|
[1] K. Virkler, I.K. Lednev, Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene, Forensic Sci Int 188 (2009) 1-17. [2] S.S. Tobe, N. Watson, N.N. Daeid, Evaluation of six presumptive tests for blood, their specificity, sensitivity, and effect on high molecular-weight DNA, J Forensic Sci 52 (2007) 102-109. [3] M. Cox, A study of the sensitivity and specificity of four presumptive tests for blood, J Forensic Sci 36 (1991) 1503-1511. [4] J.P. de Almeida, N. Glesse, C. Bonorino, Effect of presumptive tests reagents on human blood confirmatory tests and DNA analysis using real time polymerase chain reaction, Forensic Sci Int 206 (2011) 58-61. [5] G.M. Willott, An improved test for the detection of salivary amylase in stains, J Forensic Sci Soc 14 (1974) 341-344. [6] P.H. Whitehead, A.E. Kipps, The significance of amylase in forensic investigations of body fluids, Forensic Sci 6 (1975) 137-144. [7] M.J. Auvdel, Amylase levels in semen and saliva stains, J Forensic Sci 31 (1986) 426-431. [8] S.M. Keating, D.F. Higgs, The detection of amylase on swabs from sexual assault cases, J Forensic Sci Soc 34 (1994) 89-93. [9] P.J. Ablett, The identification of the precise conditions for seminal acid phosphatase (SAP) and vaginal acid phosphatase (VAP) separation by isoelectric focusing patterns, J Forensic Sci Soc 23 (1983) 255-256. [10] B.C. Pang, B.K. Cheung, Applicability of two commercially available kits for forensic identification of saliva stains, J Forensic Sci 53 (2008) 1117-1122. [11] S. Kaye, Acid phosphatase test for identification of seminal stains, J Lab Clin Med 34 (1949) 728-732. [12] P. Redhead, M.K. Brown, The acid phosphatase test two minute cut-off: an insufficient time to detect some semen stains, Sci Justice 53 (2013) 187-191. [13] D.G. Casey, J. Price, The sensitivity and specificity of the RSID-saliva kit for the detection of human salivary amylase in the Forensic Science Laboratory, Dublin, Ireland, Forensic Sci Int 194 (2010) 67-71. [14] T. Akutsu, K. Watanabe, K. Sakurada, Specificity, sensitivity, and operability of RSID-urine for forensic identification of urine: comparison with ELISA for Tamm-Horsfall protein, J Forensic Sci 57 (2012) 1570-1573. [15] J.P. Simich, S.L. Morris, R.L. Klick, K. Rittenhouse-Diakun, Validation of the use of a commercially available kit for the identification of prostate specific antigen (PSA) in semen stains, J Forensic Sci 44 (1999) 1229-1231. [16] A. Misencik, D. Laux, Validation study of the Seratec HemDirect hemoglobin assay for the forensic identification of human blood, MAFS Newslett 36 (2007) 18-26. [17] S. Johnston, J. Newman, R. Frappier, Validation study of the Abacus Diagnostics ABAcard® Hematrace® membrane test for the forensic dentification of human blood, Can Soc Forensic Sci J 36 (2003) 173-183. [18] B.A. Schweers, J. Old, P.W. Boonlayangoor, K.A. Reich, Developmental validation of a novel lateral flow strip test for rapid identification of human blood (Rapid Stain Identification--Blood), Forensic Sci Int Genet 2 (2008) 243-247. [19] M.M. Hobbs, M.J. Steiner, K.D. Rich, M.F. Gallo, A. Alam, M. Rahman, P. Menezes, T. Chipato, L. Warner, M. Macaluso, Good performance of rapid prostate-specific antigen test for detection of semen exposure in women: implications for qualitative research, Sex Transm Dis 36 (2009) 501-506. [20] O. Gartside, J. Brewer, C. Strong, Estimation of Prostate-Specific Antigen (PSA) Extraction Efficiency from Forensic Samples Using the SERATEC® PSA SEMIQUANT Membrane Test, Forensic Sci Com 5 (2003). [21] S. Schmidt, M. Franke, J. Lehmann, T. Loch, M. Stockle, K. Weichert-Jacobsen, Prostate-specific antigen in female urine: a prospective study involving 217 women, Urology 57 (2001) 717-720. [22] P. Lunetta, H. Sippel, Positive prostate-specific antigen (PSA) reaction in post-mortem rectal swabs: a cautionary note, J Forensic Leg Med 16 (2009) 397-399. [23] H. Graves, Non prostatic sources of protein-specific antigen: a steroid hormone dependent phenomenon, Clin Chem 41 (1995) 7-9. [24] H. Yu, E. Diamandis, Prostate specific antigen in milk of lactating women, Clin Chem 41 (1995). [25] S.E. Bitner, False positives observed on the Seratec(R) PSA SemiQuant Cassette Test with condom lubricants, J Forensic Sci 57 (2012) 1545-1548. [26] B.C. Pang, B.K. Cheung, Identification of human semenogelin in membrane strip test as an alternative method for the detection of semen, Forensic Sci Int 169 (2007) 27-31. [27] E.S. Boward, S.L. Wilson, A comparison of ABAcard((R)) p30 and RSID-Semen test kits for forensic semen identification, J Forensic Leg Med 20 (2013) 1126-1130. [28] D.J. Baker, E.A. Grimes, A.J. Hopwood, D-dimer assays for the identification of menstrual blood, Forensic Sci Int 212 (2011) 210-214. [29] H. Holtkotter, L. Dierig, M. Schurenkamp, U. Sibbing, H. Pfeiffer, M. Vennemann, Validation of an immunochromatographic D-dimer test to presumptively identify menstrual fluid in forensic exhibits, Int J Legal Med 129 (2015) 37-41. [30] M.J. Costa, T. Tadros, E. Tackett, Z. Naib, Vaginocervical cytology in victims of sexual assault, Diagn Cytopathol 7 (1991) 337-340. [31] J.P. Allery, N. Telmon, R. Mieusset, A. Blanc, D. Rouge, Cytological detection of spermatozoa: comparison of three staining methods, J Forensic Sci 46 (2001) 349-351. [32] A. De Moors, T. Georgalis, G. Armstrong, J. Modler, C.J. Fregeau, Sperm Hy-Liter: an effective tool for the detection of spermatozoa in sexual assault exhibits, Forensic Sci Int Genet 7 (2013) 367-379. [33] A. Takamura, K. Watanabe, T. Akutsu, Development of a quantitative validation method for forensic investigation of human spermatozoa using a commercial fluorescence staining kit (SPERM HY-LITER Express), Int J Legal Med 130 (2016) 1421-1429. [34] B. Randall, Glycogenated squamous epithelial cells as a marker of foreign body penetration in sexual assault, J Forensic Sci 33 (1988) 511-514. [35] E.L. Jones, Jr., J.A. Leon, Lugol's test reexamined again: buccal cells, J Forensic Sci 49 (2004) 64-67. [36] R. Hausmann, C. Pregler, B. Schellmann, The value of the Lugol's iodine staining technique for the identification of vaginal epithelial cells, Int J Legal Med 106 (1994) 298-301. [37] R. Hausmann, B. Schellmann, Forensic value of the Lugol's staining method: further studies on glycogenated epithelium in the male urinary tract, Int J Legal Med 107 (1994) 147-151. [38] C.E. French, C.G. Jensen, S.K. Vintiner, D.A. Elliot, S.R. McGlashan, A novel histological technique for distinguishing between epithelial cells in forensic casework, Forensic Sci Int 178 (2008) 1-6. [39] R.I. Fleming, S. Harbison, The use of bacteria for the identification of vaginal secretions, Forensic Sci Int Genet 4 (2010) 311-315. [40] T. Akutsu, H. Motani, K. Watanabe, H. Iwase, K. Sakurada, Detection of bacterial 16S ribosomal RNA genes for forensic identification of vaginal fluid, Leg Med (Tokyo) 14 (2012) 160-162. [41] S. Giampaoli, A. Berti, F. Valeriani, G. Gianfranceschi, A. Piccolella, L. Buggiotti, C. Rapone, A. Valentini, L. Ripani, V. Romano Spica, Molecular identification of vaginal fluid by microbial signature, Forensic Sci Int Genet 6 (2012) 559-564. [42] M. Doi, S. Gamo, T. Okiura, H. Nishimukai, M. Asano, A simple identification method for vaginal secretions using relative quantification of Lactobacillus DNA, Forensic Sci Int Genet 12 (2014) 93-99. [43] H. Nakanishi, A. Kido, T. Ohmori, A. Takada, M. Hara, N. Adachi, K. Saito, A novel method for the identification of saliva by detecting oral streptococci using PCR, Forensic Sci Int 183 (2009) 20-23. [44] C.C. Benschop, F.C. Quaak, M.E. Boon, T. Sijen, I. Kuiper, Vaginal microbial flora analysis by next generation sequencing and microarrays; can microbes indicate vaginal origin in a forensic context?, Int J Legal Med 126 (2012) 303-310. [45] M. Bauer, A. Kraus, D. Patzelt, Detection of epithelial cells in dried blood stains by reverse transcriptase-polymerase chain reaction, J Forensic Sci 44 (1999) 1232-1236. [46] F. Kohlmeier, P.M. Schneider, Successful mRNA profiling of 23 years old blood stains, Forensic Sci Int Genet 6 (2012) 274-276. [47] M. Alvarez, J. Juusola, J. Ballantyne, An mRNA and DNA co-isolation method for forensic casework samples, Anal Biochem 335 (2004) 289-298. [48] A. Bowden, R. Fleming, S. Harbison, A method for DNA and RNA co-extraction for use on forensic samples using the Promega DNA IQ system, Forensic Sci Int Genet 5 (2011) 64-68. [49] Y. Xu, J. Xie, Y. Cao, H. Zhou, Y. Ping, L. Chen, L. Gu, W. Hu, G. Bi, J. Ge, X. Chen, Z. Zhao, Development of highly sensitive and specific mRNA multiplex system (XCYR1) for forensic human body fluids and tissues identification, PLoS One 9 (2014) e100123. [50] A. Lindenbergh, M. de Pagter, G. Ramdayal, M. Visser, D. Zubakov, M. Kayser, T. Sijen, A multiplex (m)RNA-profiling system for the forensic identification of body fluids and contact traces, Forensic Sci Int Genet 6 (2012) 565-577. [51] S.M. Park, S.Y. Park, J.H. Kim, T.W. Kang, J.L. Park, K.M. Woo, J.S. Kim, H.C. Lee, S.Y. Kim, S.H. Lee, Genome-wide mRNA profiling and multiplex quantitative RT-PCR for forensic body fluid identification, Forensic Sci Int Genet 7 (2013) 143-150. [52] M.L. Richard, K.A. Harper, R.L. Craig, A.J. Onorato, J.M. Robertson, J. Donfack, Evaluation of mRNA marker specificity for the identification of five human body fluids by capillary electrophoresis, Forensic Sci Int Genet 6 (2012) 452-460. [53] D. Zubakov, M. Kokshoorn, A. Kloosterman, M. Kayser, New markers for old stains: stable mRNA markers for blood and saliva identification from up to 16-year-old stains, Int J Legal Med 123 (2009) 71-74. [54] A. Lindenbergh, M. van den Berge, R.J. Oostra, C. Cleypool, A. Bruggink, A. Kloosterman, T. Sijen, Development of a mRNA profiling multiplex for the inference of organ tissues, Int J Legal Med 127 (2013) 891-900. [55] J. Juusola, J. Ballantyne, Multiplex mRNA profiling for the identification of body fluids, Forensic Sci Int 152 (2005) 1-12. [56] S.A. Bustin, Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays, J Mol Endocrinol 25 (2000) 169-193. [57] C. Nussbaumer, E. Gharehbaghi-Schnell, I. Korschineck, Messenger RNA profiling: a novel method for body fluid identification by real-time PCR, Forensic Sci Int 157 (2006) 181-186. [58] J. Juusola, J. Ballantyne, mRNA profiling for body fluid identification by multiplex quantitative RT-PCR, J Forensic Sci 52 (2007) 1252-1262. [59] C.W. Su, C.Y. Li, J.C. Lee, D.D. Ji, S.Y. Li, B. Daniel, D. Syndercombe-Court, A. Linacre, H.M. Hsieh, A novel application of real-time RT-LAMP for body fluid identification: using HBB detection as the model, Forensic Sci Med Pathol 11 (2015) 208-215. [60] K. Sakurada, T. Akutsu, K. Watanabe, Y. Fujinami, M. Yoshino, Expression of statherin mRNA and protein in nasal and vaginal secretions, Leg Med (Tokyo) 13 (2011) 309-313. [61] C. Cossu, U. Germann, A. Kratzer, W. Baer, C. Haas, How specific are the vaginal secretion mRNA markers HBD1 and MUC4, Forensic Sci Int Genet Suppl Ser 2 (2009) 536-537. [62] D.P. Bartel, MicroRNAs: genomics, biogenesis, mechanism, and function, Cell 116 (2004) 281-297. [63] I. Bentwich, A. Avniel, Y. Karov, R. Aharonov, S. Gilad, O. Barad, A. Barzilai, P. Einat, U. Einav, E. Meiri, E. Sharon, Y. Spector, Z. Bentwich, Identification of hundreds of conserved and nonconserved human microRNAs, Nat Genet 37 (2005) 766-770. [64] R.C. Friedman, K.K. Farh, C.B. Burge, D.P. Bartel, Most mammalian mRNAs are conserved targets of microRNAs, Genome Res 19 (2009) 92-105. [65] M. Lagos-Quintana, R. Rauhut, A. Yalcin, J. Meyer, W. Lendeckel, T. Tuschl, Identification of tissue-specific microRNAs from mouse, Curr Biol 12 (2002) 735-739. [66] E.K. Hanson, H. Lubenow, J. Ballantyne, Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs, Anal Biochem 387 (2009) 303-314. [67] D. Zubakov, A.W. Boersma, Y. Choi, P.F. van Kuijk, E.A. Wiemer, M. Kayser, MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation, Int J Legal Med 124 (2010) 217-226. [68] J.L. Park, S.M. Park, O.H. Kwon, H.C. Lee, J.Y. Kim, H.H. Seok, W.S. Lee, S.H. Lee, Y.S. Kim, K.M. Woo, S.Y. Kim, Microarray screening and qRT-PCR evaluation of microRNA markers for forensic body fluid identification, Electrophoresis 35 (2014) 3062-3068. [69] M. Sirker, R. Fimmers, P.M. Schneider, I. Gomes, Evaluating the forensic application of 19 target microRNAs as biomarkers in body fluid and tissue identification, Forensic Sci Int Genet 27 (2017) 41-49. [70] A. Bird, Perceptions of epigenetics, Nature 447 (2007) 396-398. [71] M. Nouzova, N. Holtan, M.M. Oshiro, R.B. Isett, J.L. Munoz-Rodriguez, A.F. List, M.L. Narro, S.J. Miller, N.C. Merchant, B.W. Futscher, Epigenomic changes during leukemia cell differentiation: analysis of histone acetylation and cytosine methylation using CpG island microarrays, J Pharmacol Exp Ther 311 (2004) 968-981. [72] S. Rothenburg, F. Koch-Nolte, H.G. Thiele, F. Haag, DNA methylation contributes to tissue- and allele-specific expression of the T-cell differentiation marker RT6, Immunogenetics 52 (2001) 231-241. [73] T. Isagawa, G. Nagae, N. Shiraki, T. Fujita, N. Sato, S. Ishikawa, S. Kume, H. Aburatani, DNA methylation profiling of embryonic stem cell differentiation into the three germ layers, PLoS One 6 (2011) e26052. [74] E. Kitamura, J. Igarashi, A. Morohashi, N. Hida, T. Oinuma, N. Nemoto, F. Song, S. Ghosh, W.A. Held, C. Yoshida-Noro, H. Nagase, Analysis of tissue-specific differentially methylated regions (TDMs) in humans, Genomics 89 (2007) 326-337. [75] R. Illingworth, A. Kerr, D. Desousa, H. Jorgensen, P. Ellis, J. Stalker, D. Jackson, C. Clee, R. Plumb, J. Rogers, S. Humphray, T. Cox, C. Langford, A. Bird, A novel CpG island set identifies tissue-specific methylation at developmental gene loci, PLoS Biol 6 (2008) e22. [76] H.Y. Lee, M.J. Park, A. Choi, J.H. An, W.I. Yang, K.J. Shin, Potential forensic application of DNA methylation profiling to body fluid identification, Int J Legal Med 126 (2012) 55-62. [77] J.H. An, A. Choi, K.J. Shin, W.I. Yang, H.Y. Lee, DNA methylation-specific multiplex assays for body fluid identification, Int J Legal Med 127 (2013) 35-43. [78] D. Frumkin, A. Wasserstrom, B. Budowle, A. Davidson, DNA methylation-based forensic tissue identification, Forensic Sci Int Genet 5 (2011) 517-524. [79] A. Wasserstrom, D. Frumkin, A. Davidson, M. Shpitzen, Y. Herman, R. Gafny, Demonstration of DSI-semen--A novel DNA methylation-based forensic semen identification assay, Forensic Sci Int Genet 7 (2013) 136-142. [80] S. Dedeurwaerder, M. Defrance, E. Calonne, H. Denis, C. Sotiriou, F. Fuks, Evaluation of the Infinium Methylation 450K technology, Epigenomics 3 (2011) 771-784. [81] H.Y. Lee, J.H. An, S.E. Jung, Y.N. Oh, E.Y. Lee, A. Choi, W.I. Yang, K.J. Shin, Genome-wide methylation profiling and a multiplex construction for the identification of body fluids using epigenetic markers, Forensic Sci Int Genet 17 (2015) 17-24. [82] J.L. Park, O.H. Kwon, J.H. Kim, H.S. Yoo, H.C. Lee, K.M. Woo, S.Y. Kim, S.H. Lee, Y.S. Kim, Identification of body fluid-specific DNA methylation markers for use in forensic science, Forensic Sci Int Genet 13 (2014) 147-153. [83] S. Forat, B. Huettel, R. Reinhardt, R. Fimmers, G. Haidl, D. Denschlag, K. Olek, Methylation Markers for the Identification of Body Fluids and Tissues from Forensic Trace Evidence, PLoS One 11 (2016) e0147973. [84] H. Hayatsu, M. Shiraishi, K. Negishi, Bisulfite modification for analysis of DNA methylation, Curr Protoc Nucleic Acid Chem Chapter 6 (2008) Unit 6 10. [85] T. Madi, K. Balamurugan, R. Bombardi, G. Duncan, B. McCord, The determination of tissue-specific DNA methylation patterns in forensic biofluids using bisulfite modification and pyrosequencing, Electrophoresis 33 (2012) 1736-1745. [86] K. Balamurugan, R. Bombardi, G. Duncan, B. McCord, Identification of spermatozoa by tissue-specific differential DNA methylation using bisulfite modification and pyrosequencing, Electrophoresis 35 (2014) 3079-3086. [87] H.Y. Lee, S.E. Jung, E.H. Lee, W.I. Yang, K.J. Shin, DNA methylation profiling for a confirmatory test for blood, saliva, semen, vaginal fluid and menstrual blood, Forensic Sci Int Genet 24 (2016) 75-82. [88] A. Vidaki, B. Daniel, D.S. Court, Forensic DNA methylation profiling--potential opportunities and challenges, Forensic Sci Int Genet 7 (2013) 499-507. [89] A.A. Melnikov, R.B. Gartenhaus, A.S. Levenson, N.A. Motchoulskaia, V.V. Levenson Chernokhvostov, MSRE-PCR for analysis of gene-specific DNA methylation, Nucleic Acids Res 33 (2005) e93. [90] S.A. Farkas, N. Milutin-Gasperov, M. Grce, T.K. Nilsson, Genome-wide DNA methylation assay reveals novel candidate biomarker genes in cervical cancer, Epigenetics 8 (2013) 1213-1225. [91] N.Y. Souren, P. Lutsik, G. Gasparoni, S. Tierling, J. Gries, M. Riemenschneider, J.P. Fryns, C. Derom, M.P. Zeegers, J. Walter, Adult monozygotic twins discordant for intra-uterine growth have indistinguishable genome-wide DNA methylation profiles, Genome Biol 14 (2013) R44. [92] R.C. Slieker, S.D. Bos, J.J. Goeman, J.V. Bovee, R.P. Talens, R. van der Breggen, H.E. Suchiman, E.W. Lameijer, H. Putter, E.B. van den Akker, Y. Zhang, J.W. Jukema, P.E. Slagboom, I. Meulenbelt, B.T. Heijmans, Identification and systematic annotation of tissue-specific differentially methylated regions using the Illumina 450k array, Epigenetics Chromatin 6 (2013) 26. [93] L.E. Reinius, N. Acevedo, M. Joerink, G. Pershagen, S.E. Dahlen, D. Greco, C. Soderhall, A. Scheynius, J. Kere, Differential DNA methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility, PLoS One 7 (2012) e41361. [94] C. Krausz, J. Sandoval, S. Sayols, C. Chianese, C. Giachini, H. Heyn, M. Esteller, Novel insights into DNA methylation features in spermatozoa: stability and peculiarities, PLoS One 7 (2012) e44479. [95] S.J. Clark, J. Harrison, C.L. Paul, M. Frommer, High sensitivity mapping of methylated cytosines, Nucleic Acids Res 22 (1994) 2990-2997. [96] M. Gardiner-Garden, M. Frommer, CpG islands in vertebrate genomes, J Mol Biol 196 (1987) 261-282. [97] J.G. Herman, J.R. Graff, S. Myohanen, B.D. Nelkin, S.B. Baylin, Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands, Proc Natl Acad Sci U S A 93 (1996) 9821-9826. [98] M.L. Gonzalgo, G. Liang, Methylation-sensitive single-nucleotide primer extension (Ms-SNuPE) for quantitative measurement of DNA methylation, Nat Protoc 2 (2007) 1931-1936. [99] Z. Kaminsky, A. Petronis, Methylation SNaPshot: a method for the quantification of site-specific DNA methylation levels, Methods Mol Biol 507 (2009) 241-255. [100] C. Grunau, S.J. Clark, A. Rosenthal, Bisulfite genomic sequencing: systematic investigation of critical experimental parameters, Nucleic Acids Res 29 (2001) E65-65. [101] A. Untergasser, I. Cutcutache, T. Koressaar, J. Ye, B.C. Faircloth, M. Remm, S.G. Rozen, Primer3--new capabilities and interfaces, Nucleic Acids Res 40 (2012) e115. [102] M. van den Berge, B. Bhoelai, J. Harteveld, A. Matai, T. Sijen, Advancing forensic RNA typing: On non-target secretions, a nasal mucosa marker, a differential co-extraction protocol and the sensitivity of DNA and RNA profiling, Forensic Sci Int Genet 20 (2016) 119-129. [103] K. Tanaka, A. Okamoto, Degradation of DNA by bisulfite treatment, Bioorg Med Chem Lett 17 (2007) 1912-1915. [104] J.J. Mulero, C.W. Chang, R.E. Lagace, D.Y. Wang, J.L. Bas, T.P. McMahon, L.K. Hennessy, Development and validation of the AmpFlSTR MiniFiler PCR Amplification Kit: a MiniSTR multiplex for the analysis of degraded and/or PCR inhibited DNA, J Forensic Sci 53 (2008) 838-852. [105] S. Flores, J. Sun, J. King, B. Budowle, Internal validation of the GlobalFiler Express PCR Amplification Kit for the direct amplification of reference DNA samples on a high-throughput automated workflow, Forensic Sci Int Genet 10 (2014) 33-39.
|