|
1. Booth, I.R., Regulation of cytoplasmic pH in bacteria. Microbiol Rev, 1985. 49(4): p. 359-78. 2. Bakker, E.P., Alkali cation transport systems in prokaryotes. 1993, Boca Raton: CRC Press. 448 p. 3. Epstein, W., The roles and regulation of potassium in bacteria. Prog Nucleic Acid Res Mol Biol, 2003. 75: p. 293-320. 4. Miller, C., An overview of the potassium channel family. Genome Biol, 2000. 1(4): p. REVIEWS0004. 5. Littleton, J.T. and B. Ganetzky, Ion channels and synaptic organization: analysis of the Drosophila genome. Neuron, 2000. 26(1): p. 35-43. 6. Wojdan, A., M.E. Morin, and G. Oshiro, Effects of Potassium Channel Activators on Blood-Pressure and Heart-Rate in Spontaneously Hypertensive Rats after Oral and Intravenous Treatment. Faseb Journal, 1988. 2(4): p. A607-A607. 7. Meredith LeMasurier, L.H., and Christopher Miller, KcsA: It’s a Potassium Channel. J. Gen. Physiol., 2001. 118. 8. Declan A. Doyle, J.o.M.C., Richard A. Pfuetzner, Anling Kuo, Jacqueline M. Gulbis, Steven L. Cohen, Brian T. Chait, Roderick MacKinnon*, The Structure of the Potassium Channel: Molecular Basis of K Conduction and Selectivity. Science, 1998. 280. 9. Kuo, A., et al., Crystal structure of the potassium channel KirBac1.1 in the closed state. Science, 2003. 300(5627): p. 1922-6. 10. Youxing Jiang, A.L., Jiayun Chen, Martine Cadene, Brian T. Chait & Roderick MacKinnon, Crystal structure and mechanism of a calcium-gated potassium channel. Nature, 2002. 417. 11. Vieira-Pires, R.S., A. Szollosi, and J.H. Morais-Cabral, The structure of the KtrAB potassium transporter. Nature, 2013. 496(7445): p. 323-8. 12. Cao, Y., et al., Gating of the TrkH ion channel by its associated RCK protein TrkA. Nature, 2013. 496(7445): p. 317-22. 13. Albright, R.A., et al., The RCK domain of the KtrAB K+ transporter: multiple conformations of an octameric ring. Cell, 2006. 126(6): p. 1147-59. 14. Cuello, L.G., et al., pH-dependent gating in the Streptomyces lividans K+ channel. Biochemistry, 1998. 37(10): p. 3229-36. 41 15. Deisenhofer, J., et al., Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3A resolution. Nature, 1985. 318(6047): p. 618-24. 16. Hanelt, I., et al., KtrB, a member of the superfamily of K+ transporters. Eur J Cell Biol, 2011. 90(9): p. 696-704. 17. Zhou, Y., et al., Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 A resolution. Nature, 2001. 414(6859): p. 43-8. 18. MacKinnon, R., Potassium channels and the atomic basis of selective ion conduction (Nobel Lecture). Angew Chem Int Ed Engl, 2004. 43(33): p. 4265-77. 19. Yuchi, Z., V.P. Pau, and D.S. Yang, GCN4 enhances the stability of the pore domain of potassium channel KcsA. FEBS J, 2008. 275(24): p. 6228-36. 20. Hirano, M., et al., Role of the KcsA channel cytoplasmic domain in pH-dependent gating. Biophys J, 2011. 101(9): p. 2157-62. 21. Bhate, M.P. and A.E. McDermott, Protonation state of E71 in KcsA and its role for channel collapse and inactivation. Proc Natl Acad Sci U S A, 2012. 109(38): p. 15265-70. 22. Durell, S.R. and H.R. Guy, Structural models of the KtrB, TrkH, and Trk1,2 symporters based on the structure of the KcsA K(+) channel. Biophys J, 1999. 77(2): p. 789-807. 23. Youxing Jiang, A.L., Jiayun Chen, Martine Cadene, Brian T. Chait & Roderick MacKinnon, The open pore conformation of potassium channels. Nature, 2002. 30. 24. Ye, S., et al., Crystal structures of a ligand-free MthK gating ring: Insights into the ligand gating mechanism of K+ channels. Cell, 2006. 126(6): p. 1161-1173. 25. Cao, Y., et al., Crystal structure of a potassium ion transporter, TrkH. Nature, 2011. 471(7338): p. 336-40. 26. Wu, Y., et al., Structure of the gating ring from the human large-conductance Ca(2+)-gated K(+) channel. Nature, 2010. 466(7304): p. 393-7. 27. Yuan, P., et al., Structure of the human BK channel Ca2+-activation apparatus at 3.0 A resolution. Science, 2010. 329(5988): p. 182-6. 28. Pau, V.P.T., et al., Structure and function of multiple Ca2+-binding sites in a K+ channel regulator of K+ conductance (RCK) domain. Proceedings of the National Academy of Sciences of the United States of America, 2011. 108(43): p. 17684- 17689. 29. Kuo, M.M., et al., Prokaryotic K(+) channels: from crystal structures to diversity. FEMS Microbiol Rev, 2005. 29(5): p. 961-85. 42 30. Loukin, S.H., et al., Microbial K+ channels. J Gen Physiol, 2005. 125(6): p. 521- 7. 31. Holtmann, G., et al., KtrAB and KtrCD: two K+ uptake systems in Bacillus subtilis and their role in adaptation to hypertonicity. J Bacteriol, 2003. 185(4): p. 1289- 98. 32. Hanelt, I., et al., Gain of function mutations in membrane region M2C2 of KtrB open a gate controlling K+ transport by the KtrAB system from Vibrio alginolyticus. J Biol Chem, 2010. 285(14): p. 10318-27. 33. Albright, R.A., K. Joh, and J.H. Morais-Cabral, Probing the structure of the dimeric KtrB membrane protein. J Biol Chem, 2007. 282(48): p. 35046-55. 34. Szollosi, A., et al., Dissecting the Molecular Mechanism of Nucleotide-Dependent Activation of the KtrAB K+ Transporter. PLoS Biol, 2016. 14(1): p. e1002356. 35. Kroning, N., et al., ATP binding to the KTN/RCK subunit KtrA from the K+ - uptake system KtrAB of Vibrio alginolyticus: its role in the formation of the KtrAB complex and its requirement in vivo. J Biol Chem, 2007. 282(19): p. 14018-27. 36. Kim, H., et al., Structural Studies of Potassium Transport Protein KtrA Regulator of Conductance of K+ (RCK) C Domain in Complex with Cyclic Diadenosine Monophosphate (c-di-AMP). J Biol Chem, 2015. 290(26): p. 16393-402. 37. Nakamura, T., et al., KtrAB, a new type of bacterial K(+)-uptake system from Vibrio alginolyticus. J Bacteriol, 1998. 180(13): p. 3491-4. 38. Sorensen, P.W. and K. Sato, Second messenger systems mediating sex pheromone and amino acid sensitivity in goldfish olfactory receptor neurons. Chem Senses, 2005. 30 Suppl 1: p. i315-6. 39. Benveniste, E.N., et al., Second messenger systems in the regulation of cytokines and adhesion molecules in the central nervous system. Brain Behav Immun, 1995. 9(4): p. 304-14. 40. Hengge, R., Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol, 2009. 7(4): p. 263-73. 41. Romling, U., Great times for small molecules: c-di-AMP, a second messenger candidate in Bacteria and Archaea. Sci Signal, 2008. 1(33): p. pe39. 42. Burdette, D.L., et al., STING is a direct innate immune sensor of cyclic di-GMP. Nature, 2011. 478(7370): p. 515-U111. 43. Luo, Y. and J.D. Helmann, Analysis of the role of Bacillus subtilis sigma(M) in beta-lactam resistance reveals an essential role for c-di-AMP in peptidoglycan homeostasis. Mol Microbiol, 2012. 83(3): p. 623-39. 43 44. Zhang, L., W. Li, and Z.G. He, DarR, a TetR-like transcriptional factor, is a cyclic di-AMP-responsive repressor in Mycobacterium smegmatis. J Biol Chem, 2013. 288(5): p. 3085-96. 45. Oppenheimer-Shaanan, Y., et al., c-di-AMP reports DNA integrity during sporulation in Bacillus subtilis. EMBO Rep, 2011. 12(6): p. 594-601. 46. Bejerano-Sagie, M., et al., A checkpoint protein that scans the chromosome for damage at the start of sporulation in Bacillus subtilis. Cell, 2006. 125(4): p. 679- 690. 47. Corrigan, R.M., et al., Systematic identification of conserved bacterial c-di-AMP receptor proteins. Proc Natl Acad Sci U S A, 2013. 110(22): p. 9084-9. 48. Witte, G., et al., Structural biochemistry of a bacterial checkpoint protein reveals diadenylate cyclase activity regulated by DNA recombination intermediates. Molecular Cell, 2008. 30(2): p. 167-178. 49. Woodward, J.J., A.T. Iavarone, and D.A. Portnoy, c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science, 2010. 328(5986): p. 1703-5. 50. Gandara, C. and J.C. Alonso, DisA and c-di-AMP act at the intersection between DNA-damage response and stress homeostasis in exponentially growing Bacillus subtilis cells. DNA Repair, 2015. 27: p. 1-8. 51. Yinlan Bai, J.Y., Tiffany M. Zarrella, Yang Zhang, Dennis W. Metzger, Guangchun Bai, Cyclic Di-AMP Impairs Potassium Uptake Mediated by a Cyclic Di-AMP Binding Protein in Streptococcus pneumoniae. Journal of Bacteriology, 2014. 96. 52. Santos, J.o.M.A., Assessment of the Binding Properties of KtrA to ATP and ADP. 2014. 53. Corrigan, R.M. and A. Grundling, Cyclic di-AMP: another second messenger enters the fray. Nat Rev Microbiol, 2013. 11(8): p. 513-24. 54. Davies, B.W., et al., Coordinated regulation of accessory genetic elements produces cyclic di-nucleotides for V. cholerae virulence. Cell, 2012. 149(2): p. 358-70. 55. Zhu, D., et al., Structural biochemistry of a Vibrio cholerae dinucleotide cyclase reveals cyclase activity regulation by folates. Mol Cell, 2014. 55(6): p. 931-7. 56. Corrigan, R.M., et al., c-di-AMP Is a New Second Messenger in Staphylococcus aureus with a Role in Controlling Cell Size and Envelope Stress. Plos Pathogens, 2011. 7(9). 57. Rosano, G.L. and E.A. Ceccarelli, Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol, 2014. 5: p. 172. 44 58. Smith, F.J., et al., Structural basis of allosteric interactions among Ca2+-binding sites in a K+ channel RCK domain. Nat Commun, 2013. 4: p. 2621. 59. Choe, S., Potassium channel structures. Nat Rev Neurosci, 2002. 3(2): p. 115-21. 60. Pau, V.P.T., K. Abarca-Heidemann, and B.S. Rothberg, Allosteric mechanism of Ca2+ activation and H+-inhibited gating of the MthK K+ channel. Journal of General Physiology, 2010. 135(5): p. 509-526.
|