|
1.Witte, G., et al., Structural Biochemistry of a Bacterial Checkpoint Protein Reveals Diadenylate Cyclase Activity Regulated by DNA Recombination Intermediates. Molecular Cell, 2008. 30(2): p. 167-178. 2.Corrigan, R.M. and A. Grundling, Cyclic di-AMP: another second messenger enters the fray. Nat Rev Micro, 2013. 11(8): p. 513-524. 3.Zhang, L., W. Li, and Z.-G. He, DarR, a TetR-like Transcriptional Factor, Is a Cyclic Di-AMP-responsive Repressor in Mycobacterium smegmatis. The Journal of Biological Chemistry, 2013. 288(5): p. 3085-3096. 4.Corrigan, R.M., et al., Systematic identification of conserved bacterial c-di-AMP receptor proteins. Proceedings of the National Academy of Sciences, 2013. 110(22): p. 9084-9089. 5.Corrigan, R.M., et al., Systematic identification of conserved bacterial c-di-AMP receptor proteins. Proceedings of the National Academy of Sciences of the United States of America, 2013. 110(22): p. 9084-9089. 6.Chin, K.H., et al., Structural Insights into the Distinct Binding Mode of Cyclic Di-AMP with SaCpaA_RCK. Biochemistry, 2015. 54(31): p. 4936-51. 7.Kim, H., et al., Structural Studies of Potassium Transport Protein KtrA Regulator of Conductance of K+ (RCK) C Domain in Complex with Cyclic Diadenosine Monophosphate (c-di-AMP). Journal of Biological Chemistry, 2015. 290(26): p. 16393-16402. 8.Hunte, C., et al., Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. Nature, 2005. 435(7046): p. 1197-202. 9.Lee, C., et al., A two-domain elevator mechanism for sodium/proton antiport. Nature, 2013. 501(7468): p. 573-7. 10.Paulino, C., et al., Structure and transport mechanism of the sodium/proton antiporter MjNhaP1. Elife, 2014. 3: p. e03583. 11.Wohlert, D., W. Kuhlbrandt, and O. Yildiz, Structure and substrate ion binding in the sodium/proton antiporter PaNhaP. Elife, 2014. 3: p. e03579. 12.Coincon, M., et al., Crystal structures reveal the molecular basis of ion translocation in sodium/proton antiporters. Nat Struct Mol Biol, 2016. 23(3): p. 248-255. 13.Davies, Bryan W., et al., Coordinated Regulation of Accessory Genetic Elements Produces Cyclic Di-Nucleotides for V. cholerae Virulence. Cell, 2012. 149(2): p. 358-370. 14.Kato, K., et al., Structural Basis for the Catalytic Mechanism of DncV, Bacterial Homolog of Cyclic GMP-AMP Synthase. Structure, 2015. 23(5): p. 843-850. 15.Kranzusch, P.J., et al., Structure-guided reprogramming of human cGAS dinucleotide linkage specificity. Cell, 2014. 158(5): p. 1011-21. 16.Corrigan, R.M., et al., c-di-AMP Is a New Second Messenger in Staphylococcus aureus with a Role in Controlling Cell Size and Envelope Stress. PLOS Pathogens, 2011. 7(9): p. e1002217. 17.Mario Aguedo, Y.W., Jean-Marc Belin, Intracellular pH-dependent efflux of the fluorescent probe pyranine in the yeast Yarrowia lipolytica. FEMS Microbiology Letters, 2001.6. 200(2): p. 185-189. 18.Ferguson, G.P., et al., Survival during exposure to the electrophilic reagent N-ethylmaleimide in Escherichia coli: role of KefB and KefC potassium channels. Journal of Bacteriology, 1997. 179(4): p. 1007-1012. 19.Calinescu, O. and K. Fendler, A universal mechanism for transport and regulation of CPA sodium proton exchangers. Biol Chem, 2015. 396(9-10): p. 1091-6. 20.Chintapalli, V.R., et al., Transport proteins NHA1 and NHA2 are essential for survival, but have distinct transport modalities. Proc Natl Acad Sci U S A, 2015. 112(37): p. 11720-5. 21.Krulwich, T.A., D.B. Hicks, and M. Ito, Cation/proton antiporter complements of bacteria: why so large and diverse? Molecular microbiology, 2009. 74(2): p. 257-260. 22.Donowitz, M., C. Ming Tse, and D. Fuster, SLC9/NHE gene family, a plasma membrane and organellar family of Na(+)/H(+) exchangers. Mol Aspects Med, 2013. 34(2-3): p. 236-51. 23.Uzdavinys, P., et al., Dissecting the proton transport pathway in electrogenic Na+/H+ antiporters. Proceedings of the National Academy of Sciences, 2017. 24.Lee, C., et al., Crystal structure of the sodium–proton antiporter NhaA dimer and new mechanistic insights. The Journal of General Physiology, 2014. 144(6): p. 529. 25.Aguedo, M., Y. Waché, and J.-M. Belin, Intracellular pH-dependent efflux of the fluorescent probe pyranine in the yeast Yarrowia lipolytica. FEMS Microbiology Letters, 2001. 200(2): p. 185-189. 26.Roosild, T.P., et al., KTN (RCK) Domains Regulate K+ Channels and Transporters by Controlling the Dimer-Hinge Conformation. Structure, 2009. 17(6): p. 893-903. 27.Huynh, T.N., et al., An HD-domain phosphodiesterase mediates cooperative hydrolysis of c-di-AMP to affect bacterial growth and virulence. Proceedings of the National Academy of Sciences of the United States of America, 2015. 112(7): p. E747-E756. 28.Bai, Y.L., et al., Cyclic Di-AMP Impairs Potassium Uptake Mediated by a Cyclic Di-AMP Binding Protein in Streptococcus pneumoniae. Journal of Bacteriology, 2014. 196(3): p. 614-623. 29.Paulino, C. and W. Kuhlbrandt, pH- and sodium-induced changes in a sodium/proton antiporter. Elife, 2014. 3: p. e01412. 30.Inoue, H., et al., Essential aspartic acid residues, Asp-133, Asp-163 and Asp-164, in the transmembrane helices of a Na+/H+ antiporter (NhaA) from Escherichia coli. FEBS Letters, 1995. 363(3): p. 264-268. 31.Ujwal, R. and J. Abramson, High-throughput crystallization of membrane proteins using the lipidic bicelle method. Journal of visualized experiments : JoVE, 2012(59): p. e3383-e3383. 32.Landau, E.M. and J.P. Rosenbusch, Lipidic cubic phases: A novel concept for the crystallization of membrane proteins. Proceedings of the National Academy of Sciences of the United States of America, 1996. 93(25): p. 14532-14535. 33.Fernandez-Leiro, R. and S.H.W. Scheres, Unravelling biological macromolecules with cryo-electron microscopy. Nature, 2016. 537(7620): p. 339-346.
|