跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/10 12:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林昱至
研究生(外文):Yu-Chih Lin
論文名稱:以DNA甲基化鑑定刑事檢體體液類別之研究
論文名稱(外文):Establishment of novel identification systems for biofluids by DNA methylation profiling
指導教授:曾志正曾志正引用關係
口試委員:李俊億謝幸媚蔡麗琴楊秋和
口試日期:2017-07-12
學位類別:博士
校院名稱:國立中興大學
系所名稱:生物科技學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:77
中文關鍵詞:體液混和體液DNA甲基化甲基化特異性PCR(MSP)結合單一鹼基延長(SBE)甲基化敏感限制內切酶PCR(MSRE-PCR)miniSTR型別
外文關鍵詞:biofluidsmixturesDNA methylationMSP-SBEMSRE-PCRminiSTR
相關次數:
  • 被引用被引用:0
  • 點閱點閱:410
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
鑑定現場體液在刑事鑑定中扮演非常重要的角色,而體液型別可藉由分析特定基因標記的甲基化狀態來鑑定為何種體液。本研究搜尋Infinium HumanMethylation450 BeadChip資料庫中,找出對精液、陰道液、唾液、周邊血及月經血具甲基化特異性的基因標記,並發展兩套可用來分析這些基因標記甲基化狀態的分析系統。
第一套分析系統是利用甲基化特異性PCR(MSP)結合單一鹼基延長(SBE)技術,此系統包含8個體液特異性甲基化基因標記,可用來鑑定唾液、周邊血、陰道棉棒和精液,此外,另加入1個控制標記可用來確定亞硫酸鹽DNA修飾是否完全,以及1個性別指示標記,組合成總共可分析10個標記之甲基化特異性PCR結合單一鹼基延長的複合系統(MSP-SBE)。在分析各種體液樣品的測試下,8個體液特異性標記可確實鑑定出其體液型別,並在混和樣品中,也可確切鑑定出混合之體液。把此系統應用在真實性侵害案例中檢體,這些檢體在傳統方法的鑑定上呈現不明確或無法確定的結果,在此系統的測試下,也可明確的鑑定出體液型別,顯現此系統之實際應用性。
第二套分析系統是利用甲基化敏感限制內切酶PCR(MSRE-PCR) 技術,此系統為可同時分析10個基因標記的多重引子MSRE-PCR,共包含8個體液特異性甲基化基因標記及2個控制基因標記。在分析5種不同的體液樣本測試中,均可無誤的鑑定出其體液型別。另外進行本系統之靈敏性、再現性及混合樣品等之確效性實驗,也都呈現良好且正確的結果。此外,此系統可和AmpFlSTR® MiniFiler™ PCR Amplification Kit在同一反應中一起進行,同時產出體液鑑定基因標記之甲基化狀態和miniSTR型別,達成同時鑑定體液型別和鑑定身分之效果。
本研究建立兩套以DNA甲基化狀態分析體液型別之分析系統,兩套系統都展現其正確性、靈敏度,以及其在刑事鑑定中的可行性。
The identification of a specific biofluid encountered in a forensic investigation can give crucial information. This identification can be aided by methylation profiles based on selected markers specific to a range of biofluids. In this study, the open database of Infinium HumanMethylation450 BeadChip was searched for markers specific for semen, vaginal fluids, saliva, venous blood and menstrual blood. Two systems based on analyzing methylation profile were developed.
The first system utilizes methylation-specific PCR combined with single-base-extension (MSP-SBE). A total of eight biofluid-specific methylated markers for saliva, venous blood, vaginal fluids and semen were isolated. These biofluid-specific markers, a control marker to confirm bisulfite conversion, and a gender marker were incorporated into a 10-plex methylation-specific PCR single-base-extension (MSP-SBE) system. Analysis of DNA samples isolated from various biofluids that had been treated with bisulfite, resulted in all eight markers detecting the biofluid to which they were designed. Unambiguous biofluid identification occurred from both single sources of biofluids and complex mixtures. The efficacy of the assay and application to forensic practice was demonstrated using five non-probative samples from real alleged sexual assault cases. The system unambiguously determined the biofluid types for the non-probative forensic samples that previously resulted in inconclusive or conflicting results using traditional tests.
The second system employs methylation sensitive restriction enzyme-PCR (MSRE-PCR). A total of 8 biofluid-specific methylated markers and 2 control markers were combined into a 10-plex methylation sensitive restriction enzyme-PCR (MSRE-PCR) system. Based upon the analysis of DNA samples from 5 various biofluid types, unambiguous results were obtained to identify the biofluid from which it originated. Validation studies of the developed 10-plex MSRE-PCR included sensitivity, reproducibility and mixed biofluids. Co-amplification of the established MSRE-PCR system and the microsatellite loci in AmpFlSTR® MiniFiler™ PCR Amplification Kit was performed to generate both the methylation profile for biofluid type and the miniSTR profile. This allowed human identification and the identification of the biofluid type to be performed in a single reaction.
This study established two systems analyzing methylation profile for identification of biofluids. Both systems displayed accuracy, sensitivity and feasibility for forensic application.
List of Contents
摘要 i
Abstract ii
List of Contents iii
List of Tables vi
List of Figures vii
Abbreviation viii
Chapter 1 Introduction
1.1 Introduction 1
1.2 Chemical/catalytic tests 2
1.3 Immunological tests 2
1.4 Microscopic examinations 4
1.5 Microbial flora profiling 4
1.6 RNA-based assays 5
1.7 Epigenetic assays 7
1.8 Research aims 8
Chapter 2 General methods
2.1 Sample collection 10
2.2 DNA isolation and quantification 10
2.3 Agarose gel electrophoresis 10
2.4 Capillary electrophoresis 10
Chapter 3 Selection of candidate CpG loci
3.1 Establishment of methylation database for different biofluids 11
3.2 Search for candidate CpG loci 11
Chapter 4
Development of a multiplex methylation specific PCR combined with single-base extension system to identify biofluids
4.1 Introduction 12
4.2 Materials and Methods 13
4.2.1 Sample preparation 13
4.2.2 Bisulfite conversion 13
4.2.3 Selection of candidate CpG loci 13
4.2.4 Methylation-specific PCR (MSP) 14
4.2.5 Single base extension (SBE) 15
4.2.6 Statistical analysis 16
4.2.7 Mixture tests 16
4.3 Results and Discussion 17
4.3.1 Selection of candidate CpG loci 17
4.3.2 Preliminary MSP amplification 17
4.3.3 Multiplex MSP-SBE 18
4.3.4 Statistical analysis 21
4.3.5 Mixture tests 22
4.3.6 Non-probative forensic sample identification 27
4.4 Discussion 30
4.5 Conclusion 32
Chapter 5
Novel identification of biofluids using a multiplex methylation sensitive restriction enzyme-PCR system
5.1 Introduction 33
5.2 Materials and Methods 34
5.2.1 Sample preparation 34
5.2.2 Selection of candidate CpG loci 34
5.2.3 Preliminary MSRE-PCR test for candidate markers 34
5.2.4 10-plex MSRE-PCR of biofluid identification assay 35
5.2.5 Statistical analysis 36
5.2.6 Validation tests 36
5.2.7 Co-amplification with the miniSTR markers 36
5.3 Results 37
5.3.1 Selection of candidate CpG loci 37
5.3.2 Preliminary MSRE-PCR test for candidate markers 37
5.3.3 Establishment of the 10-plex MSRE-PCR system 38
5.3.4 Statistical analysis 41
5.3.5 Validation tests of the 10-plex MSRE-PCR system 42
5.3.6 Co-amplification with the miniSTR markers 54
5.4 Discussion 61
5.5 Conclusion 64
Chapter 6 Final Discussion
6.1 Prelude 65
6.2 Chapter summaries 65
6.3 Potential application to the field of forensic investigation 67
6.4 Future direction of the research and improvements 68
[1] K. Virkler, I.K. Lednev, Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene, Forensic Sci Int 188 (2009) 1-17.
[2] S.S. Tobe, N. Watson, N.N. Daeid, Evaluation of six presumptive tests for blood, their specificity, sensitivity, and effect on high molecular-weight DNA, J Forensic Sci 52 (2007) 102-109.
[3] M. Cox, A study of the sensitivity and specificity of four presumptive tests for blood, J Forensic Sci 36 (1991) 1503-1511.
[4] J.P. de Almeida, N. Glesse, C. Bonorino, Effect of presumptive tests reagents on human blood confirmatory tests and DNA analysis using real time polymerase chain reaction, Forensic Sci Int 206 (2011) 58-61.
[5] G.M. Willott, An improved test for the detection of salivary amylase in stains, J Forensic Sci Soc 14 (1974) 341-344.
[6] P.H. Whitehead, A.E. Kipps, The significance of amylase in forensic investigations of body fluids, Forensic Sci 6 (1975) 137-144.
[7] M.J. Auvdel, Amylase levels in semen and saliva stains, J Forensic Sci 31 (1986) 426-431.
[8] S.M. Keating, D.F. Higgs, The detection of amylase on swabs from sexual assault cases, J Forensic Sci Soc 34 (1994) 89-93.
[9] P.J. Ablett, The identification of the precise conditions for seminal acid phosphatase (SAP) and vaginal acid phosphatase (VAP) separation by isoelectric focusing patterns, J Forensic Sci Soc 23 (1983) 255-256.
[10] B.C. Pang, B.K. Cheung, Applicability of two commercially available kits for forensic identification of saliva stains, J Forensic Sci 53 (2008) 1117-1122.
[11] S. Kaye, Acid phosphatase test for identification of seminal stains, J Lab Clin Med 34 (1949) 728-732.
[12] P. Redhead, M.K. Brown, The acid phosphatase test two minute cut-off: an insufficient time to detect some semen stains, Sci Justice 53 (2013) 187-191.
[13] D.G. Casey, J. Price, The sensitivity and specificity of the RSID-saliva kit for the detection of human salivary amylase in the Forensic Science Laboratory, Dublin, Ireland, Forensic Sci Int 194 (2010) 67-71.
[14] T. Akutsu, K. Watanabe, K. Sakurada, Specificity, sensitivity, and operability of RSID-urine for forensic identification of urine: comparison with ELISA for Tamm-Horsfall protein, J Forensic Sci 57 (2012) 1570-1573.
[15] J.P. Simich, S.L. Morris, R.L. Klick, K. Rittenhouse-Diakun, Validation of the use of a commercially available kit for the identification of prostate specific antigen (PSA) in semen stains, J Forensic Sci 44 (1999) 1229-1231.
[16] A. Misencik, D. Laux, Validation study of the Seratec HemDirect hemoglobin assay for the forensic identification of human blood, MAFS Newslett 36 (2007) 18-26.
[17] S. Johnston, J. Newman, R. Frappier, Validation study of the Abacus Diagnostics ABAcard® Hematrace® membrane test for the forensic dentification of human blood, Can Soc Forensic Sci J 36 (2003) 173-183.
[18] B.A. Schweers, J. Old, P.W. Boonlayangoor, K.A. Reich, Developmental validation of a novel lateral flow strip test for rapid identification of human blood (Rapid Stain Identification--Blood), Forensic Sci Int Genet 2 (2008) 243-247.
[19] M.M. Hobbs, M.J. Steiner, K.D. Rich, M.F. Gallo, A. Alam, M. Rahman, P. Menezes, T. Chipato, L. Warner, M. Macaluso, Good performance of rapid prostate-specific antigen test for detection of semen exposure in women: implications for qualitative research, Sex Transm Dis 36 (2009) 501-506.
[20] O. Gartside, J. Brewer, C. Strong, Estimation of Prostate-Specific Antigen (PSA) Extraction Efficiency from Forensic Samples Using the SERATEC® PSA SEMIQUANT Membrane Test, Forensic Sci Com 5 (2003).
[21] S. Schmidt, M. Franke, J. Lehmann, T. Loch, M. Stockle, K. Weichert-Jacobsen, Prostate-specific antigen in female urine: a prospective study involving 217 women, Urology 57 (2001) 717-720.
[22] P. Lunetta, H. Sippel, Positive prostate-specific antigen (PSA) reaction in post-mortem rectal swabs: a cautionary note, J Forensic Leg Med 16 (2009) 397-399.
[23] H. Graves, Non prostatic sources of protein-specific antigen: a steroid hormone dependent phenomenon, Clin Chem 41 (1995) 7-9.
[24] H. Yu, E. Diamandis, Prostate specific antigen in milk of lactating women, Clin Chem 41 (1995).
[25] S.E. Bitner, False positives observed on the Seratec(R) PSA SemiQuant Cassette Test with condom lubricants, J Forensic Sci 57 (2012) 1545-1548.
[26] B.C. Pang, B.K. Cheung, Identification of human semenogelin in membrane strip test as an alternative method for the detection of semen, Forensic Sci Int 169 (2007) 27-31.
[27] E.S. Boward, S.L. Wilson, A comparison of ABAcard((R)) p30 and RSID-Semen test kits for forensic semen identification, J Forensic Leg Med 20 (2013) 1126-1130.
[28] D.J. Baker, E.A. Grimes, A.J. Hopwood, D-dimer assays for the identification of menstrual blood, Forensic Sci Int 212 (2011) 210-214.
[29] H. Holtkotter, L. Dierig, M. Schurenkamp, U. Sibbing, H. Pfeiffer, M. Vennemann, Validation of an immunochromatographic D-dimer test to presumptively identify menstrual fluid in forensic exhibits, Int J Legal Med 129 (2015) 37-41.
[30] M.J. Costa, T. Tadros, E. Tackett, Z. Naib, Vaginocervical cytology in victims of sexual assault, Diagn Cytopathol 7 (1991) 337-340.
[31] J.P. Allery, N. Telmon, R. Mieusset, A. Blanc, D. Rouge, Cytological detection of spermatozoa: comparison of three staining methods, J Forensic Sci 46 (2001) 349-351.
[32] A. De Moors, T. Georgalis, G. Armstrong, J. Modler, C.J. Fregeau, Sperm Hy-Liter: an effective tool for the detection of spermatozoa in sexual assault exhibits, Forensic Sci Int Genet 7 (2013) 367-379.
[33] A. Takamura, K. Watanabe, T. Akutsu, Development of a quantitative validation method for forensic investigation of human spermatozoa using a commercial fluorescence staining kit (SPERM HY-LITER Express), Int J Legal Med 130 (2016) 1421-1429.
[34] B. Randall, Glycogenated squamous epithelial cells as a marker of foreign body penetration in sexual assault, J Forensic Sci 33 (1988) 511-514.
[35] E.L. Jones, Jr., J.A. Leon, Lugol's test reexamined again: buccal cells, J Forensic Sci 49 (2004) 64-67.
[36] R. Hausmann, C. Pregler, B. Schellmann, The value of the Lugol's iodine staining technique for the identification of vaginal epithelial cells, Int J Legal Med 106 (1994) 298-301.
[37] R. Hausmann, B. Schellmann, Forensic value of the Lugol's staining method: further studies on glycogenated epithelium in the male urinary tract, Int J Legal Med 107 (1994) 147-151.
[38] C.E. French, C.G. Jensen, S.K. Vintiner, D.A. Elliot, S.R. McGlashan, A novel histological technique for distinguishing between epithelial cells in forensic casework, Forensic Sci Int 178 (2008) 1-6.
[39] R.I. Fleming, S. Harbison, The use of bacteria for the identification of vaginal secretions, Forensic Sci Int Genet 4 (2010) 311-315.
[40] T. Akutsu, H. Motani, K. Watanabe, H. Iwase, K. Sakurada, Detection of bacterial 16S ribosomal RNA genes for forensic identification of vaginal fluid, Leg Med (Tokyo) 14 (2012) 160-162.
[41] S. Giampaoli, A. Berti, F. Valeriani, G. Gianfranceschi, A. Piccolella, L. Buggiotti, C. Rapone, A. Valentini, L. Ripani, V. Romano Spica, Molecular identification of vaginal fluid by microbial signature, Forensic Sci Int Genet 6 (2012) 559-564.
[42] M. Doi, S. Gamo, T. Okiura, H. Nishimukai, M. Asano, A simple identification method for vaginal secretions using relative quantification of Lactobacillus DNA, Forensic Sci Int Genet 12 (2014) 93-99.
[43] H. Nakanishi, A. Kido, T. Ohmori, A. Takada, M. Hara, N. Adachi, K. Saito, A novel method for the identification of saliva by detecting oral streptococci using PCR, Forensic Sci Int 183 (2009) 20-23.
[44] C.C. Benschop, F.C. Quaak, M.E. Boon, T. Sijen, I. Kuiper, Vaginal microbial flora analysis by next generation sequencing and microarrays; can microbes indicate vaginal origin in a forensic context?, Int J Legal Med 126 (2012) 303-310.
[45] M. Bauer, A. Kraus, D. Patzelt, Detection of epithelial cells in dried blood stains by reverse transcriptase-polymerase chain reaction, J Forensic Sci 44 (1999) 1232-1236.
[46] F. Kohlmeier, P.M. Schneider, Successful mRNA profiling of 23 years old blood stains, Forensic Sci Int Genet 6 (2012) 274-276.
[47] M. Alvarez, J. Juusola, J. Ballantyne, An mRNA and DNA co-isolation method for forensic casework samples, Anal Biochem 335 (2004) 289-298.
[48] A. Bowden, R. Fleming, S. Harbison, A method for DNA and RNA co-extraction for use on forensic samples using the Promega DNA IQ system, Forensic Sci Int Genet 5 (2011) 64-68.
[49] Y. Xu, J. Xie, Y. Cao, H. Zhou, Y. Ping, L. Chen, L. Gu, W. Hu, G. Bi, J. Ge, X. Chen, Z. Zhao, Development of highly sensitive and specific mRNA multiplex system (XCYR1) for forensic human body fluids and tissues identification, PLoS One 9 (2014) e100123.
[50] A. Lindenbergh, M. de Pagter, G. Ramdayal, M. Visser, D. Zubakov, M. Kayser, T. Sijen, A multiplex (m)RNA-profiling system for the forensic identification of body fluids and contact traces, Forensic Sci Int Genet 6 (2012) 565-577.
[51] S.M. Park, S.Y. Park, J.H. Kim, T.W. Kang, J.L. Park, K.M. Woo, J.S. Kim, H.C. Lee, S.Y. Kim, S.H. Lee, Genome-wide mRNA profiling and multiplex quantitative RT-PCR for forensic body fluid identification, Forensic Sci Int Genet 7 (2013) 143-150.
[52] M.L. Richard, K.A. Harper, R.L. Craig, A.J. Onorato, J.M. Robertson, J. Donfack, Evaluation of mRNA marker specificity for the identification of five human body fluids by capillary electrophoresis, Forensic Sci Int Genet 6 (2012) 452-460.
[53] D. Zubakov, M. Kokshoorn, A. Kloosterman, M. Kayser, New markers for old stains: stable mRNA markers for blood and saliva identification from up to 16-year-old stains, Int J Legal Med 123 (2009) 71-74.
[54] A. Lindenbergh, M. van den Berge, R.J. Oostra, C. Cleypool, A. Bruggink, A. Kloosterman, T. Sijen, Development of a mRNA profiling multiplex for the inference of organ tissues, Int J Legal Med 127 (2013) 891-900.
[55] J. Juusola, J. Ballantyne, Multiplex mRNA profiling for the identification of body fluids, Forensic Sci Int 152 (2005) 1-12.
[56] S.A. Bustin, Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays, J Mol Endocrinol 25 (2000) 169-193.
[57] C. Nussbaumer, E. Gharehbaghi-Schnell, I. Korschineck, Messenger RNA profiling: a novel method for body fluid identification by real-time PCR, Forensic Sci Int 157 (2006) 181-186.
[58] J. Juusola, J. Ballantyne, mRNA profiling for body fluid identification by multiplex quantitative RT-PCR, J Forensic Sci 52 (2007) 1252-1262.
[59] C.W. Su, C.Y. Li, J.C. Lee, D.D. Ji, S.Y. Li, B. Daniel, D. Syndercombe-Court, A. Linacre, H.M. Hsieh, A novel application of real-time RT-LAMP for body fluid identification: using HBB detection as the model, Forensic Sci Med Pathol 11 (2015) 208-215.
[60] K. Sakurada, T. Akutsu, K. Watanabe, Y. Fujinami, M. Yoshino, Expression of statherin mRNA and protein in nasal and vaginal secretions, Leg Med (Tokyo) 13 (2011) 309-313.
[61] C. Cossu, U. Germann, A. Kratzer, W. Baer, C. Haas, How specific are the vaginal secretion mRNA markers HBD1 and MUC4, Forensic Sci Int Genet Suppl Ser 2 (2009) 536-537.
[62] D.P. Bartel, MicroRNAs: genomics, biogenesis, mechanism, and function, Cell 116 (2004) 281-297.
[63] I. Bentwich, A. Avniel, Y. Karov, R. Aharonov, S. Gilad, O. Barad, A. Barzilai, P. Einat, U. Einav, E. Meiri, E. Sharon, Y. Spector, Z. Bentwich, Identification of hundreds of conserved and nonconserved human microRNAs, Nat Genet 37 (2005) 766-770.
[64] R.C. Friedman, K.K. Farh, C.B. Burge, D.P. Bartel, Most mammalian mRNAs are conserved targets of microRNAs, Genome Res 19 (2009) 92-105.
[65] M. Lagos-Quintana, R. Rauhut, A. Yalcin, J. Meyer, W. Lendeckel, T. Tuschl, Identification of tissue-specific microRNAs from mouse, Curr Biol 12 (2002) 735-739.
[66] E.K. Hanson, H. Lubenow, J. Ballantyne, Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs, Anal Biochem 387 (2009) 303-314.
[67] D. Zubakov, A.W. Boersma, Y. Choi, P.F. van Kuijk, E.A. Wiemer, M. Kayser, MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation, Int J Legal Med 124 (2010) 217-226.
[68] J.L. Park, S.M. Park, O.H. Kwon, H.C. Lee, J.Y. Kim, H.H. Seok, W.S. Lee, S.H. Lee, Y.S. Kim, K.M. Woo, S.Y. Kim, Microarray screening and qRT-PCR evaluation of microRNA markers for forensic body fluid identification, Electrophoresis 35 (2014) 3062-3068.
[69] M. Sirker, R. Fimmers, P.M. Schneider, I. Gomes, Evaluating the forensic application of 19 target microRNAs as biomarkers in body fluid and tissue identification, Forensic Sci Int Genet 27 (2017) 41-49.
[70] A. Bird, Perceptions of epigenetics, Nature 447 (2007) 396-398.
[71] M. Nouzova, N. Holtan, M.M. Oshiro, R.B. Isett, J.L. Munoz-Rodriguez, A.F. List, M.L. Narro, S.J. Miller, N.C. Merchant, B.W. Futscher, Epigenomic changes during leukemia cell differentiation: analysis of histone acetylation and cytosine methylation using CpG island microarrays, J Pharmacol Exp Ther 311 (2004) 968-981.
[72] S. Rothenburg, F. Koch-Nolte, H.G. Thiele, F. Haag, DNA methylation contributes to tissue- and allele-specific expression of the T-cell differentiation marker RT6, Immunogenetics 52 (2001) 231-241.
[73] T. Isagawa, G. Nagae, N. Shiraki, T. Fujita, N. Sato, S. Ishikawa, S. Kume, H. Aburatani, DNA methylation profiling of embryonic stem cell differentiation into the three germ layers, PLoS One 6 (2011) e26052.
[74] E. Kitamura, J. Igarashi, A. Morohashi, N. Hida, T. Oinuma, N. Nemoto, F. Song, S. Ghosh, W.A. Held, C. Yoshida-Noro, H. Nagase, Analysis of tissue-specific differentially methylated regions (TDMs) in humans, Genomics 89 (2007) 326-337.
[75] R. Illingworth, A. Kerr, D. Desousa, H. Jorgensen, P. Ellis, J. Stalker, D. Jackson, C. Clee, R. Plumb, J. Rogers, S. Humphray, T. Cox, C. Langford, A. Bird, A novel CpG island set identifies tissue-specific methylation at developmental gene loci, PLoS Biol 6 (2008) e22.
[76] H.Y. Lee, M.J. Park, A. Choi, J.H. An, W.I. Yang, K.J. Shin, Potential forensic application of DNA methylation profiling to body fluid identification, Int J Legal Med 126 (2012) 55-62.
[77] J.H. An, A. Choi, K.J. Shin, W.I. Yang, H.Y. Lee, DNA methylation-specific multiplex assays for body fluid identification, Int J Legal Med 127 (2013) 35-43.
[78] D. Frumkin, A. Wasserstrom, B. Budowle, A. Davidson, DNA methylation-based forensic tissue identification, Forensic Sci Int Genet 5 (2011) 517-524.
[79] A. Wasserstrom, D. Frumkin, A. Davidson, M. Shpitzen, Y. Herman, R. Gafny, Demonstration of DSI-semen--A novel DNA methylation-based forensic semen identification assay, Forensic Sci Int Genet 7 (2013) 136-142.
[80] S. Dedeurwaerder, M. Defrance, E. Calonne, H. Denis, C. Sotiriou, F. Fuks, Evaluation of the Infinium Methylation 450K technology, Epigenomics 3 (2011) 771-784.
[81] H.Y. Lee, J.H. An, S.E. Jung, Y.N. Oh, E.Y. Lee, A. Choi, W.I. Yang, K.J. Shin, Genome-wide methylation profiling and a multiplex construction for the identification of body fluids using epigenetic markers, Forensic Sci Int Genet 17 (2015) 17-24.
[82] J.L. Park, O.H. Kwon, J.H. Kim, H.S. Yoo, H.C. Lee, K.M. Woo, S.Y. Kim, S.H. Lee, Y.S. Kim, Identification of body fluid-specific DNA methylation markers for use in forensic science, Forensic Sci Int Genet 13 (2014) 147-153.
[83] S. Forat, B. Huettel, R. Reinhardt, R. Fimmers, G. Haidl, D. Denschlag, K. Olek, Methylation Markers for the Identification of Body Fluids and Tissues from Forensic Trace Evidence, PLoS One 11 (2016) e0147973.
[84] H. Hayatsu, M. Shiraishi, K. Negishi, Bisulfite modification for analysis of DNA methylation, Curr Protoc Nucleic Acid Chem Chapter 6 (2008) Unit 6 10.
[85] T. Madi, K. Balamurugan, R. Bombardi, G. Duncan, B. McCord, The determination of tissue-specific DNA methylation patterns in forensic biofluids using bisulfite modification and pyrosequencing, Electrophoresis 33 (2012) 1736-1745.
[86] K. Balamurugan, R. Bombardi, G. Duncan, B. McCord, Identification of spermatozoa by tissue-specific differential DNA methylation using bisulfite modification and pyrosequencing, Electrophoresis 35 (2014) 3079-3086.
[87] H.Y. Lee, S.E. Jung, E.H. Lee, W.I. Yang, K.J. Shin, DNA methylation profiling for a confirmatory test for blood, saliva, semen, vaginal fluid and menstrual blood, Forensic Sci Int Genet 24 (2016) 75-82.
[88] A. Vidaki, B. Daniel, D.S. Court, Forensic DNA methylation profiling--potential opportunities and challenges, Forensic Sci Int Genet 7 (2013) 499-507.
[89] A.A. Melnikov, R.B. Gartenhaus, A.S. Levenson, N.A. Motchoulskaia, V.V. Levenson Chernokhvostov, MSRE-PCR for analysis of gene-specific DNA methylation, Nucleic Acids Res 33 (2005) e93.
[90] S.A. Farkas, N. Milutin-Gasperov, M. Grce, T.K. Nilsson, Genome-wide DNA methylation assay reveals novel candidate biomarker genes in cervical cancer, Epigenetics 8 (2013) 1213-1225.
[91] N.Y. Souren, P. Lutsik, G. Gasparoni, S. Tierling, J. Gries, M. Riemenschneider, J.P. Fryns, C. Derom, M.P. Zeegers, J. Walter, Adult monozygotic twins discordant for intra-uterine growth have indistinguishable genome-wide DNA methylation profiles, Genome Biol 14 (2013) R44.
[92] R.C. Slieker, S.D. Bos, J.J. Goeman, J.V. Bovee, R.P. Talens, R. van der Breggen, H.E. Suchiman, E.W. Lameijer, H. Putter, E.B. van den Akker, Y. Zhang, J.W. Jukema, P.E. Slagboom, I. Meulenbelt, B.T. Heijmans, Identification and systematic annotation of tissue-specific differentially methylated regions using the Illumina 450k array, Epigenetics Chromatin 6 (2013) 26.
[93] L.E. Reinius, N. Acevedo, M. Joerink, G. Pershagen, S.E. Dahlen, D. Greco, C. Soderhall, A. Scheynius, J. Kere, Differential DNA methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility, PLoS One 7 (2012) e41361.
[94] C. Krausz, J. Sandoval, S. Sayols, C. Chianese, C. Giachini, H. Heyn, M. Esteller, Novel insights into DNA methylation features in spermatozoa: stability and peculiarities, PLoS One 7 (2012) e44479.
[95] S.J. Clark, J. Harrison, C.L. Paul, M. Frommer, High sensitivity mapping of methylated cytosines, Nucleic Acids Res 22 (1994) 2990-2997.
[96] M. Gardiner-Garden, M. Frommer, CpG islands in vertebrate genomes, J Mol Biol 196 (1987) 261-282.
[97] J.G. Herman, J.R. Graff, S. Myohanen, B.D. Nelkin, S.B. Baylin, Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands, Proc Natl Acad Sci U S A 93 (1996) 9821-9826.
[98] M.L. Gonzalgo, G. Liang, Methylation-sensitive single-nucleotide primer extension (Ms-SNuPE) for quantitative measurement of DNA methylation, Nat Protoc 2 (2007) 1931-1936.
[99] Z. Kaminsky, A. Petronis, Methylation SNaPshot: a method for the quantification of site-specific DNA methylation levels, Methods Mol Biol 507 (2009) 241-255.
[100] C. Grunau, S.J. Clark, A. Rosenthal, Bisulfite genomic sequencing: systematic investigation of critical experimental parameters, Nucleic Acids Res 29 (2001) E65-65.
[101] A. Untergasser, I. Cutcutache, T. Koressaar, J. Ye, B.C. Faircloth, M. Remm, S.G. Rozen, Primer3--new capabilities and interfaces, Nucleic Acids Res 40 (2012) e115.
[102] M. van den Berge, B. Bhoelai, J. Harteveld, A. Matai, T. Sijen, Advancing forensic RNA typing: On non-target secretions, a nasal mucosa marker, a differential co-extraction protocol and the sensitivity of DNA and RNA profiling, Forensic Sci Int Genet 20 (2016) 119-129.
[103] K. Tanaka, A. Okamoto, Degradation of DNA by bisulfite treatment, Bioorg Med Chem Lett 17 (2007) 1912-1915.
[104] J.J. Mulero, C.W. Chang, R.E. Lagace, D.Y. Wang, J.L. Bas, T.P. McMahon, L.K. Hennessy, Development and validation of the AmpFlSTR MiniFiler PCR Amplification Kit: a MiniSTR multiplex for the analysis of degraded and/or PCR inhibited DNA, J Forensic Sci 53 (2008) 838-852.
[105] S. Flores, J. Sun, J. King, B. Budowle, Internal validation of the GlobalFiler Express PCR Amplification Kit for the direct amplification of reference DNA samples on a high-throughput automated workflow, Forensic Sci Int Genet 10 (2014) 33-39.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top