許巍瀚,2012。阿拉伯芥中調控細胞分裂與配子體發育相關基因之功能性分析。國立中興大學生物科技學研究所。博士論文。陳偉翰,2016。FYF藉由調控EDF基因控制阿拉伯芥花器老化和脫落及蘭花中FYF、SVP同源基因的功能性分析。國立中興大學生物科技學研究所。博士論文。蘇鴻傑與陳逸忠,1995。太魯閣國家公園蘭科植物群落調查。研究報告。
Aalen, R.B., Wildhagen, M., Sto, I.M., and Butenko, M.A. (2013). IDA: a peptide ligand regulating cell separation processes in Arabidopsis. Journal of Experimental Botany 64, 5253-5261.
Adamczyk, B.J., Lehti-Shiu, M.D., and Fernandez, D.E. (2007). The MADS domain factors AGL15 and AGL18 act redundantly as repressors of the floral transition in Arabidopsis. The Plant journal : for cell and molecular biology 50, 1007-1019.
Alonso, J.M., and Ecker, J.R. (2001). The ethylene pathway: a paradigm for plant hormone signaling and interaction. Science's STKE 70, re1.
Arora, A. (2005). Ethylene receptors and molecular mechanism of ethylene sensitivity in plants. Current science 89, 1348-1361.
Avila-Ospina, L., Moison, M., Yoshimoto, K., and Masclaux-Daubresse, C. (2014). Autophagy, plant senescence, and nutrient recycling. Journal of Experimental Botany 65, 3799-3811.
Bleecker, A.B., and Patterson, S.E. (1997). Last exit: senescence, abscission, and meristem arrest in Arabidopsis. The Plant Cell 9, 1169-1179.
Butenko, M.A., Patterson, S.E., Grini, P.E., Stenvik, G.E., Amundsen, S.S., Mandal, A., and Aalen, R.B. (2003). Inflorescence deficient in abscission controls floral organ abscission in Arabidopsis and identifies a novel family of putative ligands in plants. The Plant Cell 15, 2296-2307.
Chang, X., Donnelly, L., Sun, D., Rao, J., Reid, M.S., and Jiang, C.Z. (2014). A Petunia homeodomain-leucine zipper protein, PhHD-Zip, plays an important role in flower senescence. PLOS One 9, e88320.
Chen, M.K., Hsu, W.H., Lee, P.F., Thiruvengadam, M., Chen, H.I., and Yang, C.H. (2011b). The MADS box gene, FOREVER YOUNG FLOWER, acts as a repressor controlling floral organ senescence and abscission in Arabidopsis. The Plant journal : for cell and molecular biology 68, 168-185.
Chen, W.H., Li, P.F., Chen, M.K., Lee, Y.I., and Yang, C.H. (2015). FOREVER YOUNG FLOWER Negatively Regulates Ethylene Response DNA-Binding Factors by Activating an Ethylene-Responsive Factor to Control Arabidopsis Floral Organ Senescence and Abscission. Plant Physiology 168, 1666-1683.
Chen, Y.F., Etheridge, N., and Schaller, G.E. (2005). Ethylene signal transduction. Annals of botany 95, 901-915.
Cho, S.K., Larue, C.T., Chevalier, D., Wang, H., Jinn, T.L., Zhang, S., and Walker, J.C. (2008). Regulation of floral organ abscission in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 105, 15629-15634.
Christenhusz, M.J.M., and Byng, J.W. (2016). The number of known plants species in the world and its annual increase. Phytotaxa 261, 201.
Fernandez, D.E., Heck, G.R., Perry, S.E., Patterson, S.E., Bleecker, A.B., and Fang, S.C. (2000). The Embryo MADS Domain Factor AGL15 Acts Postembryonically: Inhibition of Perianth Senescence and Abscission via Constitutive Expression. The Plant Cell 12, 183-197.
Fourquin, C., del Cerro, C., Victoria, F.C., Vialette-Guiraud, A., de Oliveira, A.C., and Ferrandiz, C. (2013). A change in SHATTERPROOF protein lies at the origin of a fruit morphological novelty and a new strategy for seed dispersal in medicago genus. Plant Physiology 162, 907-917.
Guo, H., and Ecker, J.R. (2004). The ethylene signaling pathway: new insights. Plant Biology 7, 40-49.
Hepworth, S.R., Zhang, Y., McKim, S., Li, X., and Haughn, G.W. (2005). BLADE-ON-PETIOLE-dependent signaling controls leaf and floral patterning in Arabidopsis. The Plant Cell 17, 1434-1448.
Iqbal, N., Khan, N.A., Ferrante, A., Trivellini, A., Francini, A., and Khan, M.I.R. (2017). Ethylene Role in Plant Growth, Development and Senescence: Interaction with Other Phytohormones. Plant Science 8, 475.
Jinn, T.L., Stone, J.M., and Walker, J.C. (2000). HAESA, an Arabidopsis leucine-rich repeat receptor kinase, controls floral organ abscission. Genes & Development.
Ju, C., Yoon, G.M., J.M., S., Lin, D.Y., Ying, Z.I., Chang, J., Garrett, W.M., Kessenbrock, M., Groth, G., Tucker, M.l., Cooper, B., Kieber, J.J., and Chang, C. (2012). CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis Proc. Natl. Acad. Sci. USA 109, 19486-19491.
Kaufmann, K., Melzer, R., and Theissen, G. (2005). MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene 347, 183-198.
Koyama, T. (2014). The roles of ethylene and transcription factors in the regulation of onset of leaf senescence. Plant Science 5, 650.
Krizek, B.A., and Fletcher, J.C. (2005). Molecular mechanisms of flower development: an armchair guide. Nature Reviews Genetics 6, 688-698.
Li, W., Ma, M., Feng, Y., Li, H., Wang, Y., Ma, Y., Li, M., An, F., and Guo, H. (2015). EIN2-directed translational regulation of ethylene signaling in Arabidopsis. Cell 163, 670-683.
Li, Z., Peng, J., Wen, X., and Guo, H. (2013). Ethylene-insensitive3 is a senescence-associated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis. The Plant Cell 25, 3311-3328.
Liljegren, S.J., Ditta, G.S., Eshed., Y., Savidge., B., Bowman, J.L., and Yanofsky, M.F. (2000). SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404, 766-770.
McKim, S.M., Stenvik, G.E., Butenko, M.A., Kristiansen, W., Cho, S.K., Hepworth, S.R., Aalen, R.B., and Haughn, G.W. (2008). The BLADE-ON-PETIOLE genes are essential for abscission zone formation in Arabidopsis. Development 135, 1537-1546.
Nakano, T., Fujisawa, M., Shima, Y., and Ito, Y. (2014). The AP2/ERF transcription factor SlERF52 functions in flower pedicel abscission in tomato. Journal of Experimental Botany 65, 3111-3119.
Ohme-Takagi, M., and Shinshi, H. (1995). Ethylene-lnducible DNA Binding Proteins That lnteract with an Ethylene-Responsive Element. The Plant Cell 7, 173-182.
Patterson, S.E., and Bleecker, A.B. (2004). Ethylene-dependent and -independent processes associated with floral organ abscission in Arabidopsis. Plant Physiology 134, 194-203.
Porat, R., Halevy, A.H., Serek, M., and Borochov, A. (1995). An increase in ethylene sensitivity following pollination is the initial event triggering an increase in ethylene production and enhanced senescence of Phalaenopsis orchid flowers. Physiologia Plantarum 93, 778–784.
Rogers, H., and Munne-Bosch, S. (2016). Production and Scavenging of Reactive Oxygen Species and Redox Signaling during Leaf and Flower Senescence: Similar But Different. Plant Physiology 171, 1560-1568.
Rogers, H.J. (2013). From models to ornamentals: how is flower senescence regulated? Plant molecular biology 82, 563-574.
Sekhon, R.S., Childs, K.L., Santoro, N., Foster, C.E., Buell, C.R., de Leon, N., and Kaeppler, S.M. (2012). Transcriptional and metabolic analysis of senescence induced by preventing pollination in maize. Plant Physiology 159, 1730-1744.
Theissen, G. (2001). Development of floral organ identity- stories from the MADS house. Plant Biology 4, 75-85.
Theissen, G., Kim, J.T., and Saedler, H. (1996). Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. Journal of Molecular Evolution. 43, 484-516.
van Doorn, W.G., and Kamdee, C. (2014). Flower opening and closure: an update. Journal of Experimental Botany 65, 5749-5757.
Wang, K.L., Yoshida, H., Lurin, C., and Ecker, J.R. (2004). Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein. Nature 428, 942-945.
Woltering, E.J., Somhorst, D., and van der Veer, P. (1995). The Role of Ethylene in lnterorgan Signaling during Flower Senescence. Plant Physiology 109, 1219-1225.
Xie, Q., Hu, Z., Zhu, Z., Dong, T., Zhao, Z., Cui, B., and Chen, G. (2014). Overexpression of a novel MADS-box gene SlFYFL delays senescence, fruit ripening and abscission in tomato. Scientific reports 4, 4367.
Xu, A., Zhang, W., and Wen, C.K. (2014). ENHANCING CTR1-10 ETHYLENE RESPONSE2 is a novel allele involved in CONSTITUTIVE TRIPLE-RESPONSE1-mediated ethylene receptor signaling in Arabidopsis. BMC Plant Biology 14, 48.
Yasumura, Y., Pierik, R., Kelly, S., Sakuta, M., Voesenek, L.A., and Harberd, N.P. (2015). An Ancestral Role for CONSTITUTIVE TRIPLE RESPONSE1 Proteins in Both Ethylene and Abscisic Acid Signaling. Plant Physiology 169, 283-298.
Zhong, S., Zhao, M., Shi, T., Shi, H., An, F., Zhao, Q., and Guo, H. (2009). EIN3/EIL1 cooperate with PIF1 to prevent photo-oxidation and to promote greening of Arabidopsis seedlings. Proc. Natl. Acad. Sci. USA 106, 21431-21436.