|
1.Jardetzky, O., Simple Allosteric Model for Membrane Pumps. Nature, 1966. 211(5052): p. 969-970. 2.Mitchell, P., A General Theory of Membrane Transport From Studies of Bacteria. Nature, 1957. 180(4577): p. 134-136. 3.DeFelice, L.J., Transporter structure and mechanism. Trends in Neurosciences, 2004. 27(6): p. 352-359. 4.Abramson, J., et al., Structure and Mechanism of the Lactose Permease of Escherichia coli. Science, 2003. 301(5633): p. 610. 5.Dang, S., et al., Structure of a fucose transporter in an outward-open conformation. Nature, 2010. 467(7316): p. 734-738. 6.Quistgaard, E.M., et al., Structural basis for substrate transport in the GLUT-homology family of monosaccharide transporters. Nat Struct Mol Biol, 2013. 20(6): p. 766-768. 7.Wisedchaisri, G., et al., Proton-coupled sugar transport in the prototypical major facilitator superfamily protein XylE. Nature Communications, 2014. 5: p. 4521. 8.Coincon, M., et al., Crystal structures reveal the molecular basis of ion translocation in sodium/proton antiporters. Nat Struct Mol Biol, 2016. 23(3): p. 248-255. 9.Mirza, O., et al., Structural evidence for induced fit and a mechanism for sugar/H(+) symport in LacY. The EMBO Journal, 2006. 25(6): p. 1177-1183. 10.Guan, L., et al., Structural determination of wild-type lactose permease. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104(39): p. 15294-15298. 11.Hakizimana, P., et al., Interactions between Phosphatidylethanolamine Headgroup and LmrP, a Multidrug Transporter: A CONSERVED MECHANISM FOR PROTON GRADIENT SENSING? Journal of Biological Chemistry, 2008. 283(14): p. 9369-9376. 12.Lee, C., et al., A two-domain elevator mechanism for sodium/proton antiport. Nature, 2013. 501(7468): p. 573-577. 13.Yernool, D., et al., Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature, 2004. 431(7010): p. 811-818. 14.Boudker, O., et al., Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter. Nature, 2007. 445(7126): p. 387-393. 15.Reyes, N., C. Ginter, and O. Boudker, Transport mechanism of a bacterial homologue of glutamate transporters. Nature, 2009. 462(7275): p. 880-885. 16.Mulligan, C. and J.A. Mindell, Mechanism of Transport Modulation by an Extracellular Loop in an Archaeal Excitatory Amino Acid Transporter (EAAT) Homolog. The Journal of Biological Chemistry, 2013. 288(49): p. 35266-35276. 17.Rogina, B., et al., Extended Life-Span Conferred by Cotransporter Gene Mutations in Drosophila. Science, 2000. 290(5499): p. 2137. 18.Mancusso, R., et al., Structure and mechanism of a bacterial sodium-dependent dicarboxylate transporter. Nature, 2012. 491(7425): p. 622-626. 19.Vergara-Jaque, A., et al., Repeat-swap homology modeling of secondary active transporters: updated protocol and prediction of elevator-type mechanisms. Frontiers in Pharmacology, 2015. 6: p. 183. 20.Mulligan, C., et al., The bacterial dicarboxylate transporter, VcINDY, uses a two-domain elevator-type mechanism. Nature structural & molecular biology, 2016. 23(3): p. 256-263. 21.Fredriksson, R., et al., The solute carrier (SLC) complement of the human genome: Phylogenetic classification reveals four major families. FEBS Letters, 2008. 582(27): p. 3811-3816. 22.Hediger, M.A., et al., The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins. Pflügers Archiv, 2004. 447(5): p. 465-468. 23.Geyer, J., T. Wilke, and E. Petzinger, The solute carrier family SLC10: more than a family of bile acid transporters regarding function and phylogenetic relationships. Naunyn-Schmiedeberg's Archives of Pharmacology, 2006. 372(6): p. 413-431. 24.Pols, T.W.H., et al., The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation. Journal of hepatology, 2011. 54(6): p. 1263-1272. 25.Dawson, P.A., Role of the Intestinal Bile Acid Transporters in Bile Acid and Drug Disposition. Handbook of experimental pharmacology, 2011(201): p. 169-203. 26.Braun, A., et al., Inhibition of intestinal absorption of cholesterol by ezetimibe or bile acids by SC-435 alters lipoprotein metabolism and extends the lifespan of SR-BI/apoE double knockout mice. Atherosclerosis, 2008. 198(1): p. 77-84. 27.Lewis, M.C., L.E. Brieaddy, and C. Root, Effects of 2164U90 on ileal bile acid absorption and serum cholesterol in rats and mice. Journal of Lipid Research, 1995. 36(5): p. 1098-1105. 28.Bhat, B.G., et al., Inhibition of ileal bile acid transport and reduced atherosclerosis in apoE−/− mice by SC-435. Journal of Lipid Research, 2003. 44(9): p. 1614-1621. 29.Lazaridis, K.N., et al., Alternative splicing of the rat sodium/bile acid transporter changes its cellular localization and transport properties. Proceedings of the National Academy of Sciences of the United States of America, 2000. 97(20): p. 11092-11097. 30.Dawson, P.A., et al., Targeted Deletion of the Ileal Bile Acid Transporter Eliminates Enterohepatic Cycling of Bile Acids in Mice. Journal of Biological Chemistry, 2003. 278(36): p. 33920-33927. 31.Hu, N.J., et al., Crystal structure of a bacterial homologue of the bile acid sodium symporter ASBT. Nature, 2011. 478(7369): p. 408-11. 32.Zhou, X., et al., Structural basis of the alternating-access mechanism in a bile acid transporter. Nature, 2014. 505(7484): p. 569-73. 33.Bird, L.E., et al., Green Fluorescent Protein-based Expression Screening of Membrane Proteins in Escherichia coli. Journal of Visualized Experiments : JoVE, 2015(95): p. 52357. 34.Drew, D., et al., GFP-based optimization scheme for the overexpression and purification of eukaryotic membrane proteins in Saccharomyces cerevisiae. Nature protocols, 2008. 3(5): p. 784-798. 35.Drew, D., et al., Optimization of membrane protein overexpression and purification using GFP fusions. Nat Meth, 2006. 3(4): p. 303-313. 36.Weinman, S.A., M.W. Carruth, and P.A. Dawson, Bile Acid Uptake via the Human Apical Sodium-Bile Acid Cotransporter Is Electrogenic. Journal of Biological Chemistry, 1998. 273(52): p. 34691-34695. 37.Claxton, D.P., et al., Ion/substrate-dependent conformational dynamics of a bacterial homolog of neurotransmitter:sodium symporters. Nat Struct Mol Biol, 2010. 17(7): p. 822-829. 38.McHaourab, H.S., P.R. Steed, and K. Kazmier, Toward the Fourth Dimension of Membrane Protein Structure: Insight into Dynamics from Spin-labeling EPR Spectroscopy. Structure (London, England : 1993), 2011. 19(11): p. 1549-1561. 39.Yang, C., et al., Revealing Structural Changes of Prion Protein during Conversion from α-Helical Monomer to β-Oligomers by Means of ESR and Nanochannel Encapsulation. ACS Chemical Biology, 2015. 10(2): p. 493-501.
|