跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:8005:376a:2d98:48cd) 您好!臺灣時間:2025/01/18 08:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡孟樺
研究生(外文):Meng-Hua Tsai
論文名稱:植物菌質體分泌蛋白SAP11影響農桿菌轉殖效率之探討
論文名稱(外文):Characterization of Agrobacterium Transformation Efficiency Affected by the Phytoplasma Effector SAP11.
指導教授:楊俊逸
指導教授(外文):Jun-Yi Yang
口試委員:黃皓瑄林宜賢
口試日期:2017-07-11
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生物化學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:45
中文關鍵詞:植物菌質體菌質體分泌蛋白SAP11農桿菌轉殖
外文關鍵詞:Phytoplasmasecreted AY-WB proteinsSAP11Agrobacterium transformation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:251
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
植物菌質體 (Phytoplasma)是一種細菌性病原菌,由於缺乏了生存相關的生合成與代謝之基因組及細胞壁,僅能寄生於植物的篩管細胞中,至今仍無法人工繁殖。菌質體染病的植株會有莖葉叢生、葉片畸形及變小、花器葉化及綠化、葉片黃化、髮根、不孕花及果實畸形等病徵。目前已知被解序的翠菊黃萎病菌質體 (AYWB)之基因組可編碼56種分泌性蛋白 (SAPs)。從SAP11AYWB擬南芥轉植株發現葉片皺縮及叢枝的外表型;並在本實驗室研究,已知蘋果叢枝病菌質體與花生簇葉病菌質體之分泌蛋白 SAP11CaPM及 SAP11PnWB,其擬南芥轉殖株也有叢枝外表型。在建立SAP11菸草轉殖株的過程中,發現相較於只有載體的控制組轉殖株之轉殖成功率較高,因此推測SAP11會影響轉殖之效率。首先透過針筒注射接種法配合無菌組織培養建立出三種35S::SAP11AYWB、35S::SAP11CaPM以及35S::SAP11PnWB菸草轉殖株,發現三種SAP11轉殖菸草葉培植體會形成較多處的癒傷組織且分化出較茂密的不定芽,說明三種SAP11皆會促進轉殖效率。接下來從根瘤性狀實驗中得知三種SAP11參與在農桿菌轉殖效率的過程中提升轉殖效率。最後使用AGROBEST實驗偵測GUS報導基因之表現活性,顯示三種SAP11會使GUS基因的表現活性上升,因此推測SAP11會影響其他基因之轉殖效率。
Lacking cell wall and many essential genes required for biosynthesis and metabolic functions, phytoplasmas have become unculturable and phloem-limited plant pathogens. Disease symptoms caused by phytoplasmas including proliferation, little leaves, phyllody, virescence, leaf yellowing, hairy root, flower sterility and fruit deformity. Previous studies showed that the Aster Yellows Witches’ Broom (AYWB) phytoplasma contains 56 candidated effectors. Among them, the expression of secreted AYWB protein 11 (SAP11) in plants generated leaf crinkling and branching phenotypes. Our studies further demonstrated that SAP11AYWB homologues, SAP11CaPM and SAP11PnWB, can also cause the branching phenotype. Interestingly, during the generation of SAP11AYWB-transgenic Nicotiana benthamiana lines, we observed that SAP11 transgenic plants are easier to be obtained than vector only. This phenomenon suggests that SAP11 might affect the transformation efficiency. Here, using agroinfiltration, we demonstrate that SAP11 can increase the formation of callus and differentiation of shoots in N. benthamiana. Further more, in root tumorigenesis assay, we demonstrate that SAP11 can affect transformation efficiency by increasing the formation of tumors. Finally, in AGROBEST assay, we show that SAP11 can enhance the activity GUS reporter. This result suggest that SAP11 can also affect the transformation efficiency of other genes.
中文摘要 i
ABSTRACT ii
總目錄 iii
圖目錄 iv
附錄目錄 v
壹、前言 1
一、農桿菌 1
二、影響農桿菌轉殖效率的因子 2
三、植物菌質體 7
四、植物菌質體之分泌蛋白SAP11 9
貳、研究目的與策略 12
參、材料與方法 13
※材料 13
※實驗方法 13
一、農桿菌轉殖株之建立 13
二、菸草轉殖株建立 14
三、Tricien-SDS-聚丙烯醯胺膠體電泳分析 (Tricien-sodium dodecyl sulfate-polyacrylamide gel electrophoreses; Tricien-SDS-PAGE) 15
四、擬南芥根瘤性狀分析 (Root tumorigenesis assay) 16
五、AGROBEST (Agrobacterium-mediated enhanced seedling transformation, AGROBEST) 17
肆、結果 20
一、分泌蛋白SAP11會促進轉殖效率 20
二、分泌蛋白SAP11提升農桿菌之轉殖效率 21
三、分泌蛋白SAP11影響其他基因之轉殖效率 21
伍、討論 23
陸、參考文獻 25
柒、圖 31
捌、附錄 35
呂晏婷 (2013) 菌質體之分泌蛋白在擬南芥中調節缺磷反應與防禦機制的探討。 中興大學生物化學研究所碩士論文。
吳誌堂 (2016) 細菌性分泌蛋白SAP11引起擬南芥叢枝外表行之功能分析。 中興大學生物化學研究所碩士論文。
Aguilar-Martinez JA, Poza-Carrion C, Cubas P. (2007). Arabidopsis BRANCHED1 Acts as an Integrator of Branching Signals within Axillary Buds. The Plant Cell 19, 458-72.
Aly KA, Baron C, 2007. The VirB5 protein localizes to the T-pilus tips in Agrobacterium tumefaciens. Microbiology 153, 3766–75.
Anderson AR, Moore LW. (1979). Host Specificity in the Genus Agrobacterium. Phytopathology 69, 320-3.
Bundock P, Den Dulk-Ras A, Beijersbergen A, Hooykaas PJ (1995). Transkingdom T-DNA Transfer from Agrobacterium-Tumefaciens to Saccharomyces-Cerevisiae. Embo Journal 14, 3206-14.
Chateau S, Sangwan RS, Sangwan-Norreel BS (2000). Competence of Arabidopsis thaliana genotypes and mutants for Agrobacterium tumefaciens-mediated gene transfer: role of phytohormones. Journal of Experimental Botany 51, 1961-8.
Cheng M, Fry JE, Pang S, et al. (1997). Genetic Transformation of Wheat Mediated by Agrobacterium tumefaciens. Plant Physiology 115, 971-80.
Cheng M, Jarret RL, Li ZJ, Xing AQ, Demski JW. (1996). Production of fertile transgenic peanut (Arachis hypogaea L) plants using Agrobacterium tumefaciens. Plant Cell Reports 15, 653-7.
Chilton MD, Drummond MH, Merio DJ, et al. (1977). Stable incorporation of plasmid DNA into higher plant cells: he molecular basis of crown gall tumorigenesis. Cell, 25-.
Chilton MD, Drummond MH, Merlo DJ, Sciaky D, 1978. Highly Conserved DNA of Ti Plasmids Overlaps T-DNA Maintained in Plant Tumors. Nature 275, 147-9.
Chung WC, Chen LL, Lo WS, Lin CP, Kuo CH. (2013). Comparative Analysis of the Peanut Witches’-Broom Phytoplasma Genome Reveals Horizontal Transfer of Potential Mobile Units and Effectors. Plos One 8, e62770.
Cleene MD, Ley JD. (1976). The host range of crown gall. THE BOTANICAL REVIEW 42, 389-411.
Deblaere R, Bytebier B, Degreve H, et al. (1985). Efficient Octopine Ti Plasmid-Derived Vectors for Agrobacterium-Mediated Gene-Transfer to Plants. Nucleic Acids Research 13, 4777-88.
Dodds PN, Rathjen JP. (2010). Plant immunity: towards an integrated view of plant–pathogen interactions. Nature Reviews 11, 539-48.
Doi Y, Teranaka M, Yora K, Asuyama H (1967). Mycoplasma- or PLT Group-like Microorganisms Found in the Phloem Elements of Plants Infected with Mulberry Dwarf, Potato Witches' Broom, Aster Yellows, or Paulownia Witches' Broom. Ann. Phytopath. Soc. Japan 33, 259-66.
Efroni I, Blum E, Goldshmidt A, Eshed Y. (2008). A Protracted and Dynamic Maturation Schedule Underlies Arabidopsis Leaf Development. The Plant Cell 20, 2293-306.
Friesner J, Britt AB. (2003). Ku80- and DNA ligase IV-deficient plants are sensitive to ionizing radiation and defective in T-DNA integration. Plant Journal 34, 427-40.
Guo M, Bian X, Wu X, Wu M. (2011). Agrobacterium Mediated Genetic-Transformation History and Progress. Genetic Transformation.
Hiei Y, Ohta S, Komari T, Kumashiro T. (1994). Efficient Transformation of Rice (Oryza-Sativa L) Mediated by Agrobacterium and Sequence-Analysis of the Boundaries of the T-DNA. Plant Journal 6, 271-82.
Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA. (1983). A Binary Plant Vector Strategy Based on Separation of Vir-Region and T-Region of the Agrobacterium-Tumefaciens Ti-Plasmid. Nature 303, 179-80.
Hogenhout SA, Oshima K, Ammar El D, Kakizawa S, Kingdom HN, Namba S. (2008). Phytoplasmas: bacteria that manipulate plants and insects. Molecular Plant Pathology 9, 403-23.
Hood EE, Fraley RT, Chilton MD. (1987). Virulence of Agrobacterium-Tumefaciens Strain-A281 on Legumes. Plant Physiology 83, 529-34.
Hood EE, Gelvin SB, Melchers LS, Hoekema A. (1993). New Agrobacterium Helper Plasmids for Gene-Transfer to Plants. Transgenic Research 2, 208-18.
Hooykaas PJJ, Hofker M, Dendulkras H, Schilperoort RA. (1984). A Comparison of Virulence Determinants in an Octopine Ti-Plasmid, a Nopaline Ti-Plasmid, and an Ri-Plasmid by Complementation Analysis of Agrobacterium-Tumefaciens Mutants. Plasmid 11, 195-205.
Hwang HH, Gelvin SB. (2004). Plant proteins that interact with VirB2, the Agrobacterium tumefaciens pilin protein, mediate plant transformation. The Plant Cell 16, 3148-67.
Ikeuchi M, Sugimoto K, Iwase A. (2013). Plant callus: mechanisms of induction and repression. The Plant Cell 25, 3159-73.
Inze D, Follin A, Vanlijsebettens M, et al. (1984). Genetic-Analysis of the Individual T-DNA Genes of Agrobacterium-Tumefaciens - Further Evidence That 2 Genes Are Involved in Indole-3-Acetic-Acid Synthesis. Molecular & General Genetics 194, 265-74.
Ishii Y, Kakizawa S, Hoshi A, et al. (2009). In the non-insect-transmissible line of onion yellows phytoplasma (OY-NIM), the plasmid-encoded transmembrane protein ORF3 lacks the major promoter region. Microbiology 155, 2058-67.
Janik K, Mithofer A, Raffeiner M, Stellmach H, Hause B, Schlink K. (2016). An effector of apple proliferation phytoplasma targets TCP transcription factors—a generalized virulence strategy of phytoplasma? Molecular Plant Pathology 18, 435-42.
Kennedy BW, Alcorn SM. (1980). Estimates of U.S. Crop Losses to Procaryote Plant Pathogens. Plant Disease 64, 674-6.
Kube M, Schneider B, Kuhl H, et al. (2008). The linear chromosome of the plant-pathogenic mycoplasma 'Candidatus Phytoplasma mali'. BMC Genomics 9, 1-14.
Kumar SV, Misquitta RW, Reddy VS, Rao BJ, Rajam MV. (2004). Genetic transformation of the green alga - Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Science 166, 731-8.
Kunik T, Tzfira T, Kapulnik Y, Gafni Y, Dingwall C, Citovsky V. (2001). Genetic transformation of HeLa cells by Agrobacterium. Proceedings of the National Academy of Sciences of the United States of America 98, 1871-6.
Lacroix B, Citovsky V. (2011). Extracellular VirB5 Enhances T-DNA Transfer from Agrobacterium to the Host Plant. Plos One 6, e25578.
Lacroix B, Citovsky V. (2013). The roles of bacterial and host plant factors in Agrobacterium-mediated genetic transformation. Int J Dev Biol 57, 467-81.
Lacroix B, Vaidya M, Tzfira T, Citovsky V. (2005). The VirE3 protein of Agrobacterium mimics a host cell function required for plant genetic transformation. Embo Journal 24, 428-37.
Lee IM, Bottner-Parker KD, Zhao Y, Villalobos W, Moreira L. (2011). ‘Candidatus Phytoplasma costaricanum’ a novel phytoplasma associated with an emerging disease in soybean (Glycine max). International Journal of Systematic and Evolutionary Microbiology 61, 2822-6.
Li JX, Vaidya M, White C, Vainstein A, Citovsky V, Tzfira T. (2005). Involvement of KU80 in T-DNA integration in plant cells. Proceedings of the National Academy of Sciences of the United States of America 102, 19231-6.
Liu CT, Huang HM, Kuo-Huang LL, et al. (2015). Peanut witches’ broom (PnWB) phytoplasma-mediated leafy flower symptoms and abnormal vascular bundles development. Plant Signaling & Behavior 10, e1107690.
Lu YT, Li MY, Cheng KT, et al. (2014). Transgenic Plants That Express the Phytoplasma Effector SAP11 Show Altered Phosphate Starvation and Defense Responses. Plant Physiology 164, 1456-69.
Martin-Trillo M, Cubas P. (2010). TCP genes: a family snapshot ten years later. Trends in Plant Science 15, 31-9..
Mccormac AC, Wu HX, Bao MZ, et al. (1998). The use of visual marker genes as cell-specific reporters of Agrobacterium-mediated T-DNA delivery to wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.). Euphytica 99, 17-25.
Mcsteen P, Leyser O. (2005). Shoot branching. Annu Rev Plant Biol 56, 353-74.
Mysore KS, Nam J, Gelvin SB. (2000). An Arabidopsis histone H2A mutant is deficient in Agrobacterium T-DNA integration. Proceedings of the National Academy of Sciences of the United States of America 97, 948-53.
Nam J, Matthysse AG, Gelvin SB. (1997). Differences in susceptibility of Arabidopsis ecotypes to crown gall disease may result from a deficiency in T-DNA integration. The Plant Cell 9, 317-33.
Nester EW. (2014). Agrobacterium: nature's genetic engineer. Frontiers in Plant Science 5, 1-16.
Ni M, Cui D, Einstein J, Narasimhulu S, Vergara CE, Gelvin SB. (1995). Strength and Tissue-Specificity of Chimeric Promoters Derived from the Octopine and Mannopine Synthase Genes. Plant Journal 7, 661-76.
Oettl S, Schlink K. (2015). Molecular Identification of Two Vector Species, Cacopsylla melanoneura and Cacopsylla picta (Hemiptera: Psyllidae), of Apple Proliferation Disease and Further Common Psyllids of Northern Italy. Economic Entomology 108, 2174-83.
Rashid H, Chaudhry Z, Khan MH. (2011). Effect of explant plant source and acetosyringone concentration on transformation efficiency of wheat cultivars. African Journal of Biotechnology 10, 8737-40.
Rashid H, Yokoi S, Toriyama K, Hinata K. (1996). Transgenic plant production mediated by Agrobacterium in indica rice. Plant Cell Reports 15, 727-30.
Ritchie SW, Lui CN, Sellmer JC, Kononowicz H, Hodges TK, Gelvin SB. (1993). Agrobacterium-Tumefaciens-Mediated Expression of Gusa in Maize Tissues. Transgenic Research 2, 252-65.
Salinas J, SáNchez-Serrano JJ. (2006). Arabidopsis protocols. Totowa, N.J.: Humana Press.
Schilperoort RA, Veldstra H, Warnaar SO, Mulder G, Cohen JA. (1967). Formation of complexes between DNA isolated from tobacco crown gall tumours and complementary to Agrobacterium tumefaciens DNA. Biochim Biophys Acta, 523-5.
Schroder G, Waffenschmidt S, Weiler EW, Schroder J. (1984). The T-Region of Ti Plasmids Codes for an Enzyme Synthesizing Indole-3-Acetic-Acid. European Journal of Biochemistry 138, 387-91.
Schulte-Uentrop L, El-Awady RA, Schliecker L, Willers H, Dahm-Daphi J. (2008). Distinct roles of XRCC4 and Ku80 in non-homologous end-joining of endonuclease- and ionizing radiation-induced DNA double-strand breaks. Nucleic Acids Research 36, 2561-9.
Seemüller E, Schneider B. (2004). ‘Candidatus Phytoplasma mali’, ‘Candidatus Phytoplasma pyri’ and ‘Candidatus Phytoplasma prunorum’, the causal agents of apple proliferation, pear decline and European stone fruit yellows, respectively. International Journal of Systematic and Evolutionary Microbiology 54, 1217-26.
Seemüller E, Kampmann M, Kiss E, Schneider B. (2011). Molecular differentiation of severe and mild strains of ‘Candidatus Phytoplasma mali’ and evidence that their interaction in multiply infected trees determines disease severity. Bulletin of Insectology 64, S163-S4.
Singh DP, Singh HB, Parbha R. (2016). Microbial Inoculants in Sustainable Agricultural Productivity Vol. 1: Research Perspectives.
Smart CD, Schneider B, Blomquist CL et al. (1995). Phytoplasma-Specific PCR Primers Based on Sequences of the 16S-23S rRNA Spacer Region. Applied and Environmental Microbiology 62, 2988-93.
Smith EF, Townsend CO. (1907). A Plant-Tumor of Bacterial Origin. American Association for the Advancement of Science 25, 671-3.
Sugio A, Maclean AM, Kingdom HN, Grieve VM, Hogenhout SA. (2011a). Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proceedings of the National Academy of Sciences of the United States of America 108, E1254-E63.
Sugio A, Maclean AM, Kingdom HN, Grieve VM, Manimekalai R, Hogenhout SA. (2011b). Diverse Targets of Phytoplasma Effectors: From Plant Development to Defense Against Insects. Annual Review of Phytopathology 49, 179-95.
Tan CM, Li CH, Tsao NW, et al. (2016). Phytoplasma SAP11 alters 3-isobutyl-2-methoxypyrazine biosynthesis in Nicotiana benthamiana by suppressing NbOMT1. Journal of Experimental Botany 67, 4415-25.
Toki S. (1997). Rapid and efficient Agrobacterium-mediated transformation in rice. Plant Molecular Biology Reporter 15, 16-21.
Tsuda K, Qi YP, Nguyen LV, et al. (2012). An efficient Agrobacterium-mediated transient transformation of Arabidopsis. Plant Journal 69, 713-9.
Tzfira T, Vaidya M, Citovsky V. (2001). VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity. Embo Journal 20, 3596-607.
Van Larebeke N, Enbler G, Holsters M, et al. (1974). Large plasmid in Agrobacterium tumefaciens essential for crown gall-inducing ability. Nature 252, 169-70.
Vanroekel JSC, Damm B, Melchers LS, Hoekema A, 1993. Factors Influencing Transformation Frequency of Tomato (Lycopersicon-Esculentum). Plant Cell Reports 12, 644-7.
White PR, Braun AC. (1941). Crown Gall Production by Bacteria-Free Tumor Tissues. American Association for the Advancement of Science 94, 239-41.
Wu HY, Liu KH, Wang YC, et al. (2014). AGROBEST: an efficient Agrobacterium-mediated transient expression method for versatile gene function analyses in Arabidopsis seedlings. Plant Methods 10.
Xiang T, Zong N, Zou Y, et al. (2008). Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases. Curr Biol 18, 74-80.
Yadav NS, Vanderleyden J, Bennett DR, Barnes WM, Chilton MD. (1982). Short Direct Repeats Flank the T-DNA on a Nopaline Ti Plasmid. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences 79, 6322-6.
Zaenen I, Van Larebeke N, Teuchy H, Van Montagu M, Schell J. (1974). Supercoiled circular DNA in crown-gall inducing Agrobacterium strains. J Mol Biol, 109-27.
Zambryski P, Joos H, Genetello C, Leemans J, Vanmontagu M, Schell J. (1983). Ti-Plasmid Vector for the Introduction of DNA into Plant-Cells without Alteration of Their Normal Regeneration Capacity. Embo Journal 2, 2143-50.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊