跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/07 22:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林玠如
研究生(外文):Chieh-Ju Lin
論文名稱:台灣隔板葉形軟珊瑚(Lobophytum crassum)之二次代謝物14-deoxycrassin抗人類攝護腺癌細胞的功效與機轉
論文名稱(外文):Therapeutic efficacy and apoptosis signaling of marine secondary metabolites, 14-deoxycrassin from Taiwanese soft coral Lobophytum crassum on prostate cancer cell lines
指導教授:林季千
指導教授(外文):Chi-Chien Lin
口試委員:陳與國陳樺翰
口試日期:2017-06-28
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生命科學院碩士在職專班
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:65
中文關鍵詞:細胞凋亡14-deoxycrassin人類攝護腺癌雙萜類cembrane型雙萜海洋抗腫瘤藥物
外文關鍵詞:apoptosis14-deoxycrassinhuman prostate cancerditerpenoidscembranoidsmarine antitumor drugs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:321
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
攝護腺癌是高齡男性常見的癌症之一,病患常會有泌尿系統方面的症狀。因此,開發可以毒殺癌細胞卻不造成正常細胞死亡的低毒性藥物遂成為首要任務。本研究採用的海洋天然藥物14-deoxycrassin,為萃取自南台灣沿岸採集的隔板葉形軟珊瑚,此藥物結構是由14元環碳架所組成,針對攝護腺癌PC-3細胞株進行細胞毒殺試驗,細胞存活率隨藥物濃度6.25至25 μM升高而下降,有劑量依賴的情況。另外,同時觀察到經14-deoxycrassin藥物處理的細胞核內出現DNA斷裂,形成碎片狀的細胞凋亡現象。且利用西方墨點法也證實細胞凋亡中促凋亡蛋白Bax表現量增加,反之抗凋亡蛋白Bcl-2表現量較低。故14-deoxycrassin在抗攝護腺癌上是極具開發潛力的海洋天然藥物。
Prostate cancer is one of the most common cancer entities as men get older, with bothersome urinary symptoms. Therefore, novel therapeutic agents with low cytotoxic action against normal cells are urgently needed. In this study, we found that 14-deoxycrassin, the cembrane diterpenoids belong to a large family of natural products having a characteristic 14-membered carbocyclic ring skeletal, purified from the soft coral Lobophytum crassum (Von Marenzeller, 1886) was collected at the coast of southern Taiwan, within 6.25-25 μM clearly decreased cell viability of human PC-3 prostate cancer cells dose-dependently which was revealed by Methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay. Additionally, treatment of PC-3 cells with 14-deoxycrassin displayed an induction of apoptosis by DNA fragment in treated cells. Western blot analyses further revealed that 14-deoxycrassin induces apoptosis by increasing the levels of Bax, while decreasing the levels Bcl-2. As a result, these data suggested that 14-deoxycrassin may be a promising novel agent for treatment and prevention of prostate cancer.
摘要................................................i
Abstract...........................................ii
目錄...............................................iii
圖目錄.............................................v
表目錄.............................................vi
第一章 緒論.......................................1
1-1 前言.......................................1
1-2 研究動機....................................2
第二章 文獻回顧....................................6
2-1 攝護腺癌....................................6
2-1-1 攝護腺癌介紹.................................6
2-1-2 攝護腺癌的臨床症狀............................8
2-1-3 攝護腺癌的致病機轉............................9
2-1-4 攝護腺癌的檢測................................11
2-1-5 攝護腺癌的治療................................12
2-1-6 攝護腺癌的化學治療.............................13
2-1-7 攝護腺癌的預防.................................14
2-2 Lobophytum crassum相關介紹.....................15
2-2-1 Lobophytum crassum的分布及生物分類.............15
2-2-2 自然界中萜類( terpenoids )化合物介紹............16
2-2-3 Lobophytum crassum中 cembrane-type雙萜( diterpenoids )化合物介紹...............................16
2-2-4 雙萜類( Cembrane-type )化合物之14-deoxycrassin介紹 ......................................................29
2-3 細胞訊息傳遞...................................29
2-3-1 細胞凋亡( Cell apoptosis ).....................29
2-3-2 細胞週期停滯 ( Cell arrest )....................30
2-3-3 細胞自噬 (Autophage)............................31
第三章 材料與方法.....................................32
3-1 材料...........................................32
3-1-1 藥品與試劑......................................32
3-1-2 細胞培養........................................32
3-1-3 流式細胞儀分析..................................33
3-1-4 西方墨點法分析..................................33
3-1-5 儀器...........................................34
3-2 生物活性試驗....................................34
3-2-1 攝護腺癌PC-3細胞株培養 (Cell culture)...........34
3-2-2 細胞計數與活存率分析 (Trypan blue dye exclusion assay).................................................34
3-2-3 細胞冷凍保存....................................34
3-2-4 冷凍細胞活化....................................35
3-2-5 細胞毒殺活性試驗 (MTT assay)....................35
3-3 細胞訊息傳遞試驗................................35
3-3-1 流式細胞儀分析法 (Flow cytometry analysis)......35
3-3-2 細胞週期分析 (Cell cycle analysis)..............36
3-3-3 細胞凋亡分析 (Apoptotic pathway analysis).......37
3-3-4 蛋白表現分析 - 西方墨點法 (Western blot assay)...37
第四章 結果...........................................39
4-1 細胞毒殺作用及細胞藥效反應.......................39
4-2 細胞週期 (cell cycle)的影響.....................39
4-3 細胞凋亡及路徑 (apoptotic pathway)分析..........40
4-4 調控相關凋亡蛋白訊號分析.........................41
第五章 討論...........................................42
第六章 結論...........................................45
第七章 參考文獻.......................................55
1.Munro, M.H.G., et al., The discovery and development of marine compounds with pharmaceutical potential. Journal of Biotechnology, 1999. 70(1): p. 15-25.

2.Gerwick, William H. and Bradley S. Moore, Lessons from the Past and Charting the Future of Marine Natural Products Drug Discovery and Chemical Biology. Chemistry & Biology, 2012. 19(1): p. 85-98.

3.Rocha, J., et al., Cnidarians as a Source of New Marine Bioactive Compounds—An Overview of the Last Decade and Future Steps for Bioprospecting. Marine Drugs, 2011. 9(10).

4.Swathi, J., et al., Marine fungal metabolites as a rich source of bioactive compounds. African Journal of Biochemistry Research, 2013. 7(10): p. 184-196.

5.Joseph, B. and S. Sujatha, Pharmacologically important natural products from marine sponges. J. Nat. Prod, 2011. 4: p. 5-12.

6.Jirge, S.S. and Y.S. Chaudhari, Marine: the ultimate source of bioactives and drug metabolites. International Journal of Research in Ayurveda and Pharmacy (IJRAP), 2010. 1(1): p. 55-62.

7.Piel, J., Metabolites from symbiotic bacteria. Natural Product Reports, 2009. 26(3): p. 338-362.

8.Freudenthal, H.D., Transactions of the drugs from the sea symposium, university of Rhode Island 27-29. August 1967 p. 1-297.

9.Montaser, R. and H. Luesch, Marine natural products: a new wave of drugs? Future Medicinal Chemistry, 2011. 3(12): p. 1475-1489.

10.Housset, M., M.T. Daniel, and L. Degos, Small doses of ARA-C in the treatment of acute myeloid leukaemia: differentiation of myeloid leukaemia cells? British Journal of Haematology, 1982. 51(1): p. 125-129.

11.Mayer, A.M.S., et al., The odyssey of marine pharmaceuticals: a current pipeline perspective. Trends in Pharmacological Sciences, 2010. 31(6): p. 255-265.

12.Miljanich, G.P., Ziconotide: Neuronal Calcium Channel Blocker for Treating Severe Chronic Pain. Current Medicinal Chemistry, 2004. 11(23): p. 3029-3040.

13.McGivern, J.G., Targeting N-type and T-type calcium channels for the treatment of pain. Drug Discovery Today, 2006. 11(5): p. 245-253.

14.Venkateshwar Goud, T., et al., Anti-HIV Active Petrosins from the Marine Sponge Petrosia similis. Biological and Pharmaceutical Bulletin, 2003. 26(10): p. 1498-1501.

15.Menis, J. and C. Twelves, Eribulin (Halaven): a new, effective treatment for women with heavily pretreated metastatic breast cancer. Breast Cancer : Targets and Therapy, 2011. 3: p. 101-111.

16.Hirata, Y. and D. Uemura, Halichondrins - antitumor polyether macrolides from a marine sponge, in Pure and Applied Chemistry. 1986. p. 701.

17.Jordan, M.A., et al., The primary antimitotic mechanism of action of the synthetic halichondrin E7389 is suppression of microtubule growth. Molecular Cancer Therapeutics, 2005. 4(7): p. 1086-1095.

18.Proksch, P., Defensive roles for secondary metabolites from marine sponges and sponge-feeding nudibranchs. Toxicon, 1994. 32(6): p. 639-655.

19.ZHOU, S.-W., C.-Y. YANG, and C.-H. XIA, The prevention of marine fouling organisms by natural antifoulants: a review. Nat Prod Res Dev, 2011. 23: p. 186-197.

20.Sigel, M.M.W., L.L.; Lichter, W.; Dudeck, L.E.; Gargus, J.L.; Lucas, and A.H. In, Food–Drugs from the Sea: Proceedings. Marine Technology Society, Washington, DC, 1969: p. 281–294.

21.Garcia-Carbonero, R., et al., Phase II and Pharmacokinetic Study of Ecteinascidin 743 in Patients With Progressive Sarcomas of Soft Tissues Refractory to Chemotherapy. Journal of Clinical Oncology, 2004. 22(8): p. 1480-1490.

22.Sessa, C., et al., Trabectedin for Women With Ovarian Carcinoma After Treatment With Platinum and Taxanes Fails. Journal of Clinical Oncology, 2005. 23(9): p. 1867-1874.

23.Bonnard, I., et al., New Lobane and Cembrane Diterpenes from Two Comorian Soft Corals. Marine Drugs, 2010. 8(2): p. 359.

24.Maloney, K.N., et al., Lodopyridone, a Structurally Unprecedented Alkaloid from a Marine Actinomycete. Organic Letters, 2009. 11(23): p. 5422-5424.

25.Tapiolas, D.M., et al., Octalactins A and B: cytotoxic eight-membered-ring lactones from a marine bacterium, Streptomyces sp. Journal of the American Chemical Society, 1991. 113(12): p. 4682-4683.

26.Gorajana, A., et al., Resistoflavine, cytotoxic compound from a marine actinomycete, Streptomyces chibaensis AUBN1/7. Microbiological Research, 2007. 162(4): p. 322-327.

27.Rickards, R.W., et al., Calothrixins A and B, novel pentacyclic metabolites from Calothrix cyanobacteria with potent activity against malaria parasites and human cancer cells. Tetrahedron, 1999. 55(47): p. 13513-13520.

28.Du, L., et al., Aspergiolide A, a novel anthraquinone derivative with naphtho[1,2,3-de]chromene-2,7-dione skeleton isolated from a marine-derived fungus Aspergillus glaucus. Tetrahedron, 2007. 63(5): p. 1085-1088.

29.Hawas, U.W., et al., Mansouramycins A−D, Cytotoxic Isoquinolinequinones from a Marine Streptomycete. Journal of Natural Products, 2009. 72(12): p. 2120-2124.

30.Du, L., et al., Alkaloids from a deep ocean sediment-derived fungus Penicillium sp. and their antitumor activities. J Antibiot, 2010. 63(4): p. 165-170.

31.Asolkar, R.N., et al., Daryamides A−C, Weakly Cytotoxic Polyketides from a Marine-Derived Actinomycete of the Genus Streptomyces Strain CNQ-085. Journal of Natural Products, 2006. 69(12): p. 1756-1759.

32.Tan, L.T., Bioactive natural products from marine cyanobacteria for drug discovery. Phytochemistry, 2007. 68(7): p. 954-979.

33.Cho, J.Y., et al., Lucentamycins A−D, Cytotoxic Peptides from the Marine-Derived Actinomycete Nocardiopsis lucentensis. Journal of Natural Products, 2007. 70(8): p. 1321-1328.

34.Pérez, M., et al., Tartrolon D, a Cytotoxic Macrodiolide from the Marine-Derived Actinomycete Streptomyces sp. MDG-04-17-069. Journal of Natural Products, 2009. 72(12): p. 2192-2194.

35.Koizumi, Y., et al., Oxaline, a fungal alkaloid, arrests the cell cycle in M phase by inhibition of tubulin polymerization. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2004. 1693(1): p. 47-55.

36.Bringmann, G., et al., Large-Scale Biotechnological Production of the Antileukemic Marine Natural Product Sorbicillactone A. Marine Drugs, 2007. 5(2).

37.Kwon, H.C., et al., Marinomycins A−D, Antitumor-Antibiotics of a New Structure Class from a Marine Actinomycete of the Recently Discovered Genus “Marinispora”. Journal of the American Chemical Society, 2006. 128(5): p. 1622-1632.

38.Bhatnagar, I. and S.-K. Kim, Marine Antitumor Drugs: Status, Shortfalls and Strategies. Marine Drugs, 2010. 8(10).

39.Goldenberg, L., et al., The role of 5-alpha reductase inhibitors in prostate pathophysiology: Is there an additional advantage to inhibition of type 1 isoenzyme? Canadian Urological Association Journal, 2009. 3(3 Suppl 2): p. S109.

40.Chu, L.W., J.K. Reichardt, and A.W. Hsing, Androgens and the molecular epidemiology of prostate cancer. Current Opinion in Endocrinology, Diabetes and Obesity, 2008. 15(3): p. 261-270.

41.Dudkowska, M., et al., Androgen receptor and c-Myc transcription factors as putative partners in the in vivo cross-talk between androgen receptor-mediated and c-Met-mediated signalling pathways. ACTA BIOCHIMICA POLONICA-ENGLISH EDITION-, 2007. 54(2): p. 253.

42.Hudak, S.J., J. Hernandez, and I.M. Thompson, Role of 5 alpha-reductase inhibitors in the management of prostate cancer. Clinical interventions in aging, 2006. 1(4): p. 425.

43.Freedman, M.L., et al., Admixture mapping identifies 8q24 as a prostate cancer risk locus in African-American men. Proceedings of the National Academy of Sciences, 2006. 103(38): p. 14068-14073.

44.Haiman, C.A., et al., Multiple regions within 8q24 independently affect risk for prostate cancer. Nat Genet, 2007. 39(5): p. 638-644.

45.Sarma, A.V., et al., Genetic polymorphisms in CYP17, CYP3A4, CYP19A1, SRD5A2, IGF‐1, and IGFBP‐3 and prostate cancer risk in African‐American men: The Flint Men's Health Study. The Prostate, 2008. 68(3): p. 296-305.

46.Ntais, C., A. Polycarpou, and J.P.A. Ioannidis, SRD5A2 Gene Polymorphisms and the Risk of Prostate Cancer. A Meta-Analysis, 2003. 12(7): p. 618-624.

47.Wu, A.H., et al., Lifestyle Determinants of 5α-Reductase Metabolites in Older African-American, White, and Asian-American Men. Cancer Epidemiology Biomarkers & Prevention, 2001. 10(5): p. 533-538.

48.Oesterling, J.E., et al., Serum prostate-specific antigen in a community-based population of healthy men: Establishment of age-specific reference ranges. JAMA, 1993. 270(7): p. 860-864.

49.Van Aubel, O., W. Hoekstra, and F. Schröder, Early orchiectomy for patients with stage D1 prostatic carcinoma. The Journal of urology, 1985. 134(2): p. 292.

50.Laufer, M., et al., Complete androgen blockade for prostate cancer: what went wrong? The Journal of urology, 2000. 164(1): p. 3-9.

51.Oesterling, J.E., et al., Serum prostate-specific antigen in a community-based population of healthy men: establishment of age-specific reference ranges. Jama, 1993. 270(7): p. 860-864.

52.DeVita, V.T., T.S. Lawrence, and S.A. Rosenberg, Cancer: principles and practice of oncology-advances in oncology. Vol. 1. 2010: Lippincott Williams & Wilkins.

53.Smith, D.C., et al., Change in serum prostate-specific antigen as a marker of response to cytotoxic therapy for hormone-refractory prostate cancer. Journal of clinical oncology, 1998. 16(5): p. 1835-1843.

54.Choo, G.-S., et al., Anticancer Effect of Fucoidan on DU-145 Prostate Cancer Cells through Inhibition of PI3K/Akt and MAPK Pathway Expression. Marine Drugs, 2016. 14(7): p. 126.

55.周郁翔,2002,台灣南部海域三種軟珊瑚的有性生殖,國立台灣大學海洋研究所碩士論文。

56.鄭名君,2006,肉質軟珊瑚屬與葉形軟珊瑚屬之分子親緣關係研究,國立台灣大學海洋研究所碩士論文。

57.Lee, C.-H., et al., Terpenoids from the octocorals Menella sp.(Plexauridae) and Lobophytum crassum (Alcyonacea). Marine drugs, 2012. 10(2): p. 427-438.

58.Azizur Rahman, M. and Y. Isa, Characterization of proteins from the matrix of spicules from the alcyonarian, Lobophytum crassum. Journal of Experimental Marine Biology and Ecology, 2005. 321(1): p. 71-82.

59.Shi, Y.-P., et al., New Terpenoid Constituents from Eunicea pinta. Journal of Natural Products, 2002. 65(9): p. 1232-1241.

60.Rashid, M.A., K.R. Gustafson, and M.R. Boyd, HIV-Inhibitory Cembrane Derivatives from a Philippines Collection of the Soft Coral Lobophytum Species. Journal of Natural Products, 2000. 63(4): p. 531-533.

61.Rodríguez, A.D., et al., Isolation and structures of the uprolides. I. Thirteen new cytotoxic cembranolides from the Caribbean gorgonian Euniceamammosa. Canadian Journal of Chemistry, 1995. 73(5): p. 643-654.

62.Morales, J.J., J.R. Espina, and A.D. Rodriguez, The structure of euniolide, a new cembranoid diterpene from the caribbean gorgonians eunicea succinea and eunicea mammosa. Tetrahedron, 1990. 46(17): p. 5889-5894.

63.Zhang, W., et al., Structural and Stereochemical Studies of α-Methylene-γ-lactone-Bearing Cembrane Diterpenoids from a South China Sea Soft Coral Lobophytum crassum. Journal of Natural Products, 2008. 71(6): p. 961-966.

64.Haagen‐Smit, A., T. Wang, and N. Mirov, Composition of gum tumentines of pines. XIII. A report on Pinus albicauclis. Journal of Pharmaceutical Sciences, 1951. 40(11): p. 557-559.

65.Ciereszko, L.S., D.H. Sifford, and A.J. Weinheimer, Chemistry of coelenterates. I. Occurrence of terpenoid compounds in gorgonians. Annals of the New York Academy of Sciences, 1960. 90(1): p. 917-919.

66.Blunt, J.W., et al., Marine natural products. Natural product reports, 2013. 30(2): p. 237-323.

67.Cheng, S.-Y., S.-K. Wang, and C.-Y. Duh, Secocrassumol, a seco-Cembranoid from the Dongsha Atoll Soft Coral Lobophytum crassum. Marine Drugs, 2014. 12(12): p. 6028.

68.Kingsley, R.J. and N. Watabe, Analysis of proteinaceous components of the organic matrices of spicules from the gorgonian Leptogorgia virgulata. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1983. 76(3): p. 443-447.

69.Lin, S.-T., S.-K. Wang, and C.-Y. Duh, Cembranoids from the Dongsha Atoll Soft Coral Lobophytum crassum. Marine Drugs, 2011. 9(12): p. 2705.

70.Lee, N.-L. and J.-H. Su, Tetrahydrofuran Cembranoids from the Cultured Soft Coral Lobophytum crassum. Marine Drugs, 2011. 9(12): p. 2526.

71.Tseng, Y.-J., et al., Bioactive Cembranoids from the Dongsha Atoll Soft Coral Lobophytum crassum. Bulletin of the Chemical Society of Japan, 2011. 84(10): p. 1102-1106.

72.Bowden, B., et al., Studies of Australian soft corals. VII. Two new diterpenes from an unknown species of soft coral (genus Lobophytum). Australian Journal of Chemistry, 1978. 31(6): p. 1303-1312.

73.Aoki, M., et al., Characterization of 13-Hydroxyneocembrene from Soft Corals. Bulletin of the Chemical Society of Japan, 1985. 58(2): p. 779-780.

74.Liao, Z.-J., et al., Two New Cembranoids from the Soft Coral Lobophytum crassum. Bulletin of the Chemical Society of Japan, 2011. 84(6): p. 653-655.

75.Wanzola, M., et al., Four New Cembrane Diterpenes Isolated from an Okinawan Soft Coral Lobophytum crassum with Inhibitory Effects on Nitric Oxide Production. Chemical and Pharmaceutical Bulletin, 2010. 58(9): p. 1203-1209.

76.Uchio, Y., et al., Denticulatolide, an ichthyotoxic peroxide-containing cembranolide from the soft coral lobophytum denticulatum. Tetrahedron Letters, 1985. 26(37): p. 4487-4490.

77.Chao, C.-H., et al., Cytotoxic and Anti-inflammatory Cembranoids from the Soft Coral Lobophytum crassum. Journal of Natural Products, 2008. 71(11): p. 1819-1824.

78.Lee, C.-H., et al., Terpenoids from the Octocorals Menella sp. (Plexauridae) and Lobophytum crassum (Alcyonacea). Marine Drugs, 2012. 10(2): p. 427.

79.Shi-Yie, C., et al., α-Tocopherols from the Formosan Soft Coral Lobophytum crassum. Bulletin of the Chemical Society of Japan, 2011. 84(7): p. 783-787.

80.Huang, H.-C., et al., Crassocolides A−F, Cembranoids with a trans-Fused Lactone from the Soft Coral Sarcophyton crassocaule. Journal of Natural Products, 2006. 69(11): p. 1554-1559.

81.Kobayashi, M. and T. Hamaguchi, Marine Terpenes and Terpenoids. VI. Isolation of Several Plausible Precursors of Marine Cembranolides, from the Soft Coral, Sinularia mayi. CHEMICAL & PHARMACEUTICAL BULLETIN, 1988. 36(10): p. 3780-3786.

82.Duh, C.-Y., et al., Cytotoxic Cembrenolide Diterpenes from the Formosan Soft Coral Lobophytum crassum. Journal of Natural Products, 2000. 63(6): p. 884-885.

83.Kinamoni, Z., et al., Several new cembranoid diterpenes from three soft corals of the red sea. Tetrahedron, 1983. 39(9): p. 1643-1648.

84.Coll, J., S. Mitchell, and G. Stokie, Studies of Australian soft corals. II. A novel cembrenoid diterpene from Lobophytum michaelae. Australian Journal of Chemistry, 1977. 30(8): p. 1859-1863.

85.Wei, X., et al., Antiplasmodial cembradiene diterpenoids from a Southwestern Caribbean gorgonian octocoral of the genus Eunicea. Tetrahedron, 2004. 60(51): p. 11813-11819.

86.Li, G., et al., Cytotoxic Cembranoid Diterpenes from a Soft Coral Sinularia gibberosa. Journal of Natural Products, 2005. 68(5): p. 649-652.

87.Yin, S.-W., et al., A New Cembranoid Diterpene and Other Related Metabolites from the South-China-Sea Soft Coral Lobophytum crassum. Helvetica Chimica Acta, 2006. 89(3): p. 567-572.

88.Matthée, G.F., G.M. König, and A.D. Wright, Three New Diterpenes from the Marine Soft Coral Lobophytum crassum. Journal of Natural Products, 1998. 61(2): p. 237-240.

89.Yamada, Y., et al., Studies on Marine Natural Products. I. 13-Membered Carbocyclic Cembranolide Diterpenes from the Soft Coral Lobophytum pauciflorum (Ehrenberg). CHEMICAL & PHARMACEUTICAL BULLETIN, 1979. 27(10): p. 2394-2397.

90.Uchio, Y., et al., Lobohedleolide and (7Z)-lobohedleolide, new cembranolides from the soft coral lobophytum hedleyi whitelegge. Tetrahedron Letters, 1981. 22(41): p. 4089-4092.

91.Rodríguez, A.D. and N. Martínez, Marine antitumor agents: 14-deoxycrassin and pseudoplexaurol, new cembranoid diterpenes from the Caribbean gorgonianPseudoplexaura porosa. Experientia, 1993. 49(2): p. 179-181.

92.Liu, Z., et al., Asymmetric total synthesis of pseudoplexaurol and 14-deoxycrassin, two antitumor marine cembrane diterpenoids. Synlett, 2003. 2003(13): p. 1977-1980.

93.Lu, M.-C., et al., Active extracts of wild fruiting bodies of Antrodia camphorata (EEAC) induce leukemia HL 60 cells apoptosis partially through histone hypoacetylation and synergistically promote anticancer effect of trichostatin A. Archives of Toxicology, 2009. 83(2): p. 121-129.

94.Stockert, J.C., et al., MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets. Acta Histochemica, 2012. 114(8): p. 785-796.

95.Mazzini, G.F., C; Erba, E, Dual excitation multi-fluorescence flow cytometry for detailed analyses of viability and apoptotic cell transition. European Journal of Histochemistry, 2003. 4(47): p. 289.

96.Chen, J., et al., Design, synthesis, and characterization of new embelin derivatives as potent inhibitors of X-linked inhibitor of apoptosis protein. Bioorganic & medicinal chemistry letters, 2006. 16(22): p. 5805-5808.

97.Dai, Y., et al., Natural IAP inhibitor Embelin enhances therapeutic efficacy of ionizing radiation in prostate cancer. 2011.

98.Nikolovska-Coleska, Z., et al., Discovery of embelin as a cell-permeable, small-molecular weight inhibitor of XIAP through structure-based computational screening of a traditional herbal medicine three-dimensional structure database. Journal of medicinal chemistry, 2004. 47(10): p. 2430-2440.

99.Luqmani, Y., Mechanisms of drug resistance in cancer chemotherapy. Medical Principles and Practice, 2005. 14(Suppl. 1): p. 35-48.

100.Lin, C.-Y., C.-S. Huang, and M.-L. Hu, The use of fetal bovine serum as delivery vehicle to improve the uptake and stability of lycopene in cell culture studies. British journal of nutrition, 2007. 98(01): p. 226-232.

101.Yang, C.M., et al., Growth inhibitory efficacy of lycopene and β‐carotene against androgen‐independent prostate tumor cells xenografted in nude mice. Molecular nutrition & food research, 2011. 55(4): p. 606-612.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top