跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/10 22:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王秋婷
研究生(外文):Ciou-Ting Wang
論文名稱:利用螢光光度法分析陽離子/質子交換運輸蛋白CpaA的作用功能
論文名稱(外文):The Functional Assay of Cation/Proton Antiporter A (CpaA) Using a Fluorophotometric Approach
指導教授:胡念仁
口試委員:周三和孫玉珠
口試日期:2017-07-26
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生物化學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:53
中文關鍵詞:陽離子/質子反向轉運蛋白蛋白脂質體螢光染劑
外文關鍵詞:cation proton antiporterproteoliposomefluorescence dye
相關次數:
  • 被引用被引用:0
  • 點閱點閱:167
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
CpaA (cation proton antiporter A),為金黃色葡萄球菌中參與陽離子和質子交換的蛋白,被認為是會結合c-di-AMP的受體蛋白,其中c-di-AMP是新型發現的二級訊號分子,幫助細胞調控生理反應以因應外界刺激。分析其CpaA的胺基酸序列比對,CpaA的N端為穿膜區鑲嵌於細胞膜上,同源蛋白為鈉離子/質子反向轉運蛋白,如NhaA、NapA、NhaP和鉀/質子反轉錄酶KefB。CpaA的C端屬於RCK domain (Regulator of Conductance of K+),可以進一步分為RCK_N和RCK_C subdomains。先前文獻利用生物化學實驗及晶體結構證實,c-di-AMP會專一性結合於CpaA RCK_C domain的高保守性胺基酸。然而,目前對於CpaA的功能仍是未知的是: (i) CpaA可以運輸那些陽離子進而與質子交換? (ii) CpaA RCK_C domain結合c-di-AMP是如何調控陽離子/質子反向轉運活性? (iii) 突變c-di-AMP結合CpaA RCK_C domain的胺基酸是否會影響其功能?在本研究中,我們已經成功地純化全長CpaA包覆於DDM micelles中。我們的目標是使用螢光光度法來研究結合c-di-AMP是如何調節CpaA的陽離子/質子交換活性。利用pH值敏感的螢光染劑(pyranine)被包裹在含有CpaA的蛋白脂質體(proteoliposome)中,並且透過觀察螢光下降監測質子流出。我們發現CpaA運輸鉀離子活性最好,其次是運輸鈉離子和鋰離子,而正二價的鈣離子之運轉效率最差。有趣的是,當加入c-di-AMP時,螢光會進一步地下降,顯示CpaA結合c-di-AMP後,會運送更多的鉀離子進入和質子流出proteoliposome。這項結果指出,在c-di-AMP存在下,會促進CapA運輸效率。但是在CpaA c-di-AMP結合位的突變株R560A和H583A中卻不明顯。未來,我們將嘗試獲得全長CpaA N端結合受質和有著c-di-AMP結合RCK_C domain的複合體高解析度結構。這項結構研究將有助於我們了解,c-di-AMP調控CpaA對細菌離子滲透壓的作用。
CpaA (cation proton antiporter A) is involved in the exchange of cation and proton in Staphylococcus aureus, and CpaA has been implicated as a receptor protein for c-di-AMP, a novel second messenger that relays the external signals into the cells. Sequence analysis of CpaA suggests that the N-terminus of CpaA is a transmembrane domain, which is similar to sodium/proton antiporters, such as NhaA, NapA, NhaP and potassium/proton antiporter KefB. The C-terminus of CpaA belongs to a RCK (Regulator of Conductance of K+) domain which can be further divided into RCK_N and RCK_C subdomains. Previous biochemical and crystallographic structure of CpaA RCK_C subdomain have shown that the c-di-AMP binding site is mapped on the RCK_C subdomain interacting with highly conserved residues. Nevertheless, three intriguing questions remain unanswered. (i) Which cation can be transported by CpaA in exchange with proton? (ii) How binding of CpaA RCK domain to c-di-AMP regulates cation transports activity? (iii) Whether mutation of c-di-AMP-binding amino acids affects the function of CpaA? In this study, we have successfully purified full-length CpaA in detergent (using DDM) micelles. We characterized the c-di-AMP-mediated cation/proton exchange activity of CpaA using a fluorophotometric approach. The pH-sensitive fluorescence dye, pyranine, was encapsulated in proteoliposomes containing CpaA and the H+ efflux was monitored by the changes of fluorescence intensity. We found that CpaA showed the best acitivity of transportation for K+, followed by Na+ and Li+, but poor acitivity for Ca2+. Interestingly, adding c-di-AMP resulted in further prominent changes in the fluorescence intensities, suggesting, in the presence of c-di-AMP, CapA transport efficiency was ehhanced. But, no obvious changes were observed in CpaA mutants R560A and H583A, which is c-di-AMP-binding residues in CpaA RCK_C domain. In the future, we will try to obtain high resolution structure of full-length CpaA N-terminal binding substrate and RCK_C domain with c-di-AMP complex. This structural studies will enlighten us the c-di-AMP regulatory role of CpaA on ion homeostasis in bacteria.
摘要 i
Abstract ii
目次 iii
圖目次 vi
第一章 前言 1
一、 新型的二級訊號分子c-di-AMP 1
二、 結合c-di-AMP的受體蛋白 1
三、 KtrA RCK_ CTD結合c-di-AMP的結構 2
四、 CpaA RCK_ CTD結合c-di-AMP的結構 3
五、 比較CpaA與KtrA之RCK_CTD結合c-di-AMP的複合體結構 3
六、 陽離子/質子反向轉運蛋白家族(CPA)中的CpaA 4
七、 本論文研究目的 5
第二章 材料與方法 6
一、 構築去除CpaA-GFP其中 GFP基因的質體 6
(一) 設計引子 6
(二) 聚合酶連鎖反應(Polymerase chain reaction, PCR) 6
(三) Colony PCR 7
(四) DNA膠體電泳 7
(五) 抽質體DNA 8
二、 CpaA突變株 8
(一) 單點突變CpaA 8
(二) 位點導向基因突變(Site-Directed Mutagenesis) 8
三、 大量表現與純化CpaA WT及突變株 10
(一) 製備勝任細胞 10
(二) 轉殖作用(Transformation) 10
(三) 大量表現全長CpaA 10
(四) 破菌取得細胞膜 10
(五) 自細胞膜上萃取膜蛋白 11
(六) Ni-NTA親和性管柱純化 11
(七) TEV蛋白酶去除His-tag 11
(八) 膠體過濾純化 12
(九) 蛋白質濃度測定 12
四、 大量表現及純化TEV蛋白酶 12
(一) 轉殖作用(Transformation) 12
(二) 大量表現TEV蛋白酶 13
(三) 破菌 13
(四) Ni-NTA親和性管柱純化 13
五、 純化VcDncV合成c-di-AMP 14
(一) 大量表現VcDncV 14
(二) 純化VcDncV 14
(三) 合成c-di-AMP 14
(四) 計算c-di-AMP濃度 15
六、 製備Proteioliposome及CpaA功能性測定 15
(一) 掃描pyranine激發波長 15
(二) 製備empty liposome 15
(三) 重建目標蛋白至liposome形成proteoliposome 15
(四) 包埋螢光染劑pyranine於proteoliposome內部 16
(五) 銀染確認CpaA proteoliposome 16
(六) 空liposome控制組測試 17
(七) 空liposome加入不同濃度c-di-AMP測試 17
(八) CpaA Proteoliposome稀釋倍率 17
(九) CpaA Proteoliposome運輸功能測定 17
第三章 結果 19
一、 CpaA序列比對的結果 19
二、 構築不含GFP的全長CpaA質體及其突變株 19
三、 純化TEV蛋白酶 20
四、 純化全長CpaA 21
五、 純化VcDncV及合成c-di-AMP的結果 22
六、 Pyranine在不含蛋白的liposome之螢光結果測試 22
(一) Pyranine的螢光測試 23
(二) 空liposome控制組測試 23
(三) 空liposome加入不同濃度c-di-AMP的影響 23
七、 含有全長CpaA的proteoliposome之功能測定 24
(一) 構築包含CpaA之proteoliposome 24
(二) Proteoliposome的稀釋倍率 25
(三) 全長之CpaA wt構築至proteoliposome運輸功能測定 25
(四) CpaA突變株的運輸功能測定 26
第四章 討論 28
一、 CpaA N端之序列分析比對 28
二、 c-di-AMP對於螢光染劑pyranine之影響 28
三、 c-di-AMP對於CpaA轉運效率的影響 29
四、 Future work 30
五、 總結 30
參考文獻 32
1.Witte, G., et al., Structural Biochemistry of a Bacterial Checkpoint Protein Reveals Diadenylate Cyclase Activity Regulated by DNA Recombination Intermediates. Molecular Cell, 2008. 30(2): p. 167-178.
2.Corrigan, R.M. and A. Grundling, Cyclic di-AMP: another second messenger enters the fray. Nat Rev Micro, 2013. 11(8): p. 513-524.
3.Zhang, L., W. Li, and Z.-G. He, DarR, a TetR-like Transcriptional Factor, Is a Cyclic Di-AMP-responsive Repressor in Mycobacterium smegmatis. The Journal of Biological Chemistry, 2013. 288(5): p. 3085-3096.
4.Corrigan, R.M., et al., Systematic identification of conserved bacterial c-di-AMP receptor proteins. Proceedings of the National Academy of Sciences, 2013. 110(22): p. 9084-9089.
5.Corrigan, R.M., et al., Systematic identification of conserved bacterial c-di-AMP receptor proteins. Proceedings of the National Academy of Sciences of the United States of America, 2013. 110(22): p. 9084-9089.
6.Chin, K.H., et al., Structural Insights into the Distinct Binding Mode of Cyclic Di-AMP with SaCpaA_RCK. Biochemistry, 2015. 54(31): p. 4936-51.
7.Kim, H., et al., Structural Studies of Potassium Transport Protein KtrA Regulator of Conductance of K+ (RCK) C Domain in Complex with Cyclic Diadenosine Monophosphate (c-di-AMP). Journal of Biological Chemistry, 2015. 290(26): p. 16393-16402.
8.Hunte, C., et al., Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. Nature, 2005. 435(7046): p. 1197-202.
9.Lee, C., et al., A two-domain elevator mechanism for sodium/proton antiport. Nature, 2013. 501(7468): p. 573-7.
10.Paulino, C., et al., Structure and transport mechanism of the sodium/proton antiporter MjNhaP1. Elife, 2014. 3: p. e03583.
11.Wohlert, D., W. Kuhlbrandt, and O. Yildiz, Structure and substrate ion binding in the sodium/proton antiporter PaNhaP. Elife, 2014. 3: p. e03579.
12.Coincon, M., et al., Crystal structures reveal the molecular basis of ion translocation in sodium/proton antiporters. Nat Struct Mol Biol, 2016. 23(3): p. 248-255.
13.Davies, Bryan W., et al., Coordinated Regulation of Accessory Genetic Elements Produces Cyclic Di-Nucleotides for V. cholerae Virulence. Cell, 2012. 149(2): p. 358-370.
14.Kato, K., et al., Structural Basis for the Catalytic Mechanism of DncV, Bacterial Homolog of Cyclic GMP-AMP Synthase. Structure, 2015. 23(5): p. 843-850.
15.Kranzusch, P.J., et al., Structure-guided reprogramming of human cGAS dinucleotide linkage specificity. Cell, 2014. 158(5): p. 1011-21.
16.Corrigan, R.M., et al., c-di-AMP Is a New Second Messenger in Staphylococcus aureus with a Role in Controlling Cell Size and Envelope Stress. PLOS Pathogens, 2011. 7(9): p. e1002217.
17.Mario Aguedo, Y.W., Jean-Marc Belin, Intracellular pH-dependent efflux of the fluorescent probe pyranine in the yeast Yarrowia lipolytica. FEMS Microbiology Letters, 2001.6. 200(2): p. 185-189.
18.Ferguson, G.P., et al., Survival during exposure to the electrophilic reagent N-ethylmaleimide in Escherichia coli: role of KefB and KefC potassium channels. Journal of Bacteriology, 1997. 179(4): p. 1007-1012.
19.Calinescu, O. and K. Fendler, A universal mechanism for transport and regulation of CPA sodium proton exchangers. Biol Chem, 2015. 396(9-10): p. 1091-6.
20.Chintapalli, V.R., et al., Transport proteins NHA1 and NHA2 are essential for survival, but have distinct transport modalities. Proc Natl Acad Sci U S A, 2015. 112(37): p. 11720-5.
21.Krulwich, T.A., D.B. Hicks, and M. Ito, Cation/proton antiporter complements of bacteria: why so large and diverse? Molecular microbiology, 2009. 74(2): p. 257-260.
22.Donowitz, M., C. Ming Tse, and D. Fuster, SLC9/NHE gene family, a plasma membrane and organellar family of Na(+)/H(+) exchangers. Mol Aspects Med, 2013. 34(2-3): p. 236-51.
23.Uzdavinys, P., et al., Dissecting the proton transport pathway in electrogenic Na+/H+ antiporters. Proceedings of the National Academy of Sciences, 2017.
24.Lee, C., et al., Crystal structure of the sodium–proton antiporter NhaA dimer and new mechanistic insights. The Journal of General Physiology, 2014. 144(6): p. 529.
25.Aguedo, M., Y. Waché, and J.-M. Belin, Intracellular pH-dependent efflux of the fluorescent probe pyranine in the yeast Yarrowia lipolytica. FEMS Microbiology Letters, 2001. 200(2): p. 185-189.
26.Roosild, T.P., et al., KTN (RCK) Domains Regulate K+ Channels and Transporters by Controlling the Dimer-Hinge Conformation. Structure, 2009. 17(6): p. 893-903.
27.Huynh, T.N., et al., An HD-domain phosphodiesterase mediates cooperative hydrolysis of c-di-AMP to affect bacterial growth and virulence. Proceedings of the National Academy of Sciences of the United States of America, 2015. 112(7): p. E747-E756.
28.Bai, Y.L., et al., Cyclic Di-AMP Impairs Potassium Uptake Mediated by a Cyclic Di-AMP Binding Protein in Streptococcus pneumoniae. Journal of Bacteriology, 2014. 196(3): p. 614-623.
29.Paulino, C. and W. Kuhlbrandt, pH- and sodium-induced changes in a sodium/proton antiporter. Elife, 2014. 3: p. e01412.
30.Inoue, H., et al., Essential aspartic acid residues, Asp-133, Asp-163 and Asp-164, in the transmembrane helices of a Na+/H+ antiporter (NhaA) from Escherichia coli. FEBS Letters, 1995. 363(3): p. 264-268.
31.Ujwal, R. and J. Abramson, High-throughput crystallization of membrane proteins using the lipidic bicelle method. Journal of visualized experiments : JoVE, 2012(59): p. e3383-e3383.
32.Landau, E.M. and J.P. Rosenbusch, Lipidic cubic phases: A novel concept for the crystallization of membrane proteins. Proceedings of the National Academy of Sciences of the United States of America, 1996. 93(25): p. 14532-14535.
33.Fernandez-Leiro, R. and S.H.W. Scheres, Unravelling biological macromolecules with cryo-electron microscopy. Nature, 2016. 537(7620): p. 339-346.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top