跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/06 21:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:姜智益
研究生(外文):Zhi-Yi Jiang
論文名稱:蝴蝶蘭基因PhFYF1與PhFYF2異位表現於阿拉伯芥中之功能性分析與影響
論文名稱(外文):Characterization and functional analysis of PhFYF1 and PhFYF2 genes of Phalaenopsis in Arabidopsis
指導教授:楊長賢楊長賢引用關係
指導教授(外文):Chang-Hsien Yang
口試委員:李勇毅王強生
口試委員(外文):Yung-Yi LiChiang-Sheng Wang
口試日期:2017-07-20
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生物科技學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:46
中文關鍵詞:阿拉伯芥蝴蝶蘭乙烯老化脫落
外文關鍵詞:Arabidopsis thalianaPhalaenopsisEthyleneSenescenceAbscissionFOREVER YOUNG FLOWER
相關次數:
  • 被引用被引用:0
  • 點閱點閱:144
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
已知MADS-box基因FOREVER YOUNG FLOWER (FYF)為一阿拉伯芥中調控花朵老化脫落的轉錄抑制子,當FYF在阿拉伯芥中進行異位表現時,會抑制乙烯訊息傳遞路徑下游基因EDFs (ETHYLENE RESPONSE DNA BINDING FACTOR),和離層形成相關基因BOP1/2 (BLADE-ON-PETIOLE)與IDA (INFLORESCENCE DEFICIENT IN ABSCISSION)的表現,導致阿拉伯芥基因轉殖株的花朵延遲老化凋落。本研究利用AtFYF胺基酸序列作為模版進行tblastn,從蝴蝶蘭V3大白花中找到序列相似的兩個AtFYF同源基因PhFYF1/2。在V3蝴蝶蘭中,PhFYF1/2主要表現在1公分的小花苞中。為了進一步探討PhFYF1/2的主要功能,利用35S 啟動子在阿拉伯芥中異位表現PhFYF1/2、PhFYF1/2+SRDX(含強抑制區域)和PhFYF1/2+VP16(含強激活區域)。結果發現異位表現PhFYF1/2、PhFYF1/2+SRDX和PhFYF1/2+VP16之阿拉伯芥基因轉殖株都會促進開花基因FT (FLOWER LOCUS T)表現而提早開花。並且在35S::PhFYF1/2、35S::PhFYF1/2+SRDX阿拉伯芥基因轉殖株中都有花朵延緩老化脫落的性狀出現。即使在經過外源性乙烯處理後,基因轉殖株仍然具有延緩花朵老化脫落的性狀,表示其為乙烯不敏感型植株。利用即時定量 PCR分析基因表現量後發現,在35S::PhFYF1/2 和 35S::PhFYF1/2+SRDX阿拉伯芥基因轉殖株中,乙烯訊息傳遞路徑下游與離層形成相關基因ERF1 (ETHYLENE RESPONSE FACTOR1)、EDF1/2/3/4、BOP1/2和IDA的表現量都有不同程度的抑制情形。從上述結果得知,PhFYF1/2在阿拉伯芥中應該和AtFYF一樣,作為一個轉錄抑制子去調控花朵的老化與脫落。未來會進一步探討PhFYF1/2在V3蝴蝶蘭中所扮演的角色,透過短暫大量表現和VIGS技術分析PhFYF1/2的功能與作用機制。藉由這些試驗,可以更了解PhFYF1/2在調控蘭花老化脫落過程中的主要功能。
MADS-box gene FOREVER YOUNG FLOWER (FYF) had been reported to be a transcriptional repressor that can regulate flower senescence and abscission. Ectopic expression of FYF significantly delayed flower senescence and abscission by repressing ethylene signaling pathway downstream gene EDFs (ETHYLENE RESPONSE DNA BINDING FACTOR), and abscission-associated genes BOP1/2 (BLADE-ON-PETIOLE) and IDA (INFLORESCENCE DEFICIENT IN ABSCISSION) in transgenic Arabidopsis. In this study, protein sequence of AtFYF was used for tblastn. Two AtFYF homologous PhFYF1/2 were identified from Phalaenopsis Sogo Yukidian V3. In P. Sogo Yukidian V3, PhFYF1/2 major expressed in the 1 cm flower bud. To explore the function of PhFYF1/2, 35S promoter was used to ectopic express PhFYF1/2, PhFYF1/2+SRDX (containing a strong repressor motif) and PhFYF1/2+VP16 (containing a activation domain) in transgenic Arabidopsis. Early flowering caused by promoting flowering gene FT was observed when ectopic expressed PhFYF1/2, PhFYF1/2+SRDX and PhFYF1/2+VP16 in transgenic Arabidopsis. Delaying flower senescence and abscission were observed in 35S::PhFYF1/2 and 35S::PhFYF1/2+SRDX transgenic Arabidopsis. After exogenous ethylene treatment, the delaying flower senescence and abscission were still found in transgenic Arabidopsis, It means the transgenic Arabidopsis were ethylene insensitive. The expression of ethylene signaling pathway downstream genes ERF1 (ETHYLENE RESPONSE FACTOR1), EDF1/2/3/4 and abscission associated genes BOP1/2 and IDA were repressed in 35S::PhFYF1/2 and 35S::PhFYF1/2+SRDX transgenic Arabidopsis by real-time PCR. These results indicated that PhFYF1/2 may play as a transcriptional repressor in regulating flower senescence and abscission in Arabidopsis. In the future, the role of PhFYF1/2 in P. Sogo Yukidian V3 and the mechanism will be further studied by transient expression assay and VIGS analysis. By these experiments, the function of PhFYF1/2 in regulating orchids flower senescence and abscission will be well understood.
摘要 i
Abstract ii
目錄 iii
前言 1
材料方法 4
結果 13
討論 17
參考文獻 21
圖表附錄 25
表1、本論文所使用之引子(Primer)列表 25
表2、異位表現PhFYF1/2、PhFYF1/2+SRDX和PhFYF1/2+VP16轉基因植物開花時間及葉片數統計 27
圖1. 阿拉伯芥(Arabidopsis thaliana)與蝴蝶蘭(Phalaenopsis Sogo Yukidian V3 )中FYF基因的親緣演化樹狀圖 28
圖2. 阿拉伯芥與V3蝴蝶蘭中FYF基因之胺基酸序列相似度比對 29
圖3. PhFYF1/2在V3蝴蝶蘭花朵各時期和各部位之表現情況 30
圖4. 目標基因構築流程電泳圖 31
圖5. 異位表現PhFYF1/2和PhFYF1/2+SRDX與PhFYF1+VP16導致基因轉殖株提早開花 32
圖6. 異位表現PhFYF1和PhFYF1+SRDX導致基因轉殖株出現花朵延緩老化脫落的性狀 33
圖7. 異位表現PhFYF2和PhFYF2+SRDX導致基因轉殖株出現花朵延緩老化脫落的性狀 34
圖8. 異位表現PhFYF1/2、PhFYF1/2+SRDX之基因轉殖株為乙烯不敏感型植株 35
圖9. 異位表現PhFYF1和PhFYF1+SRDX之基因轉殖株中,離層形成相關基因IDA和乙烯訊息傳遞路徑下游基因ERF1、EDF1/2/4表現量受到抑制 36
圖10. 異位表現PhFYF2和PhFYF2+SRDX之基因轉殖株中,離層形成相關基因BOP1/2和乙烯訊息傳遞路徑下游基因ERF1、EDF2/3/4表現量受到抑制 37
圖11. 異位表現PhFYF1/2、PhFYF+SRDX於阿拉伯芥時,乙烯訊息傳遞路徑下游基因ERF1、EDF基因群以及離層形成相關基因BOP1/2和IDA的表現情形會受到抑制而導致植株花朵延緩老化及脫落。 38
附圖1. 利用AtFYF胺基酸序列為模版,於蘭花基因資料庫Orchidstra 2.0進行tblastn找到之AtFYF相似序列PATC136427和PATC154491 39
附圖2. PhFYF1核苷酸及胺基酸序列 40
附圖3. PhFYF2核苷酸及胺基酸序列 41
附圖4. pGEM®-T Easy vector圖譜 42
附圖5. pEpyon-22K之圖譜 43
附圖6. pEpyon-2aK之圖譜 44
附圖7. pEpyon-2bK之圖譜 45
附圖8. Gen-KB DNA Ladder 46
許巍瀚,2012。阿拉伯芥中調控細胞分裂與配子體發育相關基因之功能性分析。國立中興大學生物科技學研究所。博士論文。
陳偉翰,2016。FYF藉由調控EDF基因控制阿拉伯芥花器老化和脫落及蘭花中FYF、SVP同源基因的功能性分析。國立中興大學生物科技學研究所。博士論文。
蘇鴻傑與陳逸忠,1995。太魯閣國家公園蘭科植物群落調查。研究報告。
Aalen, R.B., Wildhagen, M., Sto, I.M., and Butenko, M.A. (2013). IDA: a peptide ligand regulating cell separation processes in Arabidopsis. Journal of Experimental Botany 64, 5253-5261.
Adamczyk, B.J., Lehti-Shiu, M.D., and Fernandez, D.E. (2007). The MADS domain factors AGL15 and AGL18 act redundantly as repressors of the floral transition in Arabidopsis. The Plant journal : for cell and molecular biology 50, 1007-1019.
Alonso, J.M., and Ecker, J.R. (2001). The ethylene pathway: a paradigm for plant hormone signaling and interaction. Science's STKE 70, re1.
Arora, A. (2005). Ethylene receptors and molecular mechanism of ethylene sensitivity in plants. Current science 89, 1348-1361.
Avila-Ospina, L., Moison, M., Yoshimoto, K., and Masclaux-Daubresse, C. (2014). Autophagy, plant senescence, and nutrient recycling. Journal of Experimental Botany 65, 3799-3811.
Bleecker, A.B., and Patterson, S.E. (1997). Last exit: senescence, abscission, and meristem arrest in Arabidopsis. The Plant Cell 9, 1169-1179.
Butenko, M.A., Patterson, S.E., Grini, P.E., Stenvik, G.E., Amundsen, S.S., Mandal, A., and Aalen, R.B. (2003). Inflorescence deficient in abscission controls floral organ abscission in Arabidopsis and identifies a novel family of putative ligands in plants. The Plant Cell 15, 2296-2307.
Chang, X., Donnelly, L., Sun, D., Rao, J., Reid, M.S., and Jiang, C.Z. (2014). A Petunia homeodomain-leucine zipper protein, PhHD-Zip, plays an important role in flower senescence. PLOS One 9, e88320.
Chen, M.K., Hsu, W.H., Lee, P.F., Thiruvengadam, M., Chen, H.I., and Yang, C.H. (2011b). The MADS box gene, FOREVER YOUNG FLOWER, acts as a repressor controlling floral organ senescence and abscission in Arabidopsis. The Plant journal : for cell and molecular biology 68, 168-185.
Chen, W.H., Li, P.F., Chen, M.K., Lee, Y.I., and Yang, C.H. (2015). FOREVER YOUNG FLOWER Negatively Regulates Ethylene Response DNA-Binding Factors by Activating an Ethylene-Responsive Factor to Control Arabidopsis Floral Organ Senescence and Abscission. Plant Physiology 168, 1666-1683.
Chen, Y.F., Etheridge, N., and Schaller, G.E. (2005). Ethylene signal transduction. Annals of botany 95, 901-915.
Cho, S.K., Larue, C.T., Chevalier, D., Wang, H., Jinn, T.L., Zhang, S., and Walker, J.C. (2008). Regulation of floral organ abscission in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 105, 15629-15634.
Christenhusz, M.J.M., and Byng, J.W. (2016). The number of known plants species in the world and its annual increase. Phytotaxa 261, 201.
Fernandez, D.E., Heck, G.R., Perry, S.E., Patterson, S.E., Bleecker, A.B., and Fang, S.C. (2000). The Embryo MADS Domain Factor AGL15 Acts Postembryonically: Inhibition of Perianth Senescence and Abscission via Constitutive Expression. The Plant Cell 12, 183-197.
Fourquin, C., del Cerro, C., Victoria, F.C., Vialette-Guiraud, A., de Oliveira, A.C., and Ferrandiz, C. (2013). A change in SHATTERPROOF protein lies at the origin of a fruit morphological novelty and a new strategy for seed dispersal in medicago genus. Plant Physiology 162, 907-917.
Guo, H., and Ecker, J.R. (2004). The ethylene signaling pathway: new insights. Plant Biology 7, 40-49.
Hepworth, S.R., Zhang, Y., McKim, S., Li, X., and Haughn, G.W. (2005). BLADE-ON-PETIOLE-dependent signaling controls leaf and floral patterning in Arabidopsis. The Plant Cell 17, 1434-1448.
Iqbal, N., Khan, N.A., Ferrante, A., Trivellini, A., Francini, A., and Khan, M.I.R. (2017). Ethylene Role in Plant Growth, Development and Senescence: Interaction with Other Phytohormones. Plant Science 8, 475.
Jinn, T.L., Stone, J.M., and Walker, J.C. (2000). HAESA, an Arabidopsis leucine-rich repeat receptor kinase, controls floral organ abscission. Genes & Development.
Ju, C., Yoon, G.M., J.M., S., Lin, D.Y., Ying, Z.I., Chang, J., Garrett, W.M., Kessenbrock, M., Groth, G., Tucker, M.l., Cooper, B., Kieber, J.J., and Chang, C. (2012). CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis Proc. Natl. Acad. Sci. USA 109, 19486-19491.
Kaufmann, K., Melzer, R., and Theissen, G. (2005). MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene 347, 183-198.
Koyama, T. (2014). The roles of ethylene and transcription factors in the regulation of onset of leaf senescence. Plant Science 5, 650.
Krizek, B.A., and Fletcher, J.C. (2005). Molecular mechanisms of flower development: an armchair guide. Nature Reviews Genetics 6, 688-698.
Li, W., Ma, M., Feng, Y., Li, H., Wang, Y., Ma, Y., Li, M., An, F., and Guo, H. (2015). EIN2-directed translational regulation of ethylene signaling in Arabidopsis. Cell 163, 670-683.
Li, Z., Peng, J., Wen, X., and Guo, H. (2013). Ethylene-insensitive3 is a senescence-associated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis. The Plant Cell 25, 3311-3328.
Liljegren, S.J., Ditta, G.S., Eshed., Y., Savidge., B., Bowman, J.L., and Yanofsky, M.F. (2000). SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404, 766-770.
McKim, S.M., Stenvik, G.E., Butenko, M.A., Kristiansen, W., Cho, S.K., Hepworth, S.R., Aalen, R.B., and Haughn, G.W. (2008). The BLADE-ON-PETIOLE genes are essential for abscission zone formation in Arabidopsis. Development 135, 1537-1546.
Nakano, T., Fujisawa, M., Shima, Y., and Ito, Y. (2014). The AP2/ERF transcription factor SlERF52 functions in flower pedicel abscission in tomato. Journal of Experimental Botany 65, 3111-3119.
Ohme-Takagi, M., and Shinshi, H. (1995). Ethylene-lnducible DNA Binding Proteins That lnteract with an Ethylene-Responsive Element. The Plant Cell 7, 173-182.
Patterson, S.E., and Bleecker, A.B. (2004). Ethylene-dependent and -independent processes associated with floral organ abscission in Arabidopsis. Plant Physiology 134, 194-203.
Porat, R., Halevy, A.H., Serek, M., and Borochov, A. (1995). An increase in ethylene sensitivity following pollination is the initial event triggering an increase in ethylene production and enhanced senescence of Phalaenopsis orchid flowers. Physiologia Plantarum 93, 778–784.
Rogers, H., and Munne-Bosch, S. (2016). Production and Scavenging of Reactive Oxygen Species and Redox Signaling during Leaf and Flower Senescence: Similar But Different. Plant Physiology 171, 1560-1568.
Rogers, H.J. (2013). From models to ornamentals: how is flower senescence regulated? Plant molecular biology 82, 563-574.
Sekhon, R.S., Childs, K.L., Santoro, N., Foster, C.E., Buell, C.R., de Leon, N., and Kaeppler, S.M. (2012). Transcriptional and metabolic analysis of senescence induced by preventing pollination in maize. Plant Physiology 159, 1730-1744.
Theissen, G. (2001). Development of floral organ identity- stories from the MADS house. Plant Biology 4, 75-85.
Theissen, G., Kim, J.T., and Saedler, H. (1996). Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. Journal of Molecular Evolution. 43, 484-516.
van Doorn, W.G., and Kamdee, C. (2014). Flower opening and closure: an update. Journal of Experimental Botany 65, 5749-5757.
Wang, K.L., Yoshida, H., Lurin, C., and Ecker, J.R. (2004). Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein. Nature 428, 942-945.
Woltering, E.J., Somhorst, D., and van der Veer, P. (1995). The Role of Ethylene in lnterorgan Signaling during Flower Senescence. Plant Physiology 109, 1219-1225.
Xie, Q., Hu, Z., Zhu, Z., Dong, T., Zhao, Z., Cui, B., and Chen, G. (2014). Overexpression of a novel MADS-box gene SlFYFL delays senescence, fruit ripening and abscission in tomato. Scientific reports 4, 4367.
Xu, A., Zhang, W., and Wen, C.K. (2014). ENHANCING CTR1-10 ETHYLENE RESPONSE2 is a novel allele involved in CONSTITUTIVE TRIPLE-RESPONSE1-mediated ethylene receptor signaling in Arabidopsis. BMC Plant Biology 14, 48.
Yasumura, Y., Pierik, R., Kelly, S., Sakuta, M., Voesenek, L.A., and Harberd, N.P. (2015). An Ancestral Role for CONSTITUTIVE TRIPLE RESPONSE1 Proteins in Both Ethylene and Abscisic Acid Signaling. Plant Physiology 169, 283-298.
Zhong, S., Zhao, M., Shi, T., Shi, H., An, F., Zhao, Q., and Guo, H. (2009). EIN3/EIL1 cooperate with PIF1 to prevent photo-oxidation and to promote greening of Arabidopsis seedlings. Proc. Natl. Acad. Sci. USA 106, 21431-21436.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊