跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/09 10:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡秉芸
研究生(外文):Ping-Yun Tsai
論文名稱:陰性植物葉片虹光現象之機制與特性探討
論文名稱(外文):The mechanisms and characteristics of leaf iridescence in shade plants
指導教授:許秋容許秋容引用關係施明智施明智引用關係
指導教授(外文):Chiou-Rong SheueMing-Chih Shih
口試委員:蕭淑娟卓逸民鍾國芳
口試日期:2017-06-13
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生命科學系所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:148
中文關鍵詞:虹光現象多層結構虹光色素體細胞壁可塑性葉綠體顏色改變光保護作用光合作用秋海棠科卷柏科
外文關鍵詞:Begoniaceaecell wallchloroplastcolor changeiridescence iridoplastmultilayered structurephotoprotectionphotosynthesisplasticitySelaginellaceae
相關次數:
  • 被引用被引用:1
  • 點閱點閱:699
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
虹光現象是可隨視者角度而變色的物理色。已知陰性植物之葉片虹光多由特化葉綠體或細胞壁的多層結構造成,虹光色素體即其中一種特化葉綠體。本研究以具虹光色素體的滇緬秋海棠及具多層結構細胞壁的翠雲草為主要材料,探討兩者虹光的差異、光強度對虹光色素體的影響與虹光色素體對陰性植物可能的助益。
藉光學顯微鏡 (LM) 及反射光源與光譜儀觀察滇緬秋海棠及翠雲草,以比較虹光色素體和多層結構細胞壁之虹光差異。結果顯示前者光點位在表皮細胞深處;而後者光點在表皮細胞表面。入射光方向改變時,前者光點會個別出現或消失;後者光點則連續地移動。當入射角度改變,前者的虹光色彩改變的程度比後者大。
為測試光強度對虹光色素體的影響,首先對同一滇緬秋海棠葉片進行遮光處理。一週後,葉片遮光區比無遮光區藍,因此稱遮光區為藍區,無遮光區為綠區。經 LM 觀察得知藍區表皮細胞中的藍色光點面積較大。以TEM 檢視發現藍區內虹光色素體的基質層平均厚度 (91.5 ± 1.6 nm) 比綠區 (106.4 ± 2.5 nm) 薄。第二週移動遮蓋物後,葉片新遮光區由綠轉藍;去除遮光區則由藍轉綠。其次在LM的強光下觀察藍色虹光色素體約2.5小時,發現其常有兩階段顏色變化:(1) 變透明但可回復;(2) 往長波長之色彩轉變,再轉為透明,且不再回復。
為了以虹光色素體多層結構的物理性質預估其反射與吸收光譜,利用馬克斯威爾方程式模擬其光學特性。在多層結構重複單位 (類囊體層 [T] + 基質層 [S]) 厚度固定為 190 nm 的條件下,代入變動的 T 與S 厚度,發現基質層厚度自135 nm 降為75 nm,且類囊體囊腔自5 nm增至25 nm時,多層結構反射光皆為藍色。
比較同具葉綠素 a、b 之虹光色素體與一般葉綠餅的模擬吸收率。結果顯示在藍波段,藍色虹光色素體的模擬吸收率比葉綠餅低;而在紅波段,藍色虹光色素體吸收率則較高。另測量滇緬秋海棠葉片藍、綠區的吸收光譜,以預估藍色虹光色素體的實際吸收光譜。參考植物光合作用之作用光譜,在其藍波段,葉片藍區的吸收率比綠區低;而在作用光譜紅波段,葉片藍區的吸收率僅比綠區略高。以TEM觀察發現葉片藍區中,含澱粉粒的虹光色素體比綠區少。
為瞭解虹光色素體具光保護功能的可能性,測試虹光色素體在強烈可見光下的移動及其紫外光反射率。葉肉細胞中的葉綠體受強烈可見光照射便遠離光源;反之,近軸面表皮細胞中的虹光色素體在強光下,卻仍位於兩葉肉細胞間的邊界上方,可能具保護其中的葉綠體能力。虹光葉片的紫外光反射率不高,受紫外光照射後,葉片即受破壞,虹光色素體亦失去有序結構。
本研究發現葉片的虹光來源是色素體或多層結構細胞壁可藉由比較虹光特性作有效的初步判斷。秋海棠葉片內,虹光色素體顏色可隨光環境改變並具可塑性。主要影響色彩並者為重複單位 (類囊體層 + 基質層) 的厚度,其厚度的變化則多為基質層厚度改變所致。虹光色素體即使在強光中依然遮蔽其下方葉肉細胞內的葉綠體,意味其可能具有物理性光保護的作用。本研究所提供陰性植物葉片虹光的特性,可作為未進一步來探索虹光現象生物學及其潛在效益之基礎。
Iridescence is a structural color changing from different angles. Foliar iridescence in some shade plants is induced by multilayered structures in modified chloroplasts or cell walls. Iridoplasts are a kind of modified chloroplasts. In this study, Begonia rockii with iridoplasts and Selagenella uncinata with multilayered cell walls were chosen to explore the iridescent differences between these two structures, the effects of light intensity on iridoplasts, and the potential benefits of iridoplasts to shade plants.
Iridoplasts within B. rockii and multilayered outer cell walls of S. uncinata were observed with a light microscope (LM) fitted with reflective lights and a spectrometer to understand the differences between their iridescent properties. Iridescent light spots of iridoplasts were in the depths of the adaxial epidermal cells, while those of cell walls were on the surface. As the incident angle changed, iridoplasts showed a greater degree of color change than cell walls, and different iridescent spots of iridoplasts appeared in the cells, while those of cell walls moved continuously over the cell surface.
For exploring the effects of light intensity upon iridoplasts, two treatments were conducted. First, a shade treatment was conducted to a B. rockii leaf. After a week, the covered area showed deeper bluish iridescence than the uncovered area. Thus, the former was named bluish area and the latter was greenish area. Observed with a LM, the coverage of bluish spots in the epidermis of the bluish area was higher than that of the greenish area. The ultrastructures revealed with TEM show that the average thickness of iridoplast stroma layers in bluish areas (91.5 ± 1.6 nm) was significantly less than that in greenish areas (106.4 ± 2.5 nm). After the shading was rotated in the second week, the newly covered area became bluish, while the uncovered one became greenish. Second, bluish iridoplasts were observed under the stong light of a LM for about 2.5 hours. During the exposure, their color changed in two stages: (1) changed from blue to transparent, and then reverting to blue; (2) irreversibly changing from blue toward long wavelength colors, then becoming transparent.
To predict the reflective and absorptive spectra of iridoplasts from their physical dimensions, Maxwell’s equations were used to simulate the optics of their multilayered structures. For these calculations, the thickness of a repeat unit (a thylakoid layer [T] + a stroma layer [S]) in the multilayered structure was fixed at 190 nm, but T and S were varied. Under this condition, the simulated reflective color remained blue although the T thickness varied from 135 nm to 75 nm and S thickness varied from 5 nm to 25 nm.
The simulated absorption of iridoplasts was compared with that of a normal granum structure with the same pigments. The simulated absorption of a blue iridoplast was lower than that of a granum in the blue absorptive region of the chlorophyll a and b absorption spectra, but it was higher in the red absorptive region. The absorption spectra of the bluish and greenish area on a B. rockii leaf were measured to estimate the actual absorption of blue iridoplasts. The actual absorption of iridoplasts of the bluish leaf area was lower than that of the greenish area in the blue active region of the action spectrum of photosynthesis, but it was only slightly higher in the red active region. In addition, the bluish area had fewer starch grain-containing iridoplasts than the greenish area.
To understand potential photoprotection from iridoplasts, plastid movements under strong visible light and reflectance of UV were studied. Unlike chloroplasts in mesophylls, which moved away from the light source, iridoplasts in the adaxial epidermis remained situated above the junction between two mesophyll cells under strong visible light, potentially protecting mesophyll layers. The reflectance of iridescent leaves in the UV region was not high. Visible leaf damage and iridoplast disorganization were observed after the leaf was exposed to UV light.
This study shows that a comparison of iridescent properties between iridoplasts and multilayered cell walls can be an effective preliminary method to determine the source of iridescence. The flexibility of color change of iridoplasts with light intensity in Begonia leaves is first reported. The thickness of a repeat unit (S + T) is confirmed to primarily determine the color of an iridoplast and this thickness can change mostly because the S thickness varies. Iridoplasts always shelter the chloroplasts in the mesophyll cells, even under strong light, and thus may provide physical photoprotection. Taken altogether, the characteristics of foliar iridescence obtained here provide an advanced basis to better understand iridescent biology and its potential benefits.
摘要 i
Abstract iii
目錄 v
圖目錄 vii
表目錄 x
附錄目錄 xi
List of Figure xii
List of Table xvi
List of Appendix xviii
第 1 章 前言 1
一、 虹光現象及其機制與功能 1
二、 葉綠體特性與功能 10
三、 研究目標 14
第 2 章 材料方法 15
一、 概述 15
二、 研究材料 17
三、 葉片遮光處理 20
四、 植物葉片光譜 21
五、 顯微影像的分析與處理 26
六、 反射與吸收光譜的模擬 33
第 3 章 結果 35
一、 可產生虹光現象之結構的觀察 35
二、 葉片藍色虹光現象受光度影響產生的改變: 72
三、 葉片藍色虹光現象可能的光學效益 80
第 4 章 討論 113
一、 虹光色素體與具多層結構之細胞壁所產生之虹光的異同 118
二、 滇緬秋海棠葉片虹光現象可依環境光強度而改變其表現 120
三、 虹光色素體改變顏色的機制 122
四、 虹光色素體在強烈可見光照射下的色彩改變 124
五、 虹光色素體的功能 126
六、 虹光現象與表皮細胞凸面外側細胞壁有同時出現的趨勢 133
七、 結論 134
第 5 章 參考文獻 135
第 6 章 附錄 140
包尚弘。2012。秋海棠科植物葉片、斑葉機制與特殊葉綠體的探討。國立嘉義大學生命科學院生物資源學系暨研究所碩士學位論文。101頁。
吳業華。2012。紅卷柏葉綠體多樣性及其二區葉綠體發育與光合作用相關蛋白脂免疫金標定。國立嘉義大學生命科學院生物資源學系暨研究所碩士學位論文。79頁。
柯馨雅。2016。肉穗野牡丹葉片虹光現象之探討。國立中興大學生命科學系碩士班碩士學位論文。118頁。
彭紹恩,胡景雯和陳啟祥。2012。圖解穿透式電子顯微鏡技術。國立海洋生物博物館。
趙惠德。2000。不同光度及施肥量對烏心石苗木形態及生理之影響。國立台灣大學森林學研究所碩士學位論文。55頁。
Bone, R. A., D. W. Lee, and J. Norman. 1985. Epidermal cells functioning as lenses in leaves of tropical rain-forest shade plants. Applied Optics 24:1408–1412.
Burgess, J. 1985. Introduction to plant cell development. CUP Archive.
Clark, J. B., and G. R. Lister. 1975. Photosynthetic action spectra of trees II. The relationship of cuticle structure to the visible and ultraviolet spectral properties of needles from four coniferous species. Plant Physiology 55:407–413.
Doucet, S. M., and M. G. Meadows. 2009. Iridescence: a functional perspective. Journal of the Royal Society Interface 6:115–132.
Duckett, J. G., and R. Ligrone. 1993. Plastid-dividing rings in ferns. Annals of Botany 72:619–627.
Dyck, J. 1971. Structure and colour-production of the blue barbs of Agapornis roseicollis and Cotinga maynana. Zeitschrift für Zellforschung und Mikroskopische Anatomie 115:17–29.
Endler, J. A. 1993. The color of light in forests and its implications. Ecological Monographs 63:1–27.
Fiscus, E. L., and F. L. Booker. 1995. Is increased UV-B a threat to crop photosynthesis and productivity? Photosynthesis Research 43:81–92.
Glover, B. J., and H. M. Whitney. 2010. Structural colour and iridescence in plants: the poorly studied relations of pigment colour. Annals of Botany 105:505–511.
Gould, K. S., and D. W. Lee. 1996. Physical and ultrastructural basis of blue leaf iridescence in four Malaysian understory plants. American Journal of Botany 83:45–50.
Graham, R. M., D. W. Lee, and K. Norstog. 1993. Physical and ultrastructural basis of blue leaf iridescence in two neotropical ferns. American Journal of Botany 80:198–203.
Hébant, C., and D. W. Lee. 1984. Ultrastructural basis and developmental control of blue iridescence in Selaginella leaves. American Journal of Botany 71:216–219.
Jacobs, M., M. Lopez-Garcia, O. P. Phrathep, T. Lawson, R. Oulton, and H. M. Whitney. 2016. Photonic multilayer structure of Begonia chloroplasts enhances photosynthetic efficiency. Nature Plants 2:16162.
Johnsen, S. 2012. The optics of life: a biologist's guide to light in nature. Princeton University Press.
Johnson, M. P., A. P. Brain, and A. V. Ruban. 2011. Changes in thylakoid membrane thickness associated with the reorganization of photosystem II light harvesting complexes during photoprotective energy dissipation. Plant Signaling & Behavior 6:1386–1390.
Joyard, J., M. Ferro, C. Masselon, D. Seigneurin-Berny, D. Salvi, J. Garin, and N. Rolland. 2010. Chloroplast proteomics highlights the subcellular compartmentation of lipid metabolism. Progress in Lipid Research 49:128–158.
Kieselbach, T., Å. Hagman, B. Andersson, and W. P. Schröder. 1998. The thylakoid lumen of chloroplasts isolation and characterization. Journal of Biological Chemistry 273:6710–6716.
Kirchhoff, H., C. Hall, M. Wood, M. Herbstová, O. Tsabari, R. Nevo, D. Charuvi, E. Shimoni, and Z. Reich. 2011. Dynamic control of protein diffusion within the granal thylakoid lumen. Proceedings of the National Academy of Sciences of the United States of America 108:20248–20253.
Lee, D. 2010. Nature's palette: the science of plant color. University of Chicago Press.
Lee, D. W. 1991. Ultrastructural basis and function of iridescent blue colour of fruits in Elaeocarpus. Nature 349:260–262.
Lee, D. W., and J. B. Lowry. 1975. Physical basis and ecological significance of iridescence in blue plants. Nature 254:50–51.
Nasrulhaq-Boyce, A., and J. Duckett. 1991. Dimorphic epidermal cell chloroplasts in the mesophyll‐less leaves of an extreme-shade tropical fern, Teratophyllum rotundifoliatum (R. Bonap.) Holtt.: a light and electron microscope study. New Phytologist 119:433–444.
Nevo, R., S. G. Chuartzman, O. Tsabari, Z. Reich, D. Charuvi, and E. Shimoni. 2009. Architecture of thylakoid membrane networks. Pages 295–328 in Lipids in Photosynthesis. Springer, Netherlands.
Niyogi, K. K. 1999. Photoprotection revisited: genetic and molecular approaches. Annual Review of Plant Biology 50:333–359.
Nogués, S., D. J. Allen, J. I. Morison, and N. R. Baker. 1998. Ultraviolet-B radiation effects on water relations, leaf development, and photosynthesis in droughted pea plants. Plant Physiology 117:173–181.
Padmanabhan, M. S., and S. Dinesh-Kumar. 2010. All hands on deck—the role of chloroplasts, endoplasmic reticulum, and the nucleus in driving plant innate immunity. Molecular Plant-Microbe Interactions 23:1368–1380.
Prasad, M. N. V. 1997. Plant Ecophysiology. John Wiley & Sons.
Pribil, M., and D. Leister. 2014. Structure and dynamics of thylakoids in land plants. Journal of Experimental Botany 65:1955–1972.
Pyke, K. 2009. Plastid Biology. Cambridge University Press.
Ruban, A. V., M. P. Johnson, and C. D. Duffy. 2012. The photoprotective molecular switch in the photosystem II antenna. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1817:167–181.
Sheue, C. R., S. H. Pao, L. F. Chien, P. Chesson, and C. I. Peng. 2012. Natural foliar variegation without costs? The case of Begonia. Annals of Botany 109:1065–1074.
Sheue, C. R., J. W. Liu, J. F. Ho, A. W. Yao, Y. H. Wu, S. Das, C. C. Tsai, H. A. Chu, M. S. Ku, and P. Chesson. 2015. A variation on chloroplast development: the bizonoplast and photosynthetic efficiency in the deep-shade plant Selaginella erythropus. American Journal of Botany 102:500–511.
Sheue, C. R., V. Sarafis, R. Kiew, H. Y. Liu, A. Salino, L. L. Kuo-Huang, Y. P. Yang, C. C. Tsai, C. H. Lin, and J. W. Yong. 2007. Bizonoplast, a unique chloroplast in the epidermal cells of microphylls in the shade plant Selaginella erythropus (Selaginellaceae). American Journal of Botany 94:1922–1929.
Sheue, C., V. Sarafis, H. Liu, Y. Yang, and R. Kiew. 2003. Structural study on leaves of super shade plants. Pages 13–14 in Proceedings of the 24th Republic of China Symposium on Microscopy, Taipei, Taiwan, National Defense University.
Strout, G., S. D. Russell, D. P. Pulsifer, S. Erten, A. Lakhtakia, and D. W. Lee. 2013. Silica nanoparticles aid in structural leaf coloration in the Malaysian tropical rainforest understorey herb Mapania caudata. Annals of Botany 112:1141–1148.
Taiz, L., and E. Zeiger. 2010. Plant physiology 5th Ed. Sunderland, MA: Sinauer Associates.
Tan, T., D. Wong, and P. Lee. 2004. Iridescence of a shell of mollusk Haliotis Glabra. Optics Express 12:4847–4854.
Thomas, K. R., M. Kolle, H. M. Whitney, B. J. Glover, and U. Steiner. 2010. Function of blue iridescence in tropical understorey plants. Journal of the Royal Society Interface 7:1699–1707.
Thorne, S., J. Duniec, and J. Lee. 1980. Refractive and dielectric properties of a chlorophyll-protein complex (LHCP) of chloroplast grana thylakoid membranes. Photobiochemistry and Photobiophysics 1:161–165.
Vignolini, S., E. Moyroud, B. J. Glover, and U. Steiner. 2013. Analysing photonic structures in plants. Journal of the Royal Society Interface 10:20130394.
Vignolini, S., P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, and U. Steiner. 2012. Pointillist structural color in Pollia fruit. Proceedings of the National Academy of Sciences of the United States of America 109:15712–15715.
Vukusic, P., J. Sambles, C. Lawrence, and R. Wootton. 1999. Quantified interference and diffraction in single Morpho butterfly scales. Proceedings of the Royal Society of London B: Biological Sciences 266:1403–1411.
Whitney, H. M., M. Kolle, P. Andrew, L. Chittka, U. Steiner, and B. J. Glover. 2009. Floral iridescence, produced by diffractive optics, acts as a cue for animal pollinators. Science 323:130–133.
Zeiger, E., L. D. Talbott, S. Frechilla, A. Srivastava, and J. Zhu. 2002. The guard cell chloroplast: a perspective for the twenty‐first century. New Phytologist 153:415–424.
Zhang, K. M., H. J. Yu, K. Shi, Y. H. Zhou, J. Q. Yu, and X. J. Xia. 2010. Photoprotective roles of anthocyanins in Begonia semperflorens. Plant Science 179:202–208.
Zurzycki, J. 1980. Blue light-induced intracellular movements. In: Senger H. (eds) The blue light syndrome. Pages 50–68 in Proceedings in Life Sciences. Springer, Berlin, Heidelberg.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊