跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/08 01:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃韋翔
研究生(外文):Wei-Siang Huang
論文名稱:沙雷氏菌株促進纖維酶活性之酵素液的分離和其多酚氧化酶CueO的活性鑑定
論文名稱(外文):Partial purification of cellulose activity- promoting enzymes from Serratia sp. and characterization of the polyphenol oxidase CueO of this bacterium
指導教授:孟孟孝
口試委員:李重義楊昭順
口試日期:2017-07-25
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生物科技學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:73
中文關鍵詞:木質纖維素多酚氧化酶
外文關鍵詞:SerratiaCueO
相關次數:
  • 被引用被引用:0
  • 點閱點閱:128
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
木質纖維素 (lignocellulose) 其主要組成中:纖維素 (cellulose) 與半纖維素 (hemicellulose) 能被降解轉換為簡單的醣類,之後透過醱酵用以生產生物燃料 (biofuel)。但是其纖維素被木質素 (lignin) 包裹並與半纖維素形成共價結合,以及其複雜的結構使得木質纖維素不易被降解利用。本實驗室從腐爛木頭上,以系列稀釋並以鹼木素作為唯一碳源之培養基篩選到之菌種:Serratia sp.。將其接種於基本固態生長培養基上,發現Serratia sp.具有顯著之鹼木素利用性。將0.5 g/L鹼木素以及0.125 g/L甘蔗渣作為誘導物誘導相關氧化蛋白表現。三天之後破壞菌體結構,離心收取上清液並以2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) 進行活性分析,其活性值為69 U/L。分析其對源於Trichoderma reesei之市售纖維水解酶 (Tre cellulase) 水解甘蔗渣時的幫助性。在pH 6.0的環境下,加入50 mU Serratia酵素液與1.8 U Tre cellulase於5 ml緩衝液作用時,還原糖含量為0.92 mg/ml,比未添加酵素液時提高了2.7倍。藉由硫酸銨沉澱、凝膠過濾層析以及陰離子交換層析純化之酵素液,由聚丙醯胺膠體分析,仍舊具有許多雜蛋白。Serratia sp.具有一多酚氧化酶CueO,推斷其為可能之相關酵素。將此段基因選殖至pETDuet-1載體中,於大腸桿菌E. coli BL21 (DE3) 中表現。發現純化之CueO,在相同條件下對Tre cellulose水解甘蔗渣時不具有幫助性。多酚氧化酶亦具有染劑脫色的能力。在pH 6.0的環境下,aniline blue與methyl blue於隔夜後,其脫色的比例達到91%與92%。在pH 8.0的環境下,remazol brilliant blue R於隔夜後,其脫色的比例達到62%。顯示其CueO具有染劑脫色之潛力。
Lignocelluloses contain cellulose and hemicellulose which can be hydrolyzed into simple sugars suitable for the production of biofuels by fermentation. However, cellulose is wrapped by lignin, in turn bound covalently to hemicelluloses; this complex structure makes lignocelluloses hard to be degraded. A strain of Serratia sp. from a piece of rotting wood was isolated using agar plates with alkaline lignin as the sole carbon source in this study. This strain grows fast in alkaline lignin-containing minimal medium. 0.5 g/L alkaline lignin and 0.125 g/L bagasse were used as inducers to induce the oxidative enzyme activity of Serratia sp.. After three day culture, the cell was disrupted, the supernatant was collected by centrifugation and the activity was analyzed by using ABTS as the substrate. The activity was 69 U/L. The hydrolysis of sugarcane bagasse by Trichoderma reesei cellulases (Tre cellulases) in the presence or absence of the Serratia crude enzyme was analyzed. At pH 6.0, the addition of 50 mU Serratia enzyme into 1.8 U Tre cellulases increase the content of reducing sugar by 2.7 times compared with the reaction with Tre cellulases alone. The enzyme preparation after purification steps of ammonium sulfate precipitation, gel filtration chromatography and anion exchange chromatography still contain many proteins bands on SDS-PAGE. Serratia sp. has a polyphenol oxidase CueO that was thought to be the enzyme promoting the hydrolysis activity of Tre cellulases. The CueO gene was cloned into pETDuet-1 vector and the recombinant protein was expressed in E. coli BL21 (DE3). Nonetheless, the purified recombinant Serratia CueO was not able to promote the hydrolysis of bagasse catalyzed by Tre cellulases as did the crude Sarratia enzyme preparation. On the other hand, the recombinant CueO had the ability to decolorize several dyes. At pH 6.0, aniline blue and methyl blue could be decolorized 91% and 92% after an overnight reaction. At pH 8.0, remazol brilliant blue R was decolorized 62% after an overnight reaction, showing that Serratia CueO has the potential for bleaching of the dyes.
中文摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vi

第一章 緒言 1
一、 生質能源 (biomass energy) 1
二、 木質纖維素 (lignocellulose) 2
三、 木質素的降解 3
實驗目的 6

第二章 材料與方法 7
一、 使用之菌株與載體 7
二、 培養基組成 7
三、 菌株篩選 9
四、 菌種身份鑑定 10
五、 菌種對鹼木素之利用性 12
六、 活性蛋白之表達 12
七、 蛋白氧化活性之測定 12
八、 蛋白質定量 13
九、 不同比例之誘導物對蛋白活性之影響 13
十、 測定與纖維酶水解甘蔗渣時之幫助性 13
十一、 DNS法測定還原糖含量 14
十二、 與協助纖維酶水解相關之活性蛋白的純化 14
十三、 聚丙醯胺膠體電泳 17
十四、 蛋白之活性染色 17
十五、 純化蛋白性質之分析 18
十六、 Serratia sp.多酚氧化酶基因之選殖 19
十七、 多酚氧化酶之表達 22
十八、 多酚氧化酶之純化 22
十九、 多酚氧化酶對染劑脫色之影響 23

第三章 結果 27
一、 菌株身份鑑定 27
二、 蛋白活性分析 27
三、 與協助纖維酶水解相關之活性蛋白的純化 28
四、 純化蛋白性質之分析 29
五、 多酚氧化酶之表達與純化 30
六、 多酚氧化酶對染劑漂白之影響 31

第四章 討論 32
一、 菌株篩選 32
二、 蛋白之活性分析以及測定與纖維水解酶共同作用時的幫助性 32
三、 Serratia sp.之CueO對於染劑漂白之應用性 34

第五章 參考文獻 61

第六章 附錄 66
附錄一,FavorPrepTM GEL/PCR Purification Kit 66
附錄二,FavorPrepTM Plasmid Extraction Mini Kit 67
Abadulla E., Tzanov T., Costa S., Robra K.H., Cavaco-Paulo A., Gubitz G.M., 2000. Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta. Applied and Environmental Microbiology 66, 3357-3362.

Ayeni A.O., Adeeyo O.A., Oresegun O.M., Oladimeji T.E., 2015. Compositional analysis of lignocellulosic materials: Evaluation of an economically viable method suitable for woody and non-woody biomass. American Journal of Engineering Research 4, 14-19.

Bi R., 2016. Lignocellulose degradation by soil micro‐organisms. TRITA-CHE-report.

Bradford M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248-254.

Bugg T.D.H., Ahmad M., Hardiman E.M., Rahmanpour R., 2011. Pathways for degradation of lignin in bacteria and fungi. Natural Product Reports 28, 1883-1896.

Call H.P., Mücke I., 1997. History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems. Journal of Biotechnology, 163-202.

Cardona C.A., Quintero J.A., Paz I.C., 2010. Production of bioethanol from sugarcane bagasse: Status and perspectives. Bioresource Technology 101, 4754-4766.

Chanton P.R., Kostka J., Hammer B., Schadt C., 2014. Calbiration of phenol oxidase measurement in acidic wetland environments. Georgia Institute of Technology.

Chen J.L., Chen P.F., Wang H.M., 2014. Decreased complexity of glucose dynamics in diabetes: evidence from multiscale entropy analysis of continuous glucose monitoring system data. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 307, R179-183.

Dillon R.J., Vennard C.T., Charnley A.K., 2002. A note: gut bacteria produce components of a locust cohesion pheromone. Journal of Applied Microbiology 92, 759-763.

Djoko K.Y., Chong L.X., Wedd A.G., Xiao Z., 2010. Reaction mechanisms of the multicopper oxidase CueO from Escherichia coli support its functional role as a cuprous oxidase. Journal of the American Chemical Society 132, 2005-2015.

Doyle W.A., Blodig W., Veitch N.C., Piontek K., Smith A.T., 1998. Two substrate interaction sites in lignin peroxidase revealed by site-directed mutagenesis. Biochemistry 37, 15097-15105.

Freudenberg K., 1966. Analytical and biochemical background of a constitutional scheme of lignin. Advances in Chemistry 59, 1-21.

Fujikawa K., Fort F.L., Samejima K., Sakamoto Y., 1993. Genotoxic potency in Drosophila melanogaster of selected aromatic amines and polycyclic aromatic hydrocarbons as assayed in the DNA repair test. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 290, 175-182.

Giardina P., Faraco V., Pezzella C., Piscitelli A., Vanhulle S., Sannia G., 2010. Laccases: a never-ending story. Cellular and Molecular Life Sciences 67, 369-385.
Gnansounou E., Dauriat A., 2005. Ethanol fuel from biomass: A review. Journal of Scientific & Industrial Research 64, 809-821.

Goldemberg J., 2008. The Brazilian biofuels industry. Biotechnology for Biofuels 1.

Grass G., Rensing C., 2001. CueO is a multi-copper oxidase that confers copper tolerance in Escherichia coli. Biochemical and Biophysical Research Communications 286, 902-908.

Gregg D.J., Saddler J.N., 1996. Factors affecting cellulose hydrolysis and the potential of enzyme recycle to enhance the efficiency of an integrated wood to ethanol process. Biotechnology and Bioengineering 51, 375-383.

Gunne M., Urlache V B., 2012. Characterization of the alkaline laccase Ssl1 from Streptomyces sviceus with unusual properties discovered by genome mining. Public Library of Science ONE 7(12).

Haars A., Chet I., Hüttermann A., 1981. Effect of phenolic compounds and tannin on growth and laccase activity of Fomes annosus. European Journal of Plant Pathology, 67-76.

Harmsen P.F.H., Huijgen W.J.J., López L.M.B., Bakker R.R.C., 2010. Literature review of physical and chemical pretreatment processes for lignocellulosic biomass. Food & Biobased Research.

Harvey P.J., Schoemaker H.E., Palmer J.M., 1987. Lignin degradation by white rot fungi. Plant, Cell and Environment, 709-714.

Hatakka A., 1994. Lignin-modifying enzymes fungi: production and role from selected white-rot in lignin degradation. FEMS Microbiology Reviews, 125-135.

Howard R.L., Abotsi E., Jansen van Rensburg E.L., Howard S., 2003. Lignocellulose biotechnology: issues of bioconversion and enzyme production. Journal of Biotechnology 2, 602-619.

International Energy Agency, 2007. World energy outlook 2007.

Jing D., 2010. Improving the simultaneous production of laccase and lignin peroxidase from Streptomyces lavendulae by medium optimization. Bioresource Technology 101, 7592-7597.

Jones S.M., Solomon E.I., 2015. Electron transfer and reaction mechanism of laccases. Cellular and Molecular Life Sciences 72, 869-883.

Kersten P.J., 1990. Glyoxal oxidase of Phanerochaete chrysosporium: its characterization and activation by lignin peroxidase. Proceedings of the National Academy of Sciences of the United States of America 87, 2936-2940.

Kim S., Dale B.E., 2004. Global potential bioethanol production from wasted crops and crop residues. Biomass and Bioenergy 26, 361-375.

Kim T.H., Kim J.S., Sunwoo C., Lee Y.Y., 2003. Pretreatment of corn stover by aqueous ammonia. Bioresource Technology 90, 39-47.

Kuhad R.C., Singh A., 2008. Lignocellulose biotechnology: Current and future prospects. Critical Reviews in Biotechnology 13, 151-172.

Kuhad R.C., Singh A., Eriksson K.E., 1997. Microorganisms and enzymes involved in the degradation of plant fiber cell walls. Advances in Biochemical Engineering/Biotechnology 57, 45-125.

Kunamneni A., Camarero S., Garcia-Burgos C., Plou F.J., Ballesteros A., Alcalde M., 2008. Engineering and applications of fungal laccases for organic synthesis. Microbial Cell Factories 7, 1475-2859.

Larson E.D., 2008. Biofuel production technologies: status, prospects and implications for trade and development. United Nations Conference on Trade and Development.

Leonowicz A., Matuszewska A., Luterek J., Ziegenhagen D., Wojtas-Wasilewska M., Cho N.S., Hofrichter M., Rogalski J., 1999. Biodegradation of lignin by white rot fungi. Fungal Genetics and Biology 27, 175-185.

Leonowicz A., Trojanowski J., Orlicz B., 1978. Induction of laccase in Basidiomycetes: apparent activity of the inducible and constitutive forms of the enzyme with phenolic substrates. Acta Biochimica Polonica 25, 369-378.

Lyman R., 2016. Why renewable energy cannot replace fossil fuels by 2050. Friends of Science Calgary.
Madhavi V., Lele S.S., 2009. Laccase: Properties and applications. BioResources 4, 1694-1717.

Manangeeswaran M., Ramalingam V.V., Kumar K., Mohan N., 2007. Degradation of indulin, a kraft pine lignin, by Serratia marcescens. Journal of Environmental Science and Health, Part B, 42(3), 321-7.

Morozova O.V., Shumakovich G.P., Shleev S.V., Iaropolov A.I., 2007. Laccase-mediator systems and their applications: a review. Prikladnaia Biokhimiia i Mikrobiologiia 43, 583-597.

Muthukumarasamy N.P., Murugan S., 2014. Production, purification and application of bacterial laccase: A Review. Biotechnology 13, 196-205.

Paszczyński A., Crawford R.L., Huynh Van-Ba, 1988. Manganese peroxidase of Phanerochaete chrysosporium: Purification. Methods in Enzymology 161, 264-270.

Perestelo F., Falcon M.A., Camicero A., Rodriguez A., De la Fuente G., 1994. Limited degradation of industrial, synthetic and natural lignins by Serratia marcescens. Biotechnology Letters 16, 299-302.

Perez J., Martinez J. and de la Rubia T., 1996. Purification and Partial Characterization of a Laccase from the white rot fungus Phanerochaete flavido-alba. Appled and Environmental. Microbiology 62, 4263-4267.

Perez J., Munoz-Dorado J., de la Rubia T., Martinez J., 2002. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. International Microbiology 5, 53-63.

Platt M.W., Hadar Y., Henis Y., Chet I., 1983. Increased degradation of straw by Pleurotus ostreatus sp. 'florida'. European Journal of Applied Microbiology and Biotechnology, 140-142.

Roddy D.J., 2013. Biomass in a petrochemical world. Interface Focus 3.

Roig E., A bioplastic-based enzymatic system for decolourization of wastewater dyes: use of bacterial laccases inmmobilized on polyhydroxybutyrate beads. Instituto de Biologia Molecular y Celular.

Rodríguez-Couto S., 2017. Industrial and environmental applications of white-rot fungi. Mycosphere, 456-466.

Saha B.C., Yoshida T., Cotta M.A., Sonomoto K., 2013. Hydrothermal pretreatment and enzymatic saccharification of corn stover for efficient ethanol production. Industrial Crops and Products 44, 367-372.

Sainsbury P.D., Hardiman E.M., Ahmad M., Otani H., Seghezzi N., Eltis L.D., Bugg T.D., 2013. Breaking down lignin to high-value chemicals: the conversion of lignocellulose to vanillin in a gene deletion mutant of Rhodococcus jostii RHA1. American Chemical Society Chemical Biology 8, 2151-2156.

Sate Y., Wuli B., Sederoff R., Whetten R., 2001. Molecular cloning and expression of eight laccase cDNAs in loblolly pine (Pinus taeda). Journal of Plant Research 114, 147-155.

Shimada M., Akamtsu Y., Tokimatsu T., Mii K., Hattori T., 1997. Possible biochemical roles of oxalic acid as a low molecular weight compound involved in brown-rot and white-rot wood decays. Journal of Biotechnology 53, 103-113.

Singh S.K., Grass G., Rensing C., Montfort W.R., 2004. Cuprous oxidase activity of CueO from Escherichia coli. Journal of Bacteriology 186, 7815-7817.

Su J., Deng L., Huang L., Guo S., Liu F., He J., 2014. Catalytic oxidation of manganese(II) by multicopper oxidase CueO and characterization of the biogenic Mn oxide. Water Research 56, 304-313.

Thurston C.F., 1994. The structure and function of fungal laccases. Microbiology 140, 96-26.

Vares T., Kalsi M., Hatakka A., 1995. Lignin peroxidases, manganese peroxidases, and other ligninolytic enzymes produced by Phlebia radiata during solid-state fermentation of wheat straw. Applied and Environmental Microbiology 61, 3515-3520.

Webb A., Coates D., 2012. Biofuels and biodiversity. Secretariat of the Convention on Biological Diversity 65, 69.

Weisburg W.G., Barns S.M., Pelletier D.A., Lane D.J., 1991. 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology 173, 697-703.
Yuan X., Tian G., Zhao Y., Zhao L., Wang H., Ng T B., 2016. Biochemical characteristics of three laccase isoforms from the basidiomycete Pleurotus nebrodensis. Molecules 21(2), 203.

Zeng J., Lin X., Zhang J., Li X., Wong M.H., 2011. Oxidation of polycyclic aromatic hydrocarbons by the bacterial laccase CueO from E. coli. Applied Microbiology and Biotechnology 89, 1841-1849.

鄭宏德、江國瑛、蔡永興、張耀民、黃傳安、洪怡芳、邱文琳、李佩玲,2005,農業廢棄物產出、再利用情形調查與管 理制度建立計畫。

劉秀美、蔡馥嚀,2010,農業廢棄物生產木質分解酵素之研究。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top