跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/08 04:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:官家圳
研究生(外文):Jia-Zun Guan
論文名稱:Zakβ救援心肌細胞於oxLDL損害引起的心肌肥大和凋亡
論文名稱(外文):Zakβ rescues cardiomyoblast cells from cardiac hypertrophy and apoptosis caused by oxLDL damage.
指導教授:劉英明黃志揚黃志揚引用關係
指導教授(外文):Ying-Ming LiouChih-Yang Huang
口試委員:楊肇基
口試委員(外文):Jaw-Ji Yang
口試日期:2017-07-25
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生命科學系所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:27
中文關鍵詞:Zakβ氧化型低密度脂蛋白心肌肥大和凋亡
外文關鍵詞:ZakβoxLDLcardiac hypertrophy and apoptosis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:176
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:1
OxLDL已被指控為多個疾病的兇手,其中以心血管疾病中的粥狀動脈硬化(atherosclerosis)最盛。對於粥狀動脈硬化,人們的目光早已不在專注於血管上的故事,現在科學家更綜合地看心臟與血管環境。本研究論文旨在,藉由oxLDL刺激心肌H9c2細胞造成心肌肥大和凋亡,同時探討ZAKB對心臟的救援效果。過往人們認為是oxLDL先造成粥狀動脈硬化,接著心臟重塑,心肌肥大才產生,但現在的研究已經發現oxLDL可以直接對心臟造成傷害。同時,本研究也確實證明,oxLDL會誘導心肌肥大在10mg/dl oxLDL。這透漏人們過往對粥狀動脈硬化的治療是不完整的。接著從實驗室過往的發表中,我們發現ZAKB對減少心肌肥大造成的凋亡有著顯著的效果。因此,我們轉染ZAKB plasmid from Yang JJ(Chung Shan Medical University,台中,台灣)致心肌細胞中,實驗結果表明,ZAKB可以有效減少oxLDL造成的凋亡。並且我們還使用ZAK inhibitor D2825 from Ding K(J Med Chem. 2017 Jul 13,school of Pharmacy, Jinan University,China)加以證實ZAKB的重要性。實驗結果說明,當oxLDL刺激細胞凋亡時缺乏ZAKB的代償效果,將會使肥大的心肌細胞更快走向凋亡。這些結果顯示,ZAKB在幫助心臟承受來自oxLDL刺激時,ZAKB對於適應環境可能有著重要的地位。
OxLDL has been accused of being the culprit for multiple diseases, with the highest incidence of atherosclerosis in cardiovascular disease. For the atherosclerosis of the atherosclerosis, people's eyes have long been not focused on the blood vessels of the story, scientists now more comprehensive look at the heart and vascular environment. The aim of this study is to stimulate myocardial hypertrophy and apoptosis by oxLDL, and to explore the effect of ZAKB on heart rescue. In the past, people think that oxLDL first cause atherosclerosis, followed by cardiac remodeling, cardiac hypertrophy was produced, but now the study has found oxLDL can directly cause harm to the heart. At the same time, this study also confirmed that oxLDL induced cardiac hypertrophy at 10 mg / dl oxLDL. This is a breakthrough in the treatment of atherosclerosis in the past is not complete. Then from the past published in the laboratory, we found that ZAKB to reduce cardiac hypertrophy caused by apoptosis has a significant effect. Therefore, we transfected ZAKB plasmid from Yang JJ (Chung Shan Medical University, Taichung, Taiwan) to the cardiomyocytes, the experimental results show that, ZAKB can effectively reduce oxLDL caused by apoptosis. And we also confirmed the importance of ZAKB using ZAK inhibitor D2825 from Ding K (J Med Chem. 2017 Jul 13, school of Pharmacy, Jinan University, China). Experimental results show that if oxLDL stimulation of apoptosis when the lack of ZAKB compensatory effect, will make hypertrophic cardiomyocytes faster to apoptosis. These results show that ZAKB may play an important role in adapting to the environment when helping the heart to withstand the stimulation from oxLDL.
中文摘要 i
Abstract ii
Index iii
Table of figures v
Introduction 1
1-1 Cardiovascular diseases 1
1-2 Oxidized low density lipoprotein (OxLDL) 3
1-3 Cardiac Hypertrophy 7
1-4 Leucine-zipper and sterile-alpha motif kinase (ZAK) 9
Materials and methods 12
2-1. Cell culture 12
2-2. Cell subculture and cell counting 12
2-3. Cell frozen 12
2-4. Whole cell extraction 13
2-5. Lowry protein assay 13
2-6. MTT assay 13
2-7. Western blot analysis 14
2-8. Lipoprotein separation 14
2-9. TUNEL Assay 15
2-10. Statistical analysis 15
Result 16
3-1. OxLDL induced cell death in H9c2 cardiomyoblast cells. 16
3-2. Overexpression ZAKβ reduces apoptosis induced by oxLDL in H9c2 cardiomyoblast cells. 18
3-3. ZAK inhibitor D2825 and siZAKβ inhibits the rescue effect of ZAKβ in H9c2 cells treated with oxLDL. 20
Conclusion 22
References 23
1. Black PH, Garbutt LD. (2002). Stress, inflammation and cardiovascular disease. J Psychosom Res 52(1), 1-23.
2. Yusuf S, Redy S, Ounpuu S and Anand S. (2001). Global burden of cardiovascular diseases: part I: general considerations, the epidemiologic transition, risk factors, and impact of urbanization. Circulation 104, 2746-2753.
3. Hunter JJ and Chien KR. (1999). Signaling pathways for cardiac hypertrophy and failure. N Engl J Med 341, 1276-1283.
4. Frostegard J. (2013). Immunity, atherosclerosis and cardiovascular disease. BMC Med 11, 117.
5. Marian AJ and Roberts R. (1995). Recent advances in the molecular genetics of hypertrophic cardiomyopathy. Circulation 92, 1336-1347.
6. Fu CY, Kuo WW, Huang CY,et al. (2016). ZAKβ antagonizes and ameliorates the cardiac hypertrophic and apoptotic effects induced by ZAKα. Cell Biochem Funct 34(8), 606-612.
7. Witztum JL, Steinberg D. (1991). Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest 88(6), 1785-92.
8. Andreou I, Sun X, Stone PH, Edelman ER, Feinberg MW. (2015). MiRNAs in atherosclerotic plaque initiation, progression, and rupture. Trends Mol Med 21(5), 307-18.
9. Gotto AM Jr. (1990). Interrelationship of triglycerides with lipoproteins and high-density lipoproteins. Am J Cardiol 66(6),20A-23A.
10. Jialal I, Devaraj S. (1996). Low-density lipoprotein oxidation, antioxidants, and atherosclerosis: a clinical biochemistry perspective. Clin Chem 42(4), 498-506.
11. Kenneth R Feingold, Carl Grunfeld. (2000-2017). Introduction to Lipids and Lipoproteins. MDText.com, Inc.
12. Steinberg D. (1997). Low density lipoprotein oxidation and its pathobiological significance. J Biol Chem 272(34), 20963-6.
13. MacRae F Linton, Patricia G Yancey, Sean S Davies, et al. (2000-2017). The Role of Lipids and Lipoproteins in Atherosclerosis. MDText.com, Inc.
14. Esterbauer H, Gebicki J, Puhl H, Jurgens G. (1992). The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic Biol Med 13(4), 341-90.
15. Berliner JA, Leitinger N, Tsimikas S. (2009). The role of oxidized phospholipids in atherosclerosis. J Lipid Res 50, S207-12.
16. Zhang L, Cheng L, Wang Q, et al. (2015). Atorvastatin protects cardiomyocytes from oxidative stress by inhibiting LOX-1 expression and cardiomyocyte apoptosis. Acta Biochim Biophys Sin (Shanghai) 47(3),174-82.
17. Zhu TT, Zhang WF, Luo P, Qian ZX, Li F, Zhang Z, and Hu CP. (2017). LOX-1 promotes right ventricular hypertrophy in hypoxia-exposed rats. Life Sci 174, 35-42.
18. Chen YP, Kuo WW1, Huang CY, et al. (2017). Short-Term Hypoxia Reverses Ox-LDL-Induced CD36 and GLUT4 Switching Metabolic Pathways in H9c2 Cardiomyoblast Cells. J Cell Biochem.
19. Lorell BH, Carabello BA. 2000. Left ventricular hypertrophy: pathogenesis, detection, and prognosis. Circulation 102(4), 470-479.
20. van Bilsen M, Chien KR. (1993). Growth and hypertrophy of the heart: towards an understanding of cardiac specific and inducible gene expression. Cardiovasc Res 27(7), 1140-9.
21. Wu JP, Huang CY. ET al. (2014). Secondhand smoke exposure toxicity accelerates age-related cardiac disease in old hamsters. BMC Cardiovasc Disord 19, 14:195.
22. Sugden PH, Clerk A. (1998). Cellular mechanisms of cardiac hypertrophy. J Mol Med (Berl) 76(11), 725-46.
23. Molkentin JD, Lu JR, Antos CL, et al. (1998). A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93(2), 215-28.7
24. Wagner S, Dybkova N, et al. (2006). Ca2+/calmodulin-dependent protein kinase II regulates cardiac Na+ channels. J Clin Invest 116(12), 3127-38.
25. Rao A, Luo C, Hogan PG. (1997). Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol 15, 707-47.
26. Hsieh YL, Tsai YL, Huang CY, et al. (2015). ZAK induces cardiomyocyte hypertrophy and brain natriuretic peptide expression via p38/JNK signaling and GATA4/c-Jun transcriptional factor activation. Mol Cell Biochem 405(1-2), 1-9.
27. Gallo KA, Johnson GL. (2002). Mixed-lineage kinase control of JNK and p38 MAPK pathways. Nat Rev Mol Cell Biol 3(9), 663-72.
28. Fanger GR, Gerwins P, et al. (1997). MEKKs, GCKs, MLKs, PAKs, TAKs, and tpls: upstream regulators of the c-Jun amino-terminal kinases? Curr Opin Genet Dev 7(1), 67-74.
29. Vinson C, Myakishev M, et al. (2002). Classification of human B-ZIP proteins based on dimerization properties. Mol Cell Biol 22(18), 6321-35.
30. Rishi V, Gal J, Krylov D, et al. (2004). SREBP-1 dimerization specificity maps to both the helix-loop-helix and leucine zipper domains: use of a dominant negative. J Biol Chem 279(12), 11863-74.
31. Xu H, He WJ, Liu WY. (2004). A novel ribotoxin with ribonuclease activity that specifically cleaves a single phosphodiester bond in rat 28S ribosomal RNA and inactivates ribosome. Arch Biochem Biophys 427(1), 30-40.
32. Huang CY, Kuo WW, Yang JJ. (2004). Transforming growth factor-beta induces the expression of ANF and hypertrophic growth in cultured cardiomyoblast cells through ZAK. Biochem Biophys Res Commun 324(1), 424-31.
33. Grundy SM, Becker DM et al. (2002). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 106(25), 3143-421.
34. Iwai-Kanai E, Hasegawa K. et al. (2001). Activation of lectin-like oxidized low-density lipoprotein receptor-1 induces apoptosis in cultured neonatal rat cardiac myocytes. Circulation 104(24), 2948-54.
35. Takaya T, Wada H, et al. (2010). Left ventricular expression of lectin-like oxidized low-density lipoprotein receptor-1 in failing rat hearts. Circ J 74(4), 723-9. Epub 2010 Feb 27.
36. Jandhyala DM, Ahluwalia A, et al. (2015). Activation of the Classical Mitogen-Activated Protein Kinases Is Part of the Shiga Toxin-Induced Ribotoxic Stress Response and May Contribute to Shiga Toxin-Induced Inflammation. Infect Immun 84(1), 138-48.
37. Liu TC, Huang CJ, et al. (2000). Cloning and expression of ZAK, a mixed lineage kinase-like protein containing a leucine-zipper and a sterile-alpha motif.Biochem Biophys Res Commun 274(3), 811-6.
38. Gallo KA, Johnson GL. (2002). Mixed-lineage kinase control of JNK and p38 MAPK pathways. Nat Rev Mol Cell Biol 3(9), 663-72.
39. Chang Y, Huang CY, Ding K,et al. (2017). Structure Based Design of N-(3-((1H-Pyrazolo[3,4-b]pyridin-5-yl)ethynyl)benzenesulfonamides as Selective Leucine-Zipper and Sterile-α Motif Kinase (ZAK) Inhibitors. J Med Chem 60(13), 5927-5932.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top