跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/09 07:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉欣宜
研究生(外文):Hsin-Yi Liu
論文名稱:菸草蛋白NbGAI參與竹嵌紋病毒複製之研究
論文名稱(外文):The study of gibberellic acid insensitive involved in Bamboo mosaic virus replication in Nicotiana benthamiana
指導教授:蔡慶修蔡慶修引用關係
口試委員:林納生徐堯煇鄭綺萍
口試日期:2017-07-27
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生物科技學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:23
中文關鍵詞:竹嵌紋病毒菸草差異性表現基因
外文關鍵詞:Bamboo mosaic virusNicotiana benthamianNbGAI
相關次數:
  • 被引用被引用:1
  • 點閱點閱:174
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
竹嵌紋病毒(Bamboo mosaic virus, BaMV)為單一正股RNA病毒,隸屬於Alphaflexiviridae科Potexvirus屬。在先前的研究中,我們利用cDNA-amplified fragment length polymorphism分離出菸草(Nicotiana benthamiana)的90個在BaMV感染後具有差異性表現的基因片段。宿主基因的表現可能會因為受到病毒的感染而產生改變,這些具有差異性表現的基因可能扮演著幫助或是抵抗病毒的角色。其中一條基因片段ACCT7-1的表現量在病毒感染後有增加的趨勢。為了進一步的研究,以rapid amplification of cDNA ends (RACE)技術延長ACCT7-1上下游的序列,並經過National Center for Biology Information (NCBI)資料庫比對,推測ACCT7-1是DELLA家族的成員之一,與菸草(N. sylvestris)的GA-INSENSITIVE (GAI)基因有高度相似性,因此將ACCT7-1命名為NbGAI。接著我們利用病毒引發基因靜默技術(virus-induced gene silencing, VIGS)使NbGAI表現量下降,發現BaMV的外鞘蛋白在菸草的葉子上的累積量有明顯的下降。接著將處理過VIGS的原生質體接種病毒RNA,進一步探討NbGAI影響是在病毒複製還是移動的層面,結果顯示BaMV的外鞘蛋白的累積量也有顯著的下降,從上述兩個結果可以推測NbGAI可能扮演幫助病毒複製的角色。隨後再利用以 RACE技術延長所得到的全長基因表現於菸草後感染病毒,並發現BaMV的外鞘蛋白的累積量有明顯的上升,這個結果不僅能更確定NbGAI可能扮演幫助病毒的角色並且也驗證了上述基因靜默技術的結果。由於DELLA家族成員之一的NbGAI,會利用核定位訊號將蛋白帶入細胞核後參與並調節許多植物賀爾蒙路徑。因此我透過共軛焦顯微鏡及過表現NbGAI融合螢光蛋白來確定NbGAI在細胞的表現位置,也利用網路軟體的篩選,成功的預測到NbGAI的核定位訊號,再一次確認NbGAI的表現位置位於細胞核中並進一步的探討NbGAI對BaMV所產生影響。
Bamboo mosaic virus (BaMV) is a single-stranded positive-sense RNA virus, a member of Potexvirus genus of Alphaflexiviridae family. In a previous study, 90 differentially expressed genes were identified from BaMV-inoculated N. benthamiana plants using the technique cDNA-amplified fragment length polymorphism (cDNA-AFLP). One of the differentially expressed genes ACCT7-1 was upregulated in BaMV-inoculated N. benthamiana plants. Furthermore, the full-length cDNA was cloned using rapid amplification of cDNA ends (RACE) and sequence. The identity of ACCT7-1 was revealed as a homolog of GA-INSENSITIVE (GAI), a member of DELLA family, when compared to the databases of National Center for Biology Information (NCBI). Therefore, ACCT7-1 is then designated as NbGAI. NbGAI was characterized by BaMV inoculated on virus-induced gene silencing (VIGS) leaves and protoplasts. The results showed that the accumulation of BaMV coat protein was decreased significantly in both knockdown leaves and protoplasts compared to the controls. These results can be inferred that NbGAI may play a positive role in assisting the virus replication. Furthermore, the fusion protein NbGAI with Orange fluorescent protein (OFP), NbGAI-OFP is expressed in plants and BaMV is then inoculated. The accumulation of BaMV coat protein is increased significantly compared with the control plants with the expression of OFP only. The results indicate that NbGAI play a role in assisting BaMV accumulation. NbGAI is a member of DELLA family and contains a nuclear localization signal (NLS). In this study, I have used confocal microscopy to confirm the nuclear localization of NbGAI in cell. In addition, the NLS of NbGAI is predicted by screening online software: cNLS Mapper. These results indicated that NbGAI could play an assisting role in BaMV replication.
中文摘要 i
Abstract ii
Content iii
Introduction 1
Bamboo mosaic virus 1
NbGAI and BaMV replication 2
Gibberellic acid insensitive and gibberellin signaling pathway 3
Materials and Methods 4
Plant growth and virus purification 4
Viral RNA extraction 4
Virus-induced gene silencing (VIGS) 5
Protoplast preparation and viral RNA inoculation 5
Total RNA extraction 6
Reverse transcription and real-time PCR 6
Transient expression of NbGAI-OFP fusion protein and its cellular localization 7
Western blot analysis 8
Northern blot analysis 9
Results 10
The accumulation of BaMV was decreased in NbGAI-knockdown plants 10
NbGAI is involved in BaMV replication 10
NbGAI plays a positive role in BaMV infection cycle 11
NbGAI-OFP was localized in nucleus of N. benthamiana cells 11
Discussion 12
Figures 14
Figure 1. The expression of NbGAI and BaMV accumulation in NbGAI-knockdown Nicotiana benthamiana protoplasts. 14
Figure 2. The accumulation of BaMV coat protein in NbGAI-OFP transiently expressed N. benthamiana. 16
Figure 3. The localization of NbGAI-OFP in N. benthamiana protoplasts. 17
Appendix 18
Appendix Figure 1. The accumulation of BaMV in ACCT7-1-knockdown plants analyzed by western blotting. 18
References 19
Achard, P., & Genschik, P. (2009). Releasing the brakes of plant growth: how GAs shutdown DELLA proteins. Journal of Experimental Botany, 60(4), 1085-1092. doi:10.1093/jxb/ern301

Bamunusinghe, D., Hemenway, C. L., Nelson, R. S., Sanderfoot, A. A., Ye, C. M., Silva, M. A., Payton, M., Verchot-Lubicz, J. Verchot-Lubicz, J. (2009). Analysis of potato virus X replicase and TGBp3 subcellular locations. Virology, 393(2), 272-285. doi:10.1016/j.virol.2009.08.002

Chen, I. H., Chou, W. J., Lee, P. Y., Hsu, Y. H., & Tsai, C. H. (2005). The AAUAAA motif of bamboo mosaic virus RNA is involved in minus-strand RNA synthesis and plus-strand RNA polyadenylation. Journal of Virology, 79(23), 14555-14561.

Cheng, J. H., Peng, C. W., Hsu, Y. H., & Tsai, C. H. (2002). The synthesis of minus-strand RNA of bamboo mosaic potexvirus initiates from multiple sites within the poly(A) tail. Journal of Virology, 76(12), 6114-6120. doi:Doi 10.1128/Jvi.76.12.6114-6120.2002

Cheng, S.-F., Huang, Y.-P., Chen, L.-H., Hsu, Y.-H., & Tsai, C.-H. (2013). Chloroplast phosphoglycerate kinase is involved in the targeting of Bamboo mosaic virus to chloroplasts in Nicotiana benthamiana plants. Plant physiology, 163(4), 1598-1608.

Cheng, S.-F., Huang, Y.-P., Wu, Z.-R., Hu, C.-C., Hsu, Y.-H., & Tsai, C.-H. (2010). Identification of differentially expressed genes induced by Bamboo mosaic virus infection in Nicotiana benthamiana by cDNA-amplified fragment length polymorphism. BioMed Central Plant Biology, 10(1), 286.

Cheng, S. F., Huang, Y. P., Chen, L. H., Hsu, Y. H., & Tsai, C. H. (2013). Chloroplast phosphoglycerate kinase is involved in the targeting of Bamboo mosaic virus to chloroplasts in Nicotiana benthamiana plants. Plant Physiol, 163(4), 1598-1608. doi:10.1104/pp.113.229666

Chou, Y. L., Hung, Y. J., Tseng, Y. H., Hsu, H. T., Yang, J. Y., Wung, C. H., Lin, N. S., Meng, M. S., Hsu, Y. H., Chang, B. Y. (2013). The Stable Association of Virion with the Triple-geneblock Protein 3-based Complex of Bamboo mosaic virus. Plos Pathogens, 9(6), 19. doi:10.1371/journal.ppat.1003405

Harberd, N. P., Belfield, E., & Yasumura, Y. (2009). The Angiosperm Gibberellin-GID1-DELLA Growth Regulatory Mechanism: How an "Inhibitor of an Inhibitor" Enables Flexible Response to Fluctuating Environments. Plant Cell, 21(5), 1328-1339. doi:10.1105/tpc.109.066969

Ho, T. L., Lee, H. C., Chou, Y. L., Tseng, Y. H., Huang, W. C., Wung, C. H., Lin, N. S., Hsu, Y. H., Chang, B. Y. (2017). The cysteine residues at the C-terminal tail of Bamboo mosaic virus triple gene block protein 2 are critical for efficient plasmodesmata localization of protein 1 in the same block. Virology, 501, 47-53. doi:10.1016/j.virol.2016.11.005

Hsu, H. T., Chou, Y. L., Tseng, Y. H., Lin, Y. H., Lin, T. M., Lin, N. S., Hsu, Y. H., Chang, B. Y. (2008). Topological properties of the triple gene block protein 2 of Bamboo mosaic virus. Virology, 379(1), 1-9. doi:DOI 10.1016/j.virol.2008.06.019

Hsu, H. T., Hsu, Y. H., Bi, I. P., Lin, N. S., & Chang, B. Y. (2004). Biological functions of the cytoplasmic TGBp1 inclusions of bamboo mosaic potexvirus. Archives of Virology, 149(5), 1027-1035. doi:DOI 10.1007/s00705-003-0254-y

Huang, Y. L., Han, Y. T., Chang, Y. T., Hsu, Y. H., & Meng, M. S. (2004). Critical residues for GTP methylation and formation of the covalent m(7)GMP-enzyme intermediate in the capping enzyme domain of Bamboo mosaic virus. Journal of Virology, 78(3), 1271-1280. doi:Doi 10.1128/Jvi.78.3.1271-1280.2004

Ju, H. J., Samuels, T. D., Wang, Y. S., Blancaflor, E., Payton, M., Mitra, R., Krishnamurthy, K.,Nelson, R. S., Verchot-Lubicz, J. (2005). The potato virus X TGBp2 movement protein associates with endoplasmic reticulum-derived vesicles during virus infection. Plant physiology, 138(4), 1877-1895. doi:10.1104/pp.105.066019

Kalinina, N. O., Rakitina, D. V., Solovyev, A. G., Schiemann, J., & Morozov, S. Y. (2002). RNA helicase activity of the plant virus movement proteins encoded by the first gene of the triple gene block. Virology, 296(2), 321-329. doi:10.1006/viro.2001.1328

Lan, P., Yeh, W. B., Tsai, C. W., & Lin, N. S. (2010). A unique glycine-rich motif at the N-terminal region of Bamboo mosaic virus coat protein is required for symptom expression. Molecular Plant-Microbe Interactions, 23(7), 903-914. doi:Doi 10.1094/Mpmi-23-7-0903

Lee, C. C., Ho, Y. N., Hu, R. H., Yen, Y. T., Wang, Z. C., Lee, Y. C., Hsu, Y. H., Meng, M. H. (2011). The Interaction between Bamboo Mosaic Virus Replication Protein and Coat Protein Is Critical for Virus Movement in Plant Hosts. Journal of Virology, 85(22), 12022-12031. doi:Doi 10.1128/Jvi.05595-11

Li, Y. I., Chen, Y. J., Hsu, Y. H., & Meng, M. H. (2001). Characterization of the AdoMet-dependent guanylyltransferase activity that is associated with the N terminus of bamboo mosaic virus replicase. Journal of Virology, 75(2), 782-788. doi:Doi 10.1128/Jvi.75.2.782-788.2001

Lin, M. K., Chang, B. Y., Liao, J. T., Lin, N. S., & Hsu, Y. H. (2004). Arg-16 and Arg-21 in the N-terminal region of the triple-gene-block protein 1 of Bamboo mosaic virus are essential for virus movement. Journal of General Virology, 85, 251-259. doi:DOI 10.1099/vir.0.19442-0

Lin, M. K., Hu, C. C., Lin, N. S., Chang, B. Y., & Hsu, Y. H. (2006). Movement of potexviruses requires species-specific interactions among the cognate triple gene block proteins, as revealed by a trans-complementation assay based on the bamboo mosaic virus satellite RNA-mediated expression system. Journal of General Virology, 87, 1357-1367. doi:DOI 10.1099/vir.0.81625-0

Lin, N. S., Lin, B. Y., Lo, N. W., Hu, C. C., Chow, T. Y., & Hsu, Y. H. (1994). Nucleotide-Sequence of the Genomic Rna of Bamboo Mosaic Potexvirus. Journal of General Virology, 75, 2513-2518. doi:Doi 10.1099/0022-1317-75-9-2513

Lin, N. S., Lin, F. Z., Huang, T. Y., & Hsu, Y. H. (1992). Genome Properties of Bamboo Mosaic-Virus. Phytopathology, 82(7), 731-734. doi:DOI 10.1094/Phyto-82-731

Lozano-Durán, R., Rosas-Díaz, T., Gusmaroli, G., Luna, A. P., Taconnat, L., Deng, X. W., & Bejarano, E. R. (2011). Geminiviruses subvert ubiquitination by altering CSN-mediated derubylation of SCF E3 ligase complexes and inhibit jasmonate signaling in Arabidopsis thaliana. The Plant Cell Online, 23(3), 1014-1032.

Mitra, R., Krishnamurthy, K., Blancaflor, E., Payton, M., Nelson, R. S., & Verchot-Lubicz, J. (2003). The Potato virus X TGBp2 protein association with the endoplasmic reticulum plays a role in but is not sufficient for viral cell-to-cell movement. Virology, 312(1), 35-48. doi:10.1016/s0042-6822(03)00180-6

Morozov, S. Y., & Solovyev, A. G. (2003). Triple gene block: modular design of a multifunctional machine for plant virus movement. Journal of General Virology, 84, 1351-1366. doi:10.1099/vir.0.18922-0

Nelson, S. K., & Steber, C. M. (2016). Gibberellin hormone signal perception: down‐regulating DELLA repressors of plant growth and development. Annual Plant Reviews, Volume 49: Gibberellins, The, 153-188.

Peng, J. R., Carol, P., Richards, D. E., King, K. E., Cowling, R. J., Murphy, G. P., & Harberd, N. P. (1997). The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes & Development, 11(23), 3194-3205. doi:10.1101/gad.11.23.3194

Rodriguez, M. C., Conti, G., Zavallo, D., Manacorda, C. A., & Asurmendi, S. (2014). TMV-Cg Coat Protein stabilizes DELLA proteins and in turn negatively modulates salicylic acid-mediated defense pathway during Arabidopsis thaliana viral infection. BioMed Central Plant Biology, 14(1), 210.

Shaner, N. C., Lin, M. Z., McKeown, M. R., Steinbach, P. A., Hazelwood, K. L., Davidson, M. W., & Tsien, R. Y. (2008). Improving the photostability of bright monomeric orange and red fluorescent proteins. Nature Methods, 5(6), 545-551. doi:10.1038/nmeth.1209

Ueguchi-Tanaka, M., Ashikari, M., Nakajima, M., Itoh, H., Katoh, E., Kobayashi, M., . . . Matsuoka, M. (2005). GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature, 437(7059), 693-698. doi:10.1038/nature04028

Whitham, S. A., & Wang, Y. Z. (2004). Roles for host factors in plant viral pathogenicity. Current Opinion in Plant Biology, 7(4), 365-371. doi:10.1016/j.pbi.2004.04.006

Wung, C. H., Hsu, Y. H., Liou, D. Y., Huang, W. C., Lin, N. S., & Chang, B. Y. (1999). Identification of the RNA-binding sites of the triple gene block protein 1 of bamboo mosaic potexvirus. Journal of General Virology, 80, 1119-1126.

Zhu, S., Gao, F., Cao, X., Chen, M., Ye, G., Wei, C., & Li, Y. (2005). The rice dwarf virus P2 protein interacts with ent-kaurene oxidases in vivo, leading to reduced biosynthesis of gibberellins and rice dwarf symptoms. Plant physiology, 139(4), 1935-1945.

蔡茜雯. (2014). The study of the differentially expressed gene ACCT7-1 of Nicotiana benthamiana is involved in Bamboo mosaic virus infection cycle.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊