉的深海生態系 128
3.2. 台灣與其他地區深、淺海生態系 131
3.3. 天然氣水合物開發影響評估 133
4. 研究限制與未來展望 135
第五章、結論 138
第六章、參考文獻 139
第七章、附錄 157
附錄1. 2013-2016年航次採獲生物標本之物種名錄 157
附錄2. 恆春海底泥火山採獲生物之碳、氮穩定性同位素值 169
附錄3. 永安海脊採獲生物之碳、氮穩定性同位素值 170
附錄4. 四方圈合海脊採獲生物之碳、氮穩定性同位素值 171
附錄5. 福爾摩沙海脊採獲生物之碳、氮穩定性同位素值 173
附錄6. 指標海脊採獲生物之碳、氮穩定性同位素值 174
附錄7. 馬蹄海脊採獲生物之碳、氮穩定性同位素值 176
附錄8. 生物功能群內之分類群(碳、氮穩定性同位素部分) 178
附錄9. 生物功能群內不同分類群之碳、氮穩定性同位素值差異檢定 180
附錄10. 深海魚類標本照 181
附錄11. 深海珊瑚標本照 183
附錄12. 深海蛇尾標本照 184
附錄13. 甲烷冷泉動物標本照 185
第八章、會議紀錄 186
吳政岳、楊嘉勝、謝秉志。2015。降壓生產法應用於台灣西南海域天然氣水合物潛在礦區之生產效益。鑛冶:中國鑛冶工程學會會刊232:38–48。
李承儒。2016。台灣西南海域浮游翼足類之季節動態與水文因子相關研究。國立中山大學海洋生物科技暨資源學系碩士學位論文。
李承錄。2015。熱帶海草床生態系對魚類資源的生態功能。國立中興大學生命科學系博士學位論文。
林仁杰。2014。台灣西南海域陸棚邊緣底棲無脊椎動物群聚分析研究。國立中山大學海洋生物科技暨資源學系碩士學位論文。
林佩諭。2011。南中國海及台灣東北海域深海底棲性生物的多樣性及食物網分析。 國立臺灣大學海洋研究所碩士學位論文。
林殿順、劉家瑄。2014。台灣西南外海天然氣水合物賦存模式暨資源潛能。地質 33:25–29。
林殿順。2011。台灣西南海域新興能源-天然氣水合物資源調查與評估:震測及地熱調查(4/4) 含天然氣水合物地層的構造與沉積特徵研究。經濟部中央地質調查所報告第100–24–F號。
張禾玫。2013。淡水河沿岸汙水處理型人工濕地生態系食物網模式之建構與比較分析。國立中興大學生命科學系碩士學位論文。
許家維。2010。南海時間序列測站沉降通量變化之研究。國立中山大學海洋地質與化學研究所碩士學位論文。
葉念慈。2007。鹽寮灣魚類群聚結構、同功群及生態系模式初步建構。國立臺灣海洋大學海洋生物研究所碩士學位論文。
趙家賢。2016。臺灣西南海域冷泉區甲烷溢出處之深海貽貝族群及生殖生物學研究。國立中山大學海洋科學系碩士學位論文。
劉家瑄。2008。台灣西南海域新興能源-天然氣水合物資源調查與評估:震測及地熱調查(1/4)。經濟部中央地質調查所報告第97–28號。
鄭佾展。2007。蘭陽溪與七家灣溪流域生態系模式之比較分析。國立中興大學生命科學系碩士學位論文。
蔡函霓。2015。苗栗淺山溪流系統代謝暨食物網模式建構。國立中興大學生命科學系碩士學位論文。
蕭亦婷。2006。台灣西部苗栗沿岸生態系模式建構及漁業政策探討。國立中興大學生命科學系碩士學位論文。




Allison, P. A., S. P. Hesselbo, and C. E. Brett. 2008. Methane seeps on an Early Jurassic dysoxic seafloor. Palaeogeography, Palaeoclimatology, Palaeoecology 270:230–238.
Alperin, M. J. , W. S. Reeburgh, and M. J. Whiticar. 1988. Carbon and hydrogen isotope fractionation resulting from anaerobic methane oxidation. Global Biogeochemical Cycles 2:279–288
Auster, P. J., M. Kilgour, D. Packer, R. Waller, S. Auscavitch, and L. Watling. 2013. Octocoral gardens in the Gulf of Maine (NW Atlantic). Biodiversity 14:193–194.
Aydin, K. Y., V. V. Lapko, V. I. Radchenko, and P. A. Livingston. 2002. A comparison of the eastern Bering and western Bering Sea shelf and slope ecosystems through the use of mass-balance food web models. NOAA Technical Memorandum NMFS–AFSC–130, Seattle, Washington, USA.
Baldrighi, E., M. Lavaleye, S. Aliani, A. Conversi, and E. Manini. 2014. Large spatial scale variability in bathyal macrobenthos abundance, biomass, α-and β-diversity along the Mediterranean continental margin. PLoS ONE 9:e107261.
Barry, J. P., K. R. Buck, R. K. Kochevar, D. C. Nelson, Y. Fujiwara, S. K. Goffredi, and J. Hashimoto. 2002. Methane-based symbiosis in a mussel, Bathymodiolus platifrons, from cold seeps in Sagami Bay, Japan. Invertebrate Biology 121:47–54.
Barry, J. P., H. G. Greene, D. L. Orange, C. H. Baxter, B. H. Robison, R. E. Kochevar, J. W. Nybakken, and C. M. McHugh. 1996. Biologic and geologic characteristics of cold seeps in Monterey Bay, California. Deep Sea Research Part I: Oceanographic Research Papers 43:1739–1755, 1757–1762.
Batang, Z. B., E. Papathanassiou, A. Al-Suwailem, C. Smith, M. Salomidi, G. Petihakis, N. M. Alikunhi, L. Smith, F. Mallon, T. Yapici, and N. Fayad. 2012. First discovery of a cold seep on the continental margin of the central Red Sea. Journal of Marine Systems 94:247–253.
Becker, E. L., E. E. Cordes, S. A. Macko, R. W. Lee, and C. R. Fisher. 2013. Using stable isotope compositions of animal tissues to infer trophic interactions in Gulf of Mexico lower slope seep communities. PLoS ONE 8:e74459.
Ben-David, M., T. A. Hanley, D. R. Klein, and D. M. Schell. 1997. Seasonal changes in diets of coastal and riverine mink: the role of spawning Pacific salmon. Canadian Journal of Zoology 75:803–811.
Bergmann, M., J. Dannheim, E. Bauerfeind, and M. Klages. 2009. Trophic relationships along a bathymetric gradient at the deep-sea observatory HAUSGARTEN. Deep Sea Research Part I: Oceanographic Research Papers 56:408–424.
Bergquist, D. C., C. Fleckenstein, J. Knisel, B. Begley, I. R. MacDonald, and C. R. Fisher. 2005. Variations in seep mussel bed communities along physical and chemical environmental gradients. Marine Ecology Progress Series 293:99–108.
Bergquist, D. C., T. Ward, E. E. Cordes, T. McNelis, S. Howlett, R. Kosoff, S. Hourdez, R. Carney, and C. R. Fisher. 2003. Community structure of vestimentiferan-generated habitat islands from Gulf of Mexico cold seeps. Journal of Experimental Marine Biology and Ecology 289:197–222.
Bernardino, A. F., L. A. Levin, A. R. Thurber, and C. R. Smith. 2012. Comparative composition, diversity and trophic ecology of sediment macrofauna at vents, seeps and organic falls. PLoS ONE 7:e33515.
Bernardino, A. F., and C. Smith. 2010. Community structure of infaunal macrobenthos around vestimentiferan thickets at the San Clemente cold seep, NE Pacific. Marine Ecology 31:608–621.
Blanchard, J. L., J. K. Pinnegar, and S. Mackinson. 2002. Exploring marine mammal-fishery interactions using ‘Ecopath with Ecosim’: modelling the Barents Sea ecosystem. Science Series Technical Report, CEFAS Lowestoft, 117: 1–52.
Brey, T. 2012. A multi-parameter artificial neural network model to estimate macrobenthic invertebrate productivity and production. Limnology and Oceanography: Methods 10:581–589.
Britayev, T. A., E. M. Krylova, D. Martin, R. Von Cosel, T. S. Aksiuk, and D. Martın. 2003. Symbiont-host interactions in the association of the scale-worm Branchipolynoe aff. seepensis (Polychaeta: Polynoidae) with the hydrothermal mussels Bathymodiolus spp. (Bivalvia: Mytilidae). InterRidge News 12:13–16.
Brooks, J. M., M. C. Kennicutt II, C. R. Fisher, S. A. Macko, K. Cole, J. J. Childress, R. R. Bidigare, and R. D. Vetter. 1987. Deep-sea hydrocarbon seep communities: evidence for energy and nutritional carbon sources. Science 238:1138–1142.
Buhl-Mortensen, L., P. Buhl-Mortensen, M. F. J. Dolan, J. Dannheim, V. Bellec, and B. Holte. 2012. Habitat complexity and bottom fauna composition at different scales on the continental shelf and slope of northern Norway. Hydrobiologia 685:191–219.
Burns, T. P. 1989. Lindeman's contradiction and the trophic structure of ecosystems. Ecology 70:1355–1362.
Cabana, G., and J. B. Rasmussen. 1996. Comparison of aquatic food chains using nitrogen isotopes. Proceedings of the National Academy of Sciences 93:10844–10847.
Carlier, A., P. Riera, J. M. Amouroux, J. Y. Bodiou, and A. Grémare. 2007. Benthic trophic network in the Bay of Banyuls-sur-Mer (northwest Mediterranean, France): an assessment based on stable carbon and nitrogen isotopes analysis. Estuarine, Coastal and Shelf Science 72:1–15.
Carney, R. S. 2010. Stable isotope trophic patterns in echinoderm megafauna in close proximity to and remote from Gulf of Mexico lower slope hydrocarbon seeps. Deep Sea Research Part II: Topical Studies in Oceanography 57:1965–1971.
Cartes, J. E. 1993. Diets of two deep-sea decapods: Nematocarcinus exilis (Caridea: Nematocarcinidae) and Munida tenuimana (Anomura: Galatheidae) on the western Mediterranean slope. Ophelia 37:213–229.
Cheng, J., W. W. L. Cheung, and T. J. Pitcher. 2009. Mass-balance ecosystem model of the East China Sea. Progress in Natural Science 19:1271–1280.
Chiu, M. C., C. W. Pan, and H. J. Lin. 2017. A framework for assessing risk to coastal ecosystems in Taiwan due to climate change. Terrestrial, Atmospheric and Oceanic Sciences 28:57–66
Christensen, V., and D. Pauly. 1992. ECOPATH II—a software for balancing steady-state ecosystem models and calculating network characteristics. Ecological Modelling 61:169–185.
Christensen, V., and D. Pauly. 1993. Flow characteristics of aquatic ecosystems. Pages 338–352 in V. Christensen and D. Pauly, editors. Trophic models of aquatic ecosystems. ICLARM Conference Proceedings No. 26. International Center for Living Aquatic Resources Management, Manila, Philippines.
Christensen, V., and C. J. Walters. 2004. Ecopath with Ecosim: methods, capabilities and limitations. Ecological Modelling 172:109–139.
Christensen, V., C. J. Walters, and D. Pauly. 2005. Ecopath with Ecosim: a user’s guide. Fisheries Centre, University of British Columbia, Vancouver, Canada.
Clarke, K. R., and R. N. Gorley. 2006. PRIMER v6: user manual-tutorial. Plymouth Marine Laboratory, Plymouth, UK.
Clarke, K. R., and R. M. Warwick. 2001. Change in marine communities: an approach to statistical analysis and interpretation. 2nd Edition. PRIMER-E Ltd: Plymouth, UK.
Coll, M., I. Palomera, and S. Tudela. 2009. Decadal changes in a NW Mediterranean Sea food web in relation to fishing exploitation. Ecological Modelling 220:2088–2102.
Coll, M., I. Palomera, S. Tudela, and F. Sardà. 2006. Trophic flows, ecosystem structure and fishing impacts in the South Catalan Sea, Northwestern Mediterranean. Journal of Marine Systems 59:63–96.
Coll, M., A. Santojanni, I. Palomera, S. Tudela, and E. Arneri. 2007. An ecological model of the Northern and Central Adriatic Sea: analysis of ecosystem structure and fishing impacts. Journal of Marine Systems 67:119–154.
Colléter, M., D. Gascuel, J. M. Ecoutin, and L. T. de Morais. 2012. Modelling trophic flows in ecosystems to assess the efficiency of marine protected area (MPA), a case study on the coast of Sénégal. Ecological Modelling 232:1–13.
Collett, T. S., and V. A. Kuuskraa. 1998. Hydrates contain vast store of world gas resources. Oil and Gas Journal 96:90–94.
Cordes, E. E., E. L. Becker, and C. R. Fisherb. 2010a. Temporal shift in nutrient input to cold‐seep food webs revealed by stable‐isotope signatures of associated communities. Limnology and Oceanography 55:2537–2548.
Cordes, E. E., M. R. Cunha, J. Galeron, C. Mora, O. L. Roy, M. Sibuet, S. Van Gaever, A. Vanreusel, and L. A. Levin. 2010b. The influence of geological, geochemical, and biogenic habitat heterogeneity on seep biodiversity. Marine Ecology 31:51–65.
Corp, I. 2013. IBM SPSS statistics for windows, version 22.0. Armonk, NY: IBM Corp.
Decker, C., and K. Olu. 2012. Habitat heterogeneity influences cold‐seep macrofaunal communities within and among seeps along the Norwegian margin–Part 2: contribution of chemosynthesis and nutritional patterns. Marine Ecology 33:231–245.
DeNiro, M. J., and S. Epstein. 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 42:495–506.
Digby, A., V. Puentes, and J. León. 2016. Cold seeps associated with structured benthic communities: more accurate identification and evaluation using a new multibeam survey methodology in the offshore southern Colombian Caribbean. International Journal of Geosciences 7:761–774.
Duperron, S., H. Guezi, S. M. Gaudron, P. Pop Ristova, F. Wenzhöfer, and A. Boetius. 2011. Relative abundances of methane‐and sulphur‐oxidising symbionts in the gills of a cold seep mussel and link to their potential energy sources. Geobiology 9:481–491.
Elvert, M., A. Boetius, K. Knittel, and B. B. J?rgensen. 2003. Characterization of specific membrane fatty acids as chemotaxonomic markers for sulfate-reducing bacteria involved in anaerobic oxidation of methane. Geomicrobiology Journal 20:403–419.
Falk-Petersen, J. 2004. Ecosystem effects of red king crab invasion. A modelling approach using Ecopath with Ecosim. Master's thesis, Universitetet i Troms?, Troms?, Kongeriket Norge.
Falk-Petersen, S., W. Hagen, G. Kattner, A. Clarke, and J. Sargent. 2000. Lipids, trophic relationships, and biodiversity in Arctic and Antarctic krill. Canadian Journal of Fisheries and Aquatic Sciences 57:178–191.
Fanelli, E., V. Papiol, J. E. Cartes, P. Rumolo, and C. López-Pérez. 2013. Trophic webs of deep-sea megafauna on mainland and insular slopes of the NW Mediterranean: a comparison by stable isotope analysis. Marine Ecology Progress Series 490: 199–221.
Feng, D., M. Cheng, S. Kiel, J. W. Qiu, Q. Yang, H. Zhou, Y. Peng, and D. Chen. 2015. Using Bathymodiolus tissue stable carbon, nitrogen and sulfur isotopes to infer biogeochemical process at a cold seep in the South China Sea. Deep Sea Research Part I: Oceanographic Research Papers 104:52–59.
Field, J. G., F. Wulff, and K. H. Mann. 1989. The need to analyze ecological networks. Pages 3–12 in F. Wulff, J. G. Field, and K. H. Mann, editors. Network Analysis in Marine Ecology: Methods and Applications, Coastal and Estuarine Studies Series vol. 32. Springer, Berlin, Germany.
Finn, J. T. 1976. Measures of ecosystem structure and function derived from analysis of flows. Journal of Theoretical Biology 56:363–380.
Finn, J. T. 1980. Flow analysis of models of the Hubbard Brook ecosystem. Ecology 61:562–571.
Fouzai, N., M. Coll, I. Palomera, A. Santojanni, E. Arneri, and V. Christensen. 2012. Fishing management scenarios to rebuild exploited resources and ecosystems of the Northern-Central Adriatic (Mediterranean Sea). Journal of Marine Systems 102:39–51.
Freiwald, A., J. H. Fossa, A. Grehan, T. Koslow, and J. M. Roberts. 2004. Cold water coral reefs: out of sight-no longer out of mind. Pages 1–88 in UNEP-WCMC Biodiversity Series No. 22. United Nations Environment Programme World Conservation Monitoring Centre, Cambridge, UK.
Fry, B. 2013. Alternative approaches for solving underdetermined isotope mixing problems. Marine Ecology Progress Series 472:1–13.
Fry, B., and E. B. Sherr. 1989. δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Stable Isotopes in Ecological Research 68: 196–229.
Fujikura, K., S. Tsuchida, T. Nunoura, W. Soh, H. Machiyama, C. Huang, S. Lin, and S. Lin. 2007. Vent-type chemosynthetic community associated with methane seep at the Formosa Ridge, off southwest Taiwan. Proceedings of the International Conference on Gas Hydrate: Energy, Climate and Environment, Taipei, ROC.
Gage, J. D., and P. A. Tyler. 1991. Deep-sea biology: a natural history of organisms at the deep-sea floor. Cambridge University Press, Cambridge, UK.
Gannes, L. Z., C. M. Del Rio, and P. Koch. 1998. Natural abundance variations in stable isotopes and their potential uses in animal physiological ecology. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 119:725–737.
Gearing, J. N., P. J. Gearing, D. T. Rudnick, A. G. Requejo, and M. J. Hutchins. 1984. Isotopic variability of organic carbon in a phytoplankton-based, temperate estuary. Geochimica et Cosmochimica Acta 48:1089–1098.
George, R. Y., T. A. Okey, J. K. Reed, and R. P. Stone. 2007. Ecosystem-based fisheries management of seamount and deep-sea coral reefs in US waters: conceptual models for proactive decisions. Bulletin of Marine Science 81:9–30.
Giusti, M., C. Innocenti, and S. Canese. 2014a. Predicting suitable habitat for the gold coral Savalia savaglia (Bertoloni, 1819)(Cnidaria, Zoantharia) in the South Tyrrhenian Sea. Continental Shelf Research 81:19–28.
Giusti, M., E. Salvati, M. Angiolillo, L. Tunesi, and S. Canese. 2014b. Predicting the suitable habitat of the red coral, Corallium rubrum (Linnaeus 1758), in relation to bathymetric variables. Pages 217–218 in C. Bouafif, H. Langar, and A. Ouerghi, editors. Proceedings of 2nd Mediterranean Symposium on the Conservation of Coralligenous and Other Calcareous Bio-concretions. Regional Activity Centre for Specially Protected Areas, Tunis, Tunisia.
Goedert, J., and J. Peckmann. 2005. Corals from deep-water methane-seep deposits in Paleogene strata of Western Oregon and Washington, USA. Pages 27–40 in A. Freiwald and J. M. Roberts, editors. Cold-water Corals and Ecosystems. Springer-Verlag Berlin Heidelberg, Germany.
Grupe, B. M., M. L. Krach, A. L. Pasulka, J. M. Maloney, L. A. Levin, and C. A. Frieder. 2015. Methane seep ecosystem functions and services from a recently discovered southern California seep. Marine Ecology 36:91–108.
Han, X., E. Suess, V. Liebetrau, A. Eisenhauer, and Y. Huang. 2014. Past methane release events and environmental conditions at the upper continental slope of the South China Sea: constraints by seep carbonates. International Journal of Earth Sciences 103:1873–1887.
Hobson, K. A., and H. E. Welch. 1992. Determination of trophic relationships within a high Arctic marine food web using δ13C and δ15N analysis. Marine Ecology Progress Series 84:9–18.
Hoch, M. P., M. L. Fogel, and D. L. Kirchman. 1994. Isotope fractionation during ammonium uptake by marine microbial assemblages. Geomicrobiology Journal 12:113–127.
Hopkins, C. C. E., P. E. Grotnes, and J. E. Eliassen. 1989. Organization of a fjord community at 70° North: The pelagic food web in Balsfjord, northern Norway. Rapports et Procès-verbaux des Réunions, Conseil International pour l'Exploration de la Mer 188:146–153.
Hovland, M., and E. Thomsen. 1997. Cold-water corals—are they hydrocarbon seep related? Marine Geology 137:159–164.
Hunter, A. W., N. L. Larson, N. H. Landman, and T. Oji. 2016. Lakotacrinus brezinai n. gen. n. sp., a new stalked crinoid from cold methane seeps in the Upper Cretaceous (Campanian) Pierre Shale, South Dakota, United States. Journal of Paleontology 90:506–524.
Hurlbert, S. H. 1971. The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577–586.
Iken, K., B. Bluhm, and K. Dunton. 2010. Benthic food-web structure under differing water mass properties in the southern Chukchi Sea. Deep Sea Research Part II: Topical Studies in Oceanography 57:71–85.
Iken, K., T. Brey, U. Wand, J. Voigt, and P. Junghans. 2001. Food web structure of the benthic community at the Porcupine Abyssal Plain (NE Atlantic): a stable isotope analysis. Progress in Oceanography 50:383–405.
J?rgensen, S. E. 1992. Exergy and ecology. Ecological Modelling 63:185–214.
J?rgensen, S. E. 1997. Ecological modelling by ecological modelling. Ecological Modelling 100:5–10.
Jackson, A. L., R. Inger, A. C. Parnell, and S. Bearhop. 2011. Comparing isotopic niche widths among and within communities: SIBER–Stable Isotope Bayesian Ellipses in R. Journal of Animal Ecology 80:595–602.
Jackson, M. C., I. Donohue, A. L. Jackson, J. R. Britton, D. M. Harper, and J. Grey. 2012. Population-level metrics of trophic structure based on stable isotopes and their application to invasion ecology. PLoS ONE 7:e31757.
Jeffreys, R. M., G. A. Wolff, and S. J. Murty. 2009. The trophic ecology of key megafaunal species at the Pakistan Margin: evidence from stable isotopes and lipid biomarkers. Deep Sea Research Part I: Oceanographic Research Papers 56:1816–1833.
Jones, E. G., A. Tselepides, P. M. Bagley, M. A. Collins, and I. G. Priede. 2003. Bathymetric distribution of some benthic and benthopelagic species attracted to baited cameras and traps in the deep eastern Mediterranean. Marine Ecology Progress Series 251:75–86.
Kallianiotis, A., K. Sophronidis, P. Vidoris, and A. Tselepides. 2000. Demersal fish and megafaunal assemblages on the Cretan continental shelf and slope (NE Mediterranean): seasonal variation in species density, biomass and diversity. Progress in Oceanography 46:429–455.
Kay, J. J., L. A. Graham, and R. E. Ulanowicz. 1989. A detailed guide to network analysis. Pages 15–61 in F. Wulff, J. G. Field, and K. H. Mann, editors. Network Analysis in Marine Ecology: Methods and Applications, Coastal and Estuarine Studies Series vol. 32. Springer, Berlin, Germany.
Klages, M., K. Vopel, H. Bluhm, T. Brey, T. Soltwedel, and W. E. Arntz. 2001. Deep-sea food falls: first observation of a natural event in the Arctic Ocean. Polar biology 24:292–295.
Kline Jr, T. C., J. J. Goering, O. A. Mathisen, P. H. Poe, P. L. Parker, and R. S. Scalan. 1993. Recycling of elements transported upstream by runs of Pacific salmon: II. δ15N and δ13C evidence in the Kvichak River watershed, Bristol Bay, southwestern Alaska. Canadian Journal of Fisheries and Aquatic Sciences 50:2350–2365.
Kloser, R., A. Williams, F. Althaus, and A. Butler. 2004. Seabed terrain and fauna associations based on acoustic sampling. International Council for the Exploration of the Sea Council Meeting documents 2004 /T:11. Northwest Fisheries Science Center, Seattle, Washington, USA.
Kojima, S. 2002. Deep-sea chemoautosynthesis-based communities in the Northwestern Pacific. Journal of Oceanography 58:343–363.
Kramer, D. L. 1987. Dissolved oxygen and fish behavior. Environmental Biology of Fishes 18:81–92.
Kvenvolden, K. A. 1998. A primer on the geological occurrence of gas hydrate. Pages 9–30 in J. P. Henriet, J. Mienert, Editors. Gas Hydrates: Relevance to World Margin Stability and Climatic Change. Geological Society, London, Special Publications vol. 137, London, UK
Landman, N. H., J. K. Cochran, N. L. Larson, J. Brezina, M. P. Garb, and P. J. Harries. 2012. Methane seeps as ammonite habitats in the US Western Interior Seaway revealed by isotopic analyses of well-preserved shell material. Geology 40:507–510.
Layman, C. A., D. A. Arrington, C. G. Montaña, and D. M. Post. 2007. Can stable isotope ratios provide for community‐wide measures of trophic structure? Ecology 88:42–48.
Lee, R. W., and J. J. Childress. 1996. Inorganic N assimilation and ammonium pools in a deep-sea mussel containing methanotrophic endosymbionts. Biological Bulletin 190:373–384.
Lehmann, M. F., S. M. Bernasconi, A. Barbieri, and J. A. McKenzie. 2002. Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochimica et Cosmochimica Acta 66:3573–3584.
Levin, L. A. 2005. Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes. Oceanography and Marine Biology : an Annual Review 43:1–46.
Levin, L. A., and G. F. Mendoza. 2007. Community structure and nutrition of deep methane‐seep macrobenthos from the North Pacific (Aleutian) Margin and the Gulf of Mexico (Florida Escarpment). Marine Ecology 28:131–151.
Levin, L. A., and R. H. Michener. 2002. Isotopic evidence for chemosynthesis-based nutrition of macrobenthos: the lightness of being at Pacific methane seeps. Limnology and Oceanography 47:1336–1345.
Libralato, S., V. Christensen, and D. Pauly. 2006. A method for identifying keystone species in food web models. Ecological Modelling 195:153–171.
Liebetrau, V., A. Eisenhauer, and P. Linke. 2010. Cold seep carbonates and associated cold-water corals at the Hikurangi Margin, New Zealand: new insights into fluid pathways, growth structures and geochronology. Marine Geology 272:307–318.
Lin, H. J., X. X. Dai, K. T. Shao, H. M. Su, W. T. Lo, H. L. Hsieh, L. S. Fang, and J. J. Hung. 2006. Trophic structure and functioning in a eutrophic and poorly flushed lagoon in southwestern Taiwan. Marine Environmental Research 62:61–82.
Lin, H. J., T. R. Peng, I. C. Cheng, L. W. Chen, M. H. Kuo, C. S. Tzeng, S. T. Tsai, J. T. Yang, S. H. Wu, and Y. H. Sun. 2012. Trophic model of the subtropical headwater stream habitat of Formosan landlocked salmon Oncorhynchus formosanus. Aquatic Biology 17:269–283.
Lin, H. J., K. T. Shao, J. S. Hwang, W. T. Lo, I. J. Cheng, and L. H. Lee. 2004. A trophic model for Kuosheng Bay in northern Taiwan. Journal of Marine Science and Technology 12:424–432.
Lin, H. J., K. T. Shao, R. Q. Jan, H. L. Hsieh, C. P. Chen, L. Y. Hsieh, and Y. T. Hsiao. 2007a. A trophic model for the Danshuei River Estuary, a hypoxic estuary in northern Taiwan. Marine Pollution Bulletin 54:1789–1800.
Lin, H. J., K. T. Shao, S. R. Kuo, H. L. Hsieh, S. L. Wong, I. M. Chen, W. T. Lo, and J. J. Hung. 1999. A trophic model of a sandy barrier lagoon at Chiku in southwestern Taiwan. Estuarine, Coastal and Shelf Science 48:575–588.
Lin, H. Y., P. Y. Lin, N. N. Chang, J. C. Shiao, and S. J. Kao. 2014. Trophic structure of megabenthic food webs along depth gradients in the South China Sea and off northeastern Taiwan. Marine Ecology Progress Series 501:53–66.
Lin, S., Y. Lim, C. S. Liu, T. Yang, Y. G. Chen, H. Machiyama, and W. Soh. 2007b. Formosa ridge, a cold seep with densely populated chemosynthetic community in the passive margin, Southwest of Taiwan. Geochimica et Cosmochimica Acta 71: A582–A582 Suppl.
Lindeman, R. L. 1942. The trophic‐dynamic aspect of ecology. Ecology 23:399-417.
Liu, C. S., S. Morita, Y. H. Liao, C. Y. Ku, H. Machiyama, S. Lin, and W. Soh. 2008. High-resolution seismic images of the Formosa Ridge off Southwestern Taiwan where “hydrothermal” chemosynthetic community is present at a cold seep site. Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008), Vancouver, British Columbia, Canada.
Liu, C. S., P. Schnürle, Y. S. Wang, S. H. Chung, S. C. Chen, and T. H. Hsiuan. 2006. Distribution and characters of gas hydrate offshore of southwestern Taiwan. Terrestrial, Atmospheric and Oceanic Sciences 17:615–644.
Liu, K. K., S. J. Kao, H. C. Hu, W. C. Chou, G. W. Hung, and C. M. Tseng. 2007. Carbon isotopic composition of suspended and sinking particulate organic matter in the northern South China Sea—from production to deposition. Deep Sea Research Part II: Topical Studies in Oceanography 54:1504–1527.
Liu, P. J., K. T. Shao, R. Q. Jan, T. Y. Fan, S. L. Wong, J. S. Hwang, J. P. Chen, C. C. Chen, and H. J. Lin. 2009. A trophic model of fringing coral reefs in Nanwan Bay, southern Taiwan suggests overfishing. Marine Environmental Research 68:106–117.
MacAvoy, S. E., R. S. Carney, C. R. Fisher, and S. A. Macko. 2002. Use of chemosynthetic biomass by large, mobile, benthic predators in the Gulf of Mexico. Marine Ecology Progress Series 225:65–78.
Macpherson, E. 1994. Occurrence of two lithodid crabs (Crustacea: Decapoda: Lithodidae) in the cold seep zone of the South Barbados accretionary prism. Proceedings, Biological Society of Washington 107:465–465.
Margalef, R. 1969. Diversity and stability: a practical proposal and a model of interdependence. Brookhaven Symposia in Biology 22:25–37.
Marples, T. G. 1966. A radionuclide tracer study of arthropod food chains in a Spartina salt marsh ecosystem. Ecology 47:270–277.
Marrugan, A. E. 1988. Ecological diversity and its measurement. Princeton University Press, Princeton, New Jersey, USA.
Martens, C. S., D. B. Albert, and M. J. Alperin. 1999. Stable isotope tracing of anaerobic methane oxidation in the gassy sediments of Eckernforde Bay, German Baltic Sea. American Journal of Science 299:589–610.
Martin, J. W., and T. A. Haney. 2005. Decapod crustaceans from hydrothermal vents and cold seeps: a review through 2005. Zoological Journal of the Linnean Society 145:445–522.
McCarthy, M. D., R. Benner, C. Lee, and M. L. Fogel. 2007. Amino acid nitrogen isotopic fractionation patterns as indicators of heterotrophy in plankton, particulate, and dissolved organic matter. Geochimica et Cosmochimica Acta 71:4727–4744.
McCutchan, J. H., W. M. Lewis, C. Kendall, and C. C. McGrath. 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102:378–390.
Michener, R. H., and D. M. Schell. 1994. Stable isotope ratios as tracers in marine aquatic food web. Pages 138–157 in K. Lajtha and R. H. Michener, editors. Stable Isotopes in Ecology and Environmental Science. Blackwell Scientific Publications, Oxford, UK.
Minagawa, M., and E. Wada. 1984. Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochimica et Cosmochimica Acta 48:1135–1140.
Mintenbeck, K., U. Jacob, R. Knust, W. E. Arntz, and T. Brey. 2007. Depth-dependence in stable isotope ratio δ15N of benthic POM consumers: the role of particle dynamics and organism trophic guild. Deep Sea Research Part I: Oceanographic Research Papers 54:1015–1023.
Moore, J. W., and B. X. Semmens. 2008. Incorporating uncertainty and prior information into stable isotope mixing models. Ecology Letters 11:470–480.
Morgan, L. E., and M. Pizer. 2005. What are deep-sea corals? Current: The Journal of Marine Education 21:1–4.
Mortensen, P. B., and L. Buhl-Mortensen. 2005. Morphology and growth of the deep-water gorgonians Primnoa resedaeformis and Paragorgia arborea. Marine Biology 147:775–788.
Mullineaux, L. S., and S. W. Mills. 2004. Coral gardens in the dark depths. Oceanus 43:6–11.
Navarro, J., M. Coll, M. Louzao, I. Palomera, A. Delgado, and M. G. Forero. 2011. Comparison of ecosystem modelling and isotopic approach as ecological tools to investigate food webs in the NW Mediterranean Sea. Journal of Experimental Marine Biology and Ecology 401:97–104.
Neira, S., and H. Arancibia. 2007. Modelling the food web in the upwelling ecosystem off central Chile (33°S–39°S) in the year 2000. Pages 71–86 in W. J. F. Le Quesne, F. Arreguín-Sánchez, and S. J. J. Heymans, editors. INCOFISH ecosystem models: transiting from Ecopath to Ecospace, Fisheries Centre Research Reports 15. Fisheries Centre, University of British Columbia, Canada.
Nilsen, M., T. Pedersen, E. M. Nilssen, and S. Fredriksen. 2008. Trophic studies in a high-latitude fjord ecosystem—a comparison of stable isotope analyses (δ13C and δ15N) and trophic-level estimates from a mass-balance model. Canadian Journal of Fisheries and Aquatic Sciences 65:2791–2806.
Odum, E. P. 1975. Ecology: the link between the natural and the social sciences. Modern biology series. 2nd edition. Holt, Rinehart and Winston, New York, USA.
Odum, E. P. 1969. The strategy of ecosystem development. Science 164:262–270.
Odum, E. P. 1985. Trends expected in stressed ecosystems. Bioscience 35:419–422.
Odum, W. E., and E. J. Heald. 1975. The detritus-based food web of an estuarine mangrove community. Pages 265–286 in L. E. Cronin, editor. Estuarine Research. Academic Press, New York, USA.
Olu, K., S. Lance, M. Sibuet, P. Henry, A. Fiala-Médioni, and A. Dinet. 1997. Cold seep communities as indicators of fluid expulsion patterns through mud volcanoes seaward of the Barbados accretionary prism. Deep Sea Research Part I: Oceanographic Research Papers 44:811–819, 821–841.
Ortiz, M., and M. Wolff. 2002. Trophic models of four benthic communities in Tongoy Bay (Chile): comparative analysis and preliminary assessment of management strategies. Journal of Experimental Marine Biology and Ecology 268:205–235.
Page, H. M., A. Fiala-Medioni, C. R. Fisher, and J. J. Childress. 1991. Experimental evidence for filter-feeding by the hydrothermal vent mussel, Bathymodiolus thermophilus. Deep Sea Research Part A. Oceanographic Research Papers 38:1455–1461.
Pan, C. W., M. H. Chen, L. S. Chou, and H. J. Lin. 2016. The Trophic Significance of the Indo-Pacific Humpback Dolphin, Sousa chinensis, in Western Taiwan. PLoS ONE 11:e0165283.
Papiol, V., J. E. Cartes, E. Fanelli, and P. Rumolo. 2013. Food web structure and seasonality of slope megafauna in the NW Mediterranean elucidated by stable isotopes: relationship with available food sources. Journal of Sea Research 77: 53–69.
Paull, C. K., B. Hecker, R. Commeau, R. P. Freeman-Lynde, C. Neumann, W. P. Corso, S. Golubic, J. E. Hook, E. Sikes, and J. Curray. 1984. Biological communities at the Florida Escarpment resemble hydrothermal vent taxa. Science 226:965–967.
Paull, C. K., A. J. T. Jull, L. J. Toolin, and T. Linick. 1985. Stable isotope evidence for chemosynthesis in an abyssal seep community. Nature 317:709–711.
Pauly, D., and V. Christensen. 1993. Stratified models of large marine ecosystems: a general approach and an application to the South China Sea. Pages 148–174 in K. Sherman, L. M. Alexander, and B. D. Gold, editors. Large marine ecosystems: stress, mitigation and sustainability. American Association for the Advancement of Science Press, Washington, DC, USA.
Peterson, B. J., and B. Fry. 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18:293–320.
Phillips, D. L., and J. W. Gregg. 2005. IsoSource: stable isotope mixing model for partitioning an excess number of sources. Version 1.3.1. Environmental Protection Agency, Washington, DC, USA.
Phillips, D. L. 2001. Mixing models in analyses of diet using multiple stable isotopes: a critique. Oecologia 127:166–170.
Phillips, D. L., and J. W. Gregg. 2003. Source partitioning using stable isotopes: coping with too many sources. Oecologia 136:261–269.
Phillips, D. L., and P. L. Koch. 2002. Incorporating concentration dependence in stable isotope mixing models. Oecologia 130:114–125.
Pielou, E. C. 1966. Shannon's formula as a measure of specific diversity: its use and misuse. The American Naturalist 100:463–465.
Pimm, S. L. 1982. Food webs: population and community biology series. Chapman and Hall, London, UK.
Pinnegar, J. K., and N. V. C. Polunin. 2004. Predicting indirect effects of fishing in Mediterranean rocky littoral communities using a dynamic simulation model. Ecological Modelling 172:249–267.
Piroddi, C., G. Bearzi, and V. Christensen. 2011. Marine open cage aquaculture in the eastern Mediterranean Sea: a new trophic resource for bottlenose dolphins. Marine Ecology Progress Series 440:255–266.
Polovina, J. J. 1984. Model of a coral reef ecosystem. Coral Reefs 3:1–11.
Post, D. M. 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718.
Power, M. E., D. Tilman, J. A. Estes, B. A. Menge, W. J. Bond, L. S. Mills, G. Daily, J. C. Castilla, J. Lubchenco, and R. T. Paine. 1996. Challenges in the quest for keystones. Bioscience 46:609–620.
Pranovi, F., and J. S. Link. 2009. Ecosystem exploitation and trophodynamic indicators: a comparison between the Northern Adriatic Sea and Southern New England. Progress in Oceanography 81:149–164.
Quattrini, A. M., and A. W. J. Demopoulos. 2016. Ectoparasitism on deep-sea fishes in the western North Atlantic: In situ observations from ROV surveys. International Journal for Parasitology: Parasites and Wildlife 5:217–228.
Rau, G. H., J. L. Tetssie, F. Rassoulzadegan, and S. W. Fowler. 1990. 13C/12C and 15N/14N variations among size fractionated marine particles: implications for their origin and trophic relationship. Marine Ecology Progress Series 59:33–38.
Rex, M. A. 1981. Community structure in the deep-sea benthos. Annual Review of Ecology and Systematics 12:331–353.
Roberts, H. H., and P. Aharon. 1994. Hydrocarbon-derived carbonate buildups of the northern Gulf of Mexico continental slope: a review of submersible investigations. Geo-Marine Letters 14:135–148.
Roux, M. 2004. New hyocrinid crinoids (Echinodermata) from submersible investigations in the Pacific Ocean. Pacific Science 58:597–613.
Rueda, J. L., E. González-García, C. Krutzky, F. J. López-Rodriguez, G. Bruque, N. López-González, D. Palomino, R. F. Sánchez, J. T. Vázquez, and L. M. Fernández-Salas. 2016. From chemosynthesis-based communities to cold-water corals: Vulnerable deep-sea habitats of the Gulf of Cádiz. Marine Biodiversity 46:473–482.
Rutledge, R. W., B. L. Basore, and R. J. Mulholland. 1976. Ecological stability: an information theory viewpoint. Journal of Theoretical Biology 57:355–371.
Sahling, H., S. V. Galkin, A. Salyuk, J. Greinert, H. Foerstel, D. Piepenburg, and E. Suess. 2003. Depth-related structure and ecological significance of cold-seep communities—a case study from the Sea of Okhotsk. Deep Sea Research Part I: Oceanographic Research Papers 50:1391–1409.
Saino, T., and A. Hattori. 1987. Geographical variation of the water column distrubution of suspended particulate organic nitrogen and its 15N natural abundance in the Pacific and its marginal seas. Deep Sea Research Part A. Oceanographic Research Papers 34:807–827.
Sanders, H. L. 1968. Marine benthic diversity: a comparative study. The American Naturalist 102:243–282.
Sasaki, T., T. Okutani, and K. Fujikura. 2005. Molluscs from hydrothermal vents and cold seeps in Japan: a review of taxa recorded in twenty recent years (1984–2004). Venus 64:87–133.
Sellanes, J., E. Quiroga, and C. Neira. 2008. Megafauna community structure and trophic relationships at the recently discovered Concepción Methane Seep Area, Chile,∼ 36°S. ICES Journal of Marine Science 65:1102–1111.
Sellanes, J., G. Zapata-Hernández, S. Pantoja, and G. L. Jessen. 2011. Chemosynthetic trophic support for the benthic community at an intertidal cold seep site at Mocha Island off central Chile. Estuarine, Coastal and Shelf Science 95:431–439.
Sibuet, M., and K. Olu-Le Roy. 2002. Cold seep communities on continental margins: structure and quantitative distribution relative to geological and fluid venting patterns. Pages 235–251 in G. Wefer, D. Billet, D. Hebbeln, B. B. Jorgensen, M. Schlüter, and T. C. E. V. Weering, editors. Ocean Margin Systems. Springer-Verlag, Berlin, Germany.
Sibuet, M., and K. Olu. 1998. Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep Sea Research Part II: Topical Studies in Oceanography 45:517–567.
Simpson, E. H. 1949. Measurement of diversity. Nature 163:688.
Sloan Jr, E. D. 1998. Clathrate hydrates of natural gases, 2nd edition, revised and expanded. Marcel Dekker, Inc., New York, USA.
Soltwedel, T., N. Jaeckisch, N. Ritter, C. Hasemann, M. Bergmann, and M. Klages. 2009. Bathymetric patterns of megafaunal assemblages from the arctic deep-sea observatory HAUSGARTEN. Deep Sea Research Part I: Oceanographic Research Papers 56:1856–1872.
Soltwedel, T., K. von Juterzenka, K. Premke, and M. Klages. 2003. What a lucky shot! Photographic evidence for a medium-sized natural food-fall at the deep seafloor. Oceanologica Acta 26:623–628.
Suess, E. 2005. RV Sonne cruise report SO 177, Sino-German cooperative project; South China Sea continental margin: geological methane budget and environmental effects of methane emissions and gas hydrates. IFM-GEOMAR reports:1–133.
Sweetman, A. K., L. A. Levin, H. T. Rapp, and C. Schander. 2013. Faunal trophic structure at hydrothermal vents on the southern Mohn's Ridge, Arctic Ocean. Marine Ecology Progress Series 473:115-131.
Tarasov, V. G., A. V. Gebruk, A. N. Mironov, and L. I. Moskalev. 2005. Deep-sea and shallow-water hydrothermal vent communities: Two different phenomena? Chemical Geology 224:5–39.
Tecchio, S., M. Coll, V. Christensen, J. B. Company, E. Ramirez-Llodra, and F. Sarda. 2013. Food web structure and vulnerability of a deep-sea ecosystem in the NW Mediterranean Sea. Deep Sea Research Part I: Oceanographic Research Papers 75:1–15.
Tecchio, S., E. Ramírez-Llodra, and F. Sardà. 2011. Biodiversity of deep-sea demersal megafauna in western and central Mediterranean basins. Scientia Marina 75:341–350.
Thiem, Ø., E. Ravagnan, J. H. Fosså, and J. Berntsen. 2006. Food supply mechanisms for cold-water corals along a continental shelf edge. Journal of Marine Systems 60:207–219.
Thurber, A. R., K. Kröger, C. Neira, H. Wiklund, and L. A. Levin. 2010. Stable isotope signatures and methane use by New Zealand cold seep benthos. Marine Geology 272:260–269.
Tong, H., D. Feng, H. Cheng, S. Yang, H. Wang, A. G. Min, R. L. Edwards, Z. Chen, and D. Chen. 2013a. Authigenic carbonates from seeps on the northern continental slope of the South China Sea: new insights into fluid sources and geochronology. Marine and Petroleum Geology 43:260–271.
Tong, R., A. Purser, J. Guinan, and V. Unnithan. 2013b. Modeling the habitat suitability for deep-water gorgonian corals based on terrain variables. Ecological Informatics 13:123–132.
Tsagarakis, K., M. Coll, M. Giannoulaki, S. Somarakis, C. Papaconstantinou, and A. Machias. 2010. Food-web traits of the North Aegean Sea ecosystem (Eastern Mediterranean) and comparison with other Mediterranean ecosystems. Estuarine, Coastal and Shelf Science 88:233–248.
Tseng, C. M., G. T. Wong, I. I. Lin, C. R. Wu, and K. K. Liu. 2005. A unique seasonal pattern in phytoplankton biomass in low‐latitude waters in the South China Sea. Geophysical Research Letters 32: L08608.
Tyler, P. A. 2003. Ecosystems of the deep oceans. Elsevier, Amsterdam, Nederland.
Tyler, P. A., C. R. German, E. Ramirez-Llodra, and C. L. Van Dover. 2002. Understanding the biogeography of chemosynthetic ecosystems. Oceanologica Acta 25:227–241.
Ulanowicz, R. E. 1986. Growth and development: ecosystems phenomenology. Springer-Verlag, New York, USA.
Ulanowicz, R. E. 2001. Information theory in ecology. Computers & Chemistry 25:393–399.
Ulanowicz, R. E., and J. J. Kay. 1991. A package for the analysis of ecosystem flow networks. Environmental Software 6:131–142.
Vacelet, J., N. Boury-Esnault, A. Fiala-Medioni, and C. R. Fisher. 1995. A methanotrophic carnivorous sponge. Nature 377:296.
Vacelet, J., A. Fiala-Médioni, C. R. Fisher, and N. Boury-Esnault. 1996. Symbiosis between methane-oxidizing bacteria and a deep-sea carnivorous cladorhizid sponge. Marine Ecology Progress Series 145:77–85.
Van Dover, C. L. 2007. Stable isotope studies in marine chemoautotrophically based ecosystems: an update. Pages 202–237 in R. Michener and K. Lajtha, Editors, Stable Isotopes in Ecology and Environmental Sciences. Wiley-Blackwell Scientific Publications, London, UK.
Van Dover, C. L., and B. Fry. 1994. Microorganisms as food resources at deep‐sea hydrothermal vents. Limnology and Oceanography 39:51–57.
Venkatesan, M. I. 1988. Occurrence and possible sources of perylene in marine sediments-a review. Marine Chemistry 25:1–27.
Walters, C., V. Christensen, and D. Pauly. 1997. Structuring dynamic models of exploited ecosystems from trophic mass-balance assessments. Reviews in Fish Biology and Fisheries 7:139–172.
Walters, C. J., and S. J. Martell. 2004. Fisheries ecology and management. Princeton University Press, Princeton, New Jersey, USA.
Wang, T. W., S. T. Ahyong, and T. Y. Chan. 2016. First records of Lithodes longispina Sakai, 1971 (Crustacea: Decapoda: Anomura: Lithodidae) from southwestern Taiwan, including a site in the vicinity of a cold seep. Zootaxa 4066:173–176.
Wei, C. L., and G. T. Rowe. 2009. Faunal zonation of large epibenthic invertebrates off North Carolina revisited. Deep Sea Research Part II: Topical Studies in Oceanography 56:1830–1833.
Wei, C. L., G. T. Rowe, G. F. Hubbard, A. H. Scheltema, G. D. Wilson, I. Petrescu, J. M. Foster, M. K. Wicksten, M. Chen, R. Davenport, Y. Soliman, and Y. Wang. 2010. Bathymetric zonation of deep-sea macrofauna in relation to export of surface phytoplankton production. Marine Ecology Progress Series 399:1–14.
Whiticar, M. J. 1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology 161:291–314.
Wilson, M. F. J., B. O'Connell, C. Brown, J. C. Guinan, A. J. Grehan. 2007. Multiscale terrain analysis of multibeam bathymetry data for habitat mapping on the continental slope. Marine Geodesy 30:3–35.
Zanden, M., and J. B. Rasmussen. 1999. Primary consumer δ13C and δ15N and the trophic position of aquatic consumers. Ecology 80:1395–1404.
Zapata-Hernández, G., J. Sellanes, A. R. Thurber, and L. A. Levin. 2014. Trophic structure of the bathyal benthos at an area with evidence of methane seep activity off southern Chile (~ 45°S). Journal of the Marine Biological Association of the United Kingdom 94:659–669.
Zapata‐Hernández, G., J. Sellanes, A. R. Thurber, L. A. Levin, F. Chazalon, and P. Linke. 2014. New insights on the trophic ecology of bathyal communities from the methane seep area off Concepción, Chile (~ 36°S). Marine Ecology 35:1–21.
Zhang, S., J. Zhang, and S. Zhang. 2016. A new species of Bathyacmaea (Gastropoda: Pectinodontidae) from a methane seep area in the South China Sea. Nautilus 130:1–4.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top