1.Munro, M.H.G., et al., The discovery and development of marine compounds with pharmaceutical potential. Journal of Biotechnology, 1999. 70(1): p. 15-25.
2.Gerwick, William H. and Bradley S. Moore, Lessons from the Past and Charting the Future of Marine Natural Products Drug Discovery and Chemical Biology. Chemistry & Biology, 2012. 19(1): p. 85-98.
3.Rocha, J., et al., Cnidarians as a Source of New Marine Bioactive Compounds—An Overview of the Last Decade and Future Steps for Bioprospecting. Marine Drugs, 2011. 9(10).
4.Swathi, J., et al., Marine fungal metabolites as a rich source of bioactive compounds. African Journal of Biochemistry Research, 2013. 7(10): p. 184-196.
5.Joseph, B. and S. Sujatha, Pharmacologically important natural products from marine sponges. J. Nat. Prod, 2011. 4: p. 5-12.
6.Jirge, S.S. and Y.S. Chaudhari, Marine: the ultimate source of bioactives and drug metabolites. International Journal of Research in Ayurveda and Pharmacy (IJRAP), 2010. 1(1): p. 55-62.
7.Piel, J., Metabolites from symbiotic bacteria. Natural Product Reports, 2009. 26(3): p. 338-362.
8.Freudenthal, H.D., Transactions of the drugs from the sea symposium, university of Rhode Island 27-29. August 1967 p. 1-297.
9.Montaser, R. and H. Luesch, Marine natural products: a new wave of drugs? Future Medicinal Chemistry, 2011. 3(12): p. 1475-1489.
10.Housset, M., M.T. Daniel, and L. Degos, Small doses of ARA-C in the treatment of acute myeloid leukaemia: differentiation of myeloid leukaemia cells? British Journal of Haematology, 1982. 51(1): p. 125-129.
11.Mayer, A.M.S., et al., The odyssey of marine pharmaceuticals: a current pipeline perspective. Trends in Pharmacological Sciences, 2010. 31(6): p. 255-265.
12.Miljanich, G.P., Ziconotide: Neuronal Calcium Channel Blocker for Treating Severe Chronic Pain. Current Medicinal Chemistry, 2004. 11(23): p. 3029-3040.
13.McGivern, J.G., Targeting N-type and T-type calcium channels for the treatment of pain. Drug Discovery Today, 2006. 11(5): p. 245-253.
14.Venkateshwar Goud, T., et al., Anti-HIV Active Petrosins from the Marine Sponge
Petrosia similis. Biological and Pharmaceutical Bulletin, 2003. 26(10): p. 1498-1501.
15.Menis, J. and C. Twelves, Eribulin (Halaven): a new, effective treatment for women with heavily pretreated metastatic breast cancer. Breast Cancer : Targets and Therapy, 2011. 3: p. 101-111.
16.Hirata, Y. and D. Uemura, Halichondrins - antitumor polyether macrolides from a marine sponge, in Pure and Applied Chemistry. 1986. p. 701.
17.Jordan, M.A., et al., The primary antimitotic mechanism of action of the synthetic halichondrin E7389 is suppression of microtubule growth. Molecular Cancer Therapeutics, 2005. 4(7): p. 1086-1095.
18.Proksch, P., Defensive roles for secondary metabolites from marine sponges and sponge-feeding nudibranchs. Toxicon, 1994. 32(6): p. 639-655.
19.ZHOU, S.-W., C.-Y. YANG, and C.-H. XIA, The prevention of marine fouling organisms by natural antifoulants: a review. Nat Prod Res Dev, 2011. 23: p. 186-197.
20.Sigel, M.M.W., L.L.; Lichter, W.; Dudeck, L.E.; Gargus, J.L.; Lucas, and A.H. In, Food–Drugs from the Sea: Proceedings. Marine Technology Society, Washington, DC, 1969: p. 281–294.
21.Garcia-Carbonero, R., et al., Phase II and Pharmacokinetic Study of Ecteinascidin 743 in Patients With Progressive Sarcomas of Soft Tissues Refractory to Chemotherapy. Journal of Clinical Oncology, 2004. 22(8): p. 1480-1490.
22.Sessa, C., et al., Trabectedin for Women With Ovarian Carcinoma After Treatment With Platinum and Taxanes Fails. Journal of Clinical Oncology, 2005. 23(9): p. 1867-1874.
23.Bonnard, I., et al., New Lobane and Cembrane Diterpenes from Two Comorian Soft Corals. Marine Drugs, 2010. 8(2): p. 359.
24.Maloney, K.N., et al., Lodopyridone, a Structurally Unprecedented Alkaloid from a Marine Actinomycete. Organic Letters, 2009. 11(23): p. 5422-5424.
25.Tapiolas, D.M., et al., Octalactins A and B: cytotoxic eight-membered-ring lactones from a marine bacterium, Streptomyces sp. Journal of the American Chemical Society, 1991. 113(12): p. 4682-4683.
26.Gorajana, A., et al., Resistoflavine, cytotoxic compound from a marine actinomycete, Streptomyces chibaensis AUBN1/7. Microbiological Research, 2007. 162(4): p. 322-327.
27.Rickards, R.W., et al., Calothrixins A and B, novel pentacyclic metabolites from Calothrix cyanobacteria with potent activity against malaria parasites and human cancer cells. Tetrahedron, 1999. 55(47): p. 13513-13520.
28.Du, L., et al., Aspergiolide A, a novel anthraquinone derivative with naphtho[1,2,3-de]chromene-2,7-dione skeleton isolated from a marine-derived fungus Aspergillus glaucus. Tetrahedron, 2007. 63(5): p. 1085-1088.
29.Hawas, U.W., et al., Mansouramycins A−D, Cytotoxic Isoquinolinequinones from a Marine Streptomycete. Journal of Natural Products, 2009. 72(12): p. 2120-2124.
30.Du, L., et al., Alkaloids from a deep ocean sediment-derived fungus Penicillium sp. and their antitumor activities. J Antibiot, 2010. 63(4): p. 165-170.
31.Asolkar, R.N., et al., Daryamides A−C, Weakly Cytotoxic Polyketides from a Marine-Derived Actinomycete of the Genus Streptomyces Strain CNQ-085. Journal of Natural Products, 2006. 69(12): p. 1756-1759.
32.Tan, L.T., Bioactive natural products from marine cyanobacteria for drug discovery. Phytochemistry, 2007. 68(7): p. 954-979.
33.Cho, J.Y., et al., Lucentamycins A−D, Cytotoxic Peptides from the Marine-Derived Actinomycete Nocardiopsis lucentensis. Journal of Natural Products, 2007. 70(8): p. 1321-1328.
34.Pérez, M., et al., Tartrolon D, a Cytotoxic Macrodiolide from the Marine-Derived Actinomycete Streptomyces sp. MDG-04-17-069. Journal of Natural Products, 2009. 72(12): p. 2192-2194.
35.Koizumi, Y., et al., Oxaline, a fungal alkaloid, arrests the cell cycle in M phase by inhibition of tubulin polymerization. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2004. 1693(1): p. 47-55.
36.Bringmann, G., et al., Large-Scale Biotechnological Production of the Antileukemic Marine Natural Product Sorbicillactone A. Marine Drugs, 2007. 5(2).
37.Kwon, H.C., et al., Marinomycins A−D, Antitumor-Antibiotics of a New Structure Class from a Marine Actinomycete of the Recently Discovered Genus “Marinispora”. Journal of the American Chemical Society, 2006. 128(5): p. 1622-1632.
38.Bhatnagar, I. and S.-K. Kim, Marine Antitumor Drugs: Status, Shortfalls and Strategies. Marine Drugs, 2010. 8(10).
39.Goldenberg, L., et al., The role of 5-alpha reductase inhibitors in prostate pathophysiology: Is there an additional advantage to inhibition of type 1 isoenzyme? Canadian Urological Association Journal, 2009. 3(3 Suppl 2): p. S109.
40.Chu, L.W., J.K. Reichardt, and A.W. Hsing, Androgens and the molecular epidemiology of prostate cancer. Current Opinion in Endocrinology, Diabetes and Obesity, 2008. 15(3): p. 261-270.
41.Dudkowska, M., et al., Androgen receptor and c-Myc transcription factors as putative partners in the in vivo cross-talk between androgen receptor-mediated and c-Met-mediated signalling pathways. ACTA BIOCHIMICA POLONICA-ENGLISH EDITION-, 2007. 54(2): p. 253.
42.Hudak, S.J., J. Hernandez, and I.M. Thompson, Role of 5 alpha-reductase inhibitors in the management of prostate cancer. Clinical interventions in aging, 2006. 1(4): p. 425.
43.Freedman, M.L., et al., Admixture mapping identifies 8q24 as a prostate cancer risk locus in African-American men. Proceedings of the National Academy of Sciences, 2006. 103(38): p. 14068-14073.
44.Haiman, C.A., et al., Multiple regions within 8q24 independently affect risk for prostate cancer. Nat Genet, 2007. 39(5): p. 638-644.
45.Sarma, A.V., et al., Genetic polymorphisms in CYP17, CYP3A4, CYP19A1, SRD5A2, IGF‐1, and IGFBP‐3 and prostate cancer risk in African‐American men: The Flint Men's Health Study. The Prostate, 2008. 68(3): p. 296-305.
46.Ntais, C., A. Polycarpou, and J.P.A. Ioannidis,
SRD5A2 Gene Polymorphisms and the Risk of Prostate Cancer. A Meta-Analysis, 2003. 12(7): p. 618-624.
47.Wu, A.H., et al., Lifestyle Determinants of 5α-Reductase Metabolites in Older African-American, White, and Asian-American Men. Cancer Epidemiology Biomarkers & Prevention, 2001. 10(5): p. 533-538.
48.Oesterling, J.E., et al., Serum prostate-specific antigen in a community-based population of healthy men: Establishment of age-specific reference ranges. JAMA, 1993. 270(7): p. 860-864.
49.Van Aubel, O., W. Hoekstra, and F. Schröder, Early orchiectomy for patients with stage D1 prostatic carcinoma. The Journal of urology, 1985. 134(2): p. 292.
50.Laufer, M., et al., Complete androgen blockade for prostate cancer: what went wrong? The Journal of urology, 2000. 164(1): p. 3-9.
51.Oesterling, J.E., et al., Serum prostate-specific antigen in a community-based population of healthy men: establishment of age-specific reference ranges. Jama, 1993. 270(7): p. 860-864.
52.DeVita, V.T., T.S. Lawrence, and S.A. Rosenberg, Cancer: principles and practice of oncology-advances in oncology. Vol. 1. 2010: Lippincott Williams & Wilkins.
53.Smith, D.C., et al., Change in serum prostate-specific antigen as a marker of response to cytotoxic therapy for hormone-refractory prostate cancer. Journal of clinical oncology, 1998. 16(5): p. 1835-1843.
54.Choo, G.-S., et al., Anticancer Effect of Fucoidan on DU-145 Prostate Cancer Cells through Inhibition of PI3K/Akt and MAPK Pathway Expression. Marine Drugs, 2016. 14(7): p. 126.
55.周郁翔,2002,台灣南部海域三種軟珊瑚的有性生殖,國立台灣大學海洋研究所碩士論文。56.鄭名君,2006,肉質軟珊瑚屬與葉形軟珊瑚屬之分子親緣關係研究,國立台灣大學海洋研究所碩士論文。57.Lee, C.-H., et al., Terpenoids from the octocorals Menella sp.(Plexauridae) and Lobophytum crassum (Alcyonacea). Marine drugs, 2012. 10(2): p. 427-438.
58.Azizur Rahman, M. and Y. Isa, Characterization of proteins from the matrix of spicules from the alcyonarian, Lobophytum crassum. Journal of Experimental Marine Biology and Ecology, 2005. 321(1): p. 71-82.
59.Shi, Y.-P., et al., New Terpenoid Constituents from Eunicea pinta. Journal of Natural Products, 2002. 65(9): p. 1232-1241.
60.Rashid, M.A., K.R. Gustafson, and M.R. Boyd, HIV-Inhibitory Cembrane Derivatives from a Philippines Collection of the Soft Coral Lobophytum Species. Journal of Natural Products, 2000. 63(4): p. 531-533.
61.Rodríguez, A.D., et al., Isolation and structures of the uprolides. I. Thirteen new cytotoxic cembranolides from the Caribbean gorgonian Euniceamammosa. Canadian Journal of Chemistry, 1995. 73(5): p. 643-654.
62.Morales, J.J., J.R. Espina, and A.D. Rodriguez, The structure of euniolide, a new cembranoid diterpene from the caribbean gorgonians eunicea succinea and eunicea mammosa. Tetrahedron, 1990. 46(17): p. 5889-5894.
63.Zhang, W., et al., Structural and Stereochemical Studies of α-Methylene-γ-lactone-Bearing Cembrane Diterpenoids from a South China Sea Soft Coral Lobophytum crassum. Journal of Natural Products, 2008. 71(6): p. 961-966.
64.Haagen‐Smit, A., T. Wang, and N. Mirov, Composition of gum tumentines of pines. XIII. A report on Pinus albicauclis. Journal of Pharmaceutical Sciences, 1951. 40(11): p. 557-559.
65.Ciereszko, L.S., D.H. Sifford, and A.J. Weinheimer, Chemistry of coelenterates. I. Occurrence of terpenoid compounds in gorgonians. Annals of the New York Academy of Sciences, 1960. 90(1): p. 917-919.
66.Blunt, J.W., et al., Marine natural products. Natural product reports, 2013. 30(2): p. 237-323.
67.Cheng, S.-Y., S.-K. Wang, and C.-Y. Duh, Secocrassumol, a seco-Cembranoid from the Dongsha Atoll Soft Coral Lobophytum crassum. Marine Drugs, 2014. 12(12): p. 6028.
68.Kingsley, R.J. and N. Watabe, Analysis of proteinaceous components of the organic matrices of spicules from the gorgonian Leptogorgia virgulata. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1983. 76(3): p. 443-447.
69.Lin, S.-T., S.-K. Wang, and C.-Y. Duh, Cembranoids from the Dongsha Atoll Soft Coral Lobophytum crassum. Marine Drugs, 2011. 9(12): p. 2705.
70.Lee, N.-L. and J.-H. Su, Tetrahydrofuran Cembranoids from the Cultured Soft Coral Lobophytum crassum. Marine Drugs, 2011. 9(12): p. 2526.
71.Tseng, Y.-J., et al., Bioactive Cembranoids from the Dongsha Atoll Soft Coral Lobophytum crassum. Bulletin of the Chemical Society of Japan, 2011. 84(10): p. 1102-1106.
72.Bowden, B., et al., Studies of Australian soft corals. VII. Two new diterpenes from an unknown species of soft coral (genus
Lobophytum). Australian Journal of Chemistry, 1978. 31(6): p. 1303-1312.
73.Aoki, M., et al., Characterization of 13-Hydroxyneocembrene from Soft Corals. Bulletin of the Chemical Society of Japan, 1985. 58(2): p. 779-780.
74.Liao, Z.-J., et al., Two New Cembranoids from the Soft Coral Lobophytum crassum. Bulletin of the Chemical Society of Japan, 2011. 84(6): p. 653-655.
75.Wanzola, M., et al., Four New Cembrane Diterpenes Isolated from an Okinawan Soft Coral
Lobophytum crassum with Inhibitory Effects on Nitric Oxide Production. Chemical and Pharmaceutical Bulletin, 2010. 58(9): p. 1203-1209.
76.Uchio, Y., et al., Denticulatolide, an ichthyotoxic peroxide-containing cembranolide from the soft coral lobophytum denticulatum. Tetrahedron Letters, 1985. 26(37): p. 4487-4490.
77.Chao, C.-H., et al., Cytotoxic and Anti-inflammatory Cembranoids from the Soft Coral Lobophytum crassum. Journal of Natural Products, 2008. 71(11): p. 1819-1824.
78.Lee, C.-H., et al., Terpenoids from the Octocorals Menella sp. (Plexauridae) and Lobophytum crassum (Alcyonacea). Marine Drugs, 2012. 10(2): p. 427.
79.Shi-Yie, C., et al., α-Tocopherols from the Formosan Soft Coral Lobophytum crassum. Bulletin of the Chemical Society of Japan, 2011. 84(7): p. 783-787.
80.Huang, H.-C., et al., Crassocolides A−F, Cembranoids with a trans-Fused Lactone from the Soft Coral Sarcophyton crassocaule. Journal of Natural Products, 2006. 69(11): p. 1554-1559.
81.Kobayashi, M. and T. Hamaguchi, Marine Terpenes and Terpenoids. VI. Isolation of Several Plausible Precursors of Marine Cembranolides, from the Soft Coral, Sinularia mayi. CHEMICAL & PHARMACEUTICAL BULLETIN, 1988. 36(10): p. 3780-3786.
82.Duh, C.-Y., et al., Cytotoxic Cembrenolide Diterpenes from the Formosan Soft Coral Lobophytum crassum. Journal of Natural Products, 2000. 63(6): p. 884-885.
83.Kinamoni, Z., et al., Several new cembranoid diterpenes from three soft corals of the red sea. Tetrahedron, 1983. 39(9): p. 1643-1648.
84.Coll, J., S. Mitchell, and G. Stokie, Studies of Australian soft corals. II. A novel cembrenoid diterpene from
Lobophytum michaelae. Australian Journal of Chemistry, 1977. 30(8): p. 1859-1863.
85.Wei, X., et al., Antiplasmodial cembradiene diterpenoids from a Southwestern Caribbean gorgonian octocoral of the genus Eunicea. Tetrahedron, 2004. 60(51): p. 11813-11819.
86.Li, G., et al., Cytotoxic Cembranoid Diterpenes from a Soft Coral Sinularia gibberosa. Journal of Natural Products, 2005. 68(5): p. 649-652.
87.Yin, S.-W., et al., A New Cembranoid Diterpene and Other Related Metabolites from the South-China-Sea Soft Coral Lobophytum crassum. Helvetica Chimica Acta, 2006. 89(3): p. 567-572.
88.Matthée, G.F., G.M. König, and A.D. Wright, Three New Diterpenes from the Marine Soft Coral Lobophytum crassum. Journal of Natural Products, 1998. 61(2): p. 237-240.
89.Yamada, Y., et al., Studies on Marine Natural Products. I. 13-Membered Carbocyclic Cembranolide Diterpenes from the Soft Coral Lobophytum pauciflorum (Ehrenberg). CHEMICAL & PHARMACEUTICAL BULLETIN, 1979. 27(10): p. 2394-2397.
90.Uchio, Y., et al., Lobohedleolide and (7Z)-lobohedleolide, new cembranolides from the soft coral lobophytum hedleyi whitelegge. Tetrahedron Letters, 1981. 22(41): p. 4089-4092.
91.Rodríguez, A.D. and N. Martínez, Marine antitumor agents: 14-deoxycrassin and pseudoplexaurol, new cembranoid diterpenes from the Caribbean gorgonianPseudoplexaura porosa. Experientia, 1993. 49(2): p. 179-181.
92.Liu, Z., et al., Asymmetric total synthesis of pseudoplexaurol and 14-deoxycrassin, two antitumor marine cembrane diterpenoids. Synlett, 2003. 2003(13): p. 1977-1980.
93.Lu, M.-C., et al., Active extracts of wild fruiting bodies of Antrodia camphorata (EEAC) induce leukemia HL 60 cells apoptosis partially through histone hypoacetylation and synergistically promote anticancer effect of trichostatin A. Archives of Toxicology, 2009. 83(2): p. 121-129.
94.Stockert, J.C., et al., MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets. Acta Histochemica, 2012. 114(8): p. 785-796.
95.Mazzini, G.F., C; Erba, E, Dual excitation multi-fluorescence flow cytometry for detailed analyses of viability and apoptotic cell transition. European Journal of Histochemistry, 2003. 4(47): p. 289.
96.Chen, J., et al., Design, synthesis, and characterization of new embelin derivatives as potent inhibitors of X-linked inhibitor of apoptosis protein. Bioorganic & medicinal chemistry letters, 2006. 16(22): p. 5805-5808.
97.Dai, Y., et al., Natural IAP inhibitor Embelin enhances therapeutic efficacy of ionizing radiation in prostate cancer. 2011.
98.Nikolovska-Coleska, Z., et al., Discovery of embelin as a cell-permeable, small-molecular weight inhibitor of XIAP through structure-based computational screening of a traditional herbal medicine three-dimensional structure database. Journal of medicinal chemistry, 2004. 47(10): p. 2430-2440.
99.Luqmani, Y., Mechanisms of drug resistance in cancer chemotherapy. Medical Principles and Practice, 2005. 14(Suppl. 1): p. 35-48.
100.Lin, C.-Y., C.-S. Huang, and M.-L. Hu, The use of fetal bovine serum as delivery vehicle to improve the uptake and stability of lycopene in cell culture studies. British journal of nutrition, 2007. 98(01): p. 226-232.
101.Yang, C.M., et al., Growth inhibitory efficacy of lycopene and β‐carotene against androgen‐independent prostate tumor cells xenografted in nude mice. Molecular nutrition & food research, 2011. 55(4): p. 606-612.