|
Ali Shah, S. A., Sultan, S., & Adnan, H. S. (2013). A Whole-cell Biocatalysis Application of Steroidal Drugs. Oriental Journal Of Chemistry, 29(2), 389-403. doi:10.13005/ojc/290201 Arnold, A. P., & Breedlove, S. M. (1985). Organizational and activational effects of sex steroids on brain and behavior: a reanalysis. Hormones and behavior, 19(4), 469-498. Bader, M. (2008). Cardiovascular Hormone Systems: From Molecular Mechanisms to Novel Therapeutics: John Wiley & Sons. Barel-Cohen, K., Shore, L. S., Shemesh, M., Wenzel, A., Mueller, J., & Kronfeld-Schor, N. (2006). Monitoring of natural and synthetic hormones in a polluted river. Journal of environmental management, 78(1), 16-23. Bloch, K. (1965). The biological synthesis of cholesterol: Nobel Foundation. Capyk, J. K., Kalscheuer, R., Stewart, G. R., Liu, J., Kwon, H., Zhao, R., . . . Mohn, W. W. (2009). Mycobacterial cytochrome p450 125 (cyp125) catalyzes the terminal hydroxylation of c27 steroids. J Biol Chem, 284(51), 35534-35542. doi:10.1074/jbc.UV109.072132 Colquhoun, J. A., Mexson, J., Goodfellow, M., Ward, A. C., Horikoshi, K., & Bull, A. T. (1998). Novel rhodococci and other mycolate actinomycetes from the deep sea. Antonie van Leeuwenhoek, 74(1-3), 27-40. Cornforth, J. W. (2002). Sterol biosynthesis: the early days. Biochem Biophys Res Commun, 292(5), 1129-1138. doi:10.1006/bbrc.2001.2006 de las Heras, L. F., van der Geize, R., Drzyzga, O., Perera, J., & Llorens, J. M. N. (2012). Molecular characterization of three 3-ketosteroid-Δ 1-dehydrogenase isoenzymes of μ ruber strain Chol-4. The Journal of steroid biochemistry and molecular biology, 132(3), 271-281. Dewick, P. M. (1999). Pharmaceutical steroids and their production for hormone replacement therapy. British Menopause Society Journal, 5(1), 12-22. Dias, M., Bhat, P., Chandrakar, S., & Pinto, H. (2013). Rhodococcus equi: a pathogen in immunocompetent patients. J Family Med Prim Care, 2(3), 291-293. doi:10.4103/2249-4863.120770 Donova, M. V., & Egorova, O. V. (2012). Microbial steroid transformations: current state and prospects. Appl Microbiol Biotechnol, 94(6), 1423-1447. doi:10.1007/s00253-012-4078-0 Fernandes, P., Cruz, A., Angelova, B., Pinheiro, H. M., & Cabral, J. M. S. (2003). Microbial conversion of steroid compounds: recent developments. Enzyme and Microbial Technology, 32(6), 688-705. doi:10.1016/s0141-0229(03)00029-2 Ferreira, N., & Tracey, R. (1984). Numerical taxonomy of cholesterol‐degrading soil bacteria. Journal of applied bacteriology, 57(3), 429-446. Gao, P., Pinkston, K. L., Nallapareddy, S. R., van Hoof, A., Murray, B. E., & Harvey, B. R. (2010). Enterococcus faecalis rnjB is required for pilin gene expression and biofilm formation. Journal of bacteriology, 192(20), 5489-5498. Garcia, J. L., Uhia, I., & Galan, B. (2012). Catabolism and biotechnological applications of cholesterol degrading bacteria. Microb Biotechnol, 5(6), 679-699. doi:10.1111/j.1751-7915.2012.00331.x Gracia, T., Jones, P. D., Higley, E. B., Hilscherova, K., Newsted, J. L., Murphy, M. B., . . . Lam, P. K. (2008). Modulation of steroidogenesis by coastal waters and sewage effluents of Hong Kong, China, using the H295R assay. Environmental Science and Pollution Research, 15(4), 332-343. Guevara, G., de las Heras, L. F., Perera, J., & Llorens, J. M. N. (2017). Functional differentiation of 3-ketosteroid Δ 1-dehydrogenase isozymes in Rhodococcus ruber strain Chol-4. Microb Cell Fact, 16(1), 42. Hamilton, D. L., & Abremski, K. (1984). Site-specific recombination by the bacteriophage P1 lox-Cre system: Cre-mediated synapsis of two lox sites. Journal of molecular biology, 178(2), 481-486. Herring, C. D., Glasner, J. D., & Blattner, F. R. (2003). Gene replacement without selection: regulated suppression of amber mutations in Escherichia coli. Gene, 311, 153-163. doi:10.1016/s0378-1119(03)00585-7 Jäger, W., Schäfer, A., Pühler, A., Labes, G., & Wohlleben, W. (1992). Expression of the Bacillus subtilis sacB gene leads to sucrose sensitivity in the gram-positive bacterium Corynebacterium glutamicum but not in Streptomyces lividans. Journal of bacteriology, 174(16), 5462-5465. Kast, P., & Hennecke, H. (1991). Amino acid substrate specificity of Escherichia coli phenylalanyl-tRNA synthetase altered by distinct mutations. Journal of molecular biology, 222(1), 99-124. Kristich, C. J., Chandler, J. R., & Dunny, G. M. (2007). Development of a host-genotype-independent counterselectable marker and a high-frequency conjugative delivery system and their use in genetic analysis of Enterococcus faecalis. Plasmid, 57(2), 131-144. Lee, D. J., Bingle, L. E., Heurlier, K., Pallen, M. J., Penn, C. W., Busby, S. J., & Hobman, J. L. (2009). Gene doctoring: a method for recombineering in laboratory and pathogenic Escherichia coli strains. BMC Microbiol, 9, 252. doi:10.1186/1471-2180-9-252 Letek, M., Gonzalez, P., Macarthur, I., Rodriguez, H., Freeman, T. C., Valero-Rello, A., . . . Vazquez-Boland, J. A. (2010). The genome of a pathogenic rhodococcus: cooptive virulence underpinned by key gene acquisitions. PLoS Genet, 6(9), e1001145. doi:10.1371/journal.pgen.1001145 Liu, Y., Shen, Y., Qiao, Y., Su, L., Li, C., & Wang, M. (2016). The effect of 3-ketosteroid-Delta(1)-dehydrogenase isoenzymes on the transformation of AD to 9alpha-OH-AD by Rhodococcus rhodochrous DSM43269. J Ind Microbiol Biotechnol, 43(9), 1303-1311. doi:10.1007/s10295-016-1804-0 Malaviya, A., & Gomes, J. (2008). Androstenedione production by biotransformation of phytosterols. Bioresource technology, 99(15), 6725-6737. Miyazaki, K. (2015). Benchmarks. BioTechniques, 58, 86-88. Mohn, W. W., Wilbrink, M. H., Casabon, I., Stewart, G. R., Liu, J., van der Geize, R., & Eltis, L. D. (2012). Gene cluster encoding cholate catabolism in Rhodococcus spp. Journal of bacteriology, 194(24), 6712-6719. Mottram, D. R., & George, A. J. (2000). Anabolic steroids. Best practice & research clinical endocrinology & metabolism, 14(1), 55-69. Muscatello, G., Leadon, D. P., Klay, M., Ocampo-Sosa, A., Lewis, D. A., Fogarty, U., . . . Vazquez-Boland, J. A. (2007). Rhodococcus equi infection in foals: the science of ‘rattles’. Equine Veterinary Journal, 39(5), 470-478. doi:10.2746/042516407x209217 Petrusma, M., Hessels, G., Dijkhuizen, L., & van der Geize, R. (2011). Multiplicity of 3-Ketosteroid-9alpha-Hydroxylase enzymes in Rhodococcus rhodochrous DSM43269 for specific degradation of different classes of steroids. J Bacteriol, 193(15), 3931-3940. doi:10.1128/JB.00274-11 Petrusma, M., Hessels, G., Dijkhuizen, L., & van der Geize, R. (2011). Multiplicity of 3-ketosteroid-9α-hydroxylase enzymes in Rhodococcus rhodochrous DSM43269 for specific degradation of different classes of steroids. Journal of bacteriology, 193(15), 3931-3940. Prescott, J. F. (1991). Rhodococcus equi: an animal and human pathogen. Clinical microbiology reviews, 4(1), 20-34. Riggs, B. L., Khosla, S., & Melton III, L. J. (2002). Sex steroids and the construction and conservation of the adult skeleton. Endocrine reviews, 23(3), 279-302. Rohman, A., van Oosterwijk, N., Thunnissen, A. M., & Dijkstra, B. W. (2013). Crystal structure and site-directed mutagenesis of 3-ketosteroid Delta1-dehydrogenase from Rhodococcus erythropolis SQ1 explain its catalytic mechanism. J Biol Chem, 288(49), 35559-35568. doi:10.1074/jbc.UV113.522771 Rosłoniec, K. Z., Wilbrink, M. H., Capyk, J. K., Mohn, W. W., Ostendorf, M., Van Der Geize, R., . . . Eltis, L. D. (2009). Cytochrome P450 125 (CYP125) catalyses C26‐hydroxylation to initiate sterol side‐chain degradation in Rhodococcus jostii RHA1. Molecular microbiology, 74(5), 1031-1043. Slaytor, M., & Bloch, K. (1965). Metabolic transformations of cholestenediols. Journal of Biological Chemistry, 240(12), 4598-4602. Van der Geize, R., De Jong, W., Hessels, G., Grommen, A., Jacobs, A., & Dijkhuizen, L. (2008). A novel method to generate unmarked gene deletions in the intracellular pathogen Rhodococcus equi using 5-fluorocytosine conditional lethality. Nucleic acids research, 36(22), e151-e151. van der Geize, R., Hessels, G. I., van Gerwen, R., van der Meijden, P., & Dijkhuizen, L. (2001). Unmarked gene deletion mutagenesis of kstD, encoding 3-ketosteroid Δ1-dehydrogenase, in Rhodococcus erythropolis SQ1 using sacB as counter-selectable marker. FEMS microbiology letters, 205(2), 197-202. Veiga, P., Juste, C., Lepercq, P., Saunier, K., Béguet, F., & Gérard, P. (2005). Correlation between faecal microbial community structure and cholesterol-to-coprostanol conversion in the human gut. FEMS microbiology letters, 242(1), 81-86. Vishniac, W., & Santer, M. (1957). The thiobacilli. Bacteriological reviews, 21(3), 195. Yeh, C.-H., Kuo, Y.-S., Chang, C.-M., Liu, W.-H., Sheu, M.-L., & Meng, M. (2014). Deletion of the gene encoding the reductase component of 3-ketosteroid 9α-hydroxylase in Rhodococcus equi USA-18 disrupts sterol catabolism, leading to the accumulation of 3-oxo-23, 24-bisnorchola-1, 4-dien-22-oic acid and 1, 4-androstadiene-3, 17-dione. Microb Cell Fact, 13(1), 130. Zhang, J. (2002). Rhodococcus maanshanensis sp. nov., a novel actinomycete from soil. International Journal of Systematic and Evolutionary Microbiology, 52(6), 2121-2126. doi:10.1099/ijs.0.02253-0 Zhang, Q., Ren, Y., He, J., Cheng, S., Yuan, J., Ge, F., . . . Xie, G. (2015). Multiplicity of 3-ketosteroid Δ1-dehydrogenase enzymes in Gordonia neofelifaecis NRRL B-59395 with preferences for different steroids. Annals of Microbiology, 65(4), 1961-1971. doi:10.1007/s13213-015-1034-0 羅昱文. (2015). Construction of potential unmarked gene deletion mutagenesis systems and selection of regulable promoters used in Rhodococcus equi. 郭永順. (2014). Study on androstadienedione production from steroid by Rhodococcus sp. mutant strains.
|