1. 行政院衛生署台灣中華藥典編修委員會。(2013)。台灣中藥典第二版。台北: 行政院衛生署中醫藥委員會, 220.
2. 謝詠筌, 呂康祖, 溫彩玉, 劉宜祝, & 羅吉方. (2011). 市售梔子類藥材之鑑別. 食品藥物研究年報(2), 374-380.3. Xiao, W., Li, S., Wang, S., & Ho, C.-T. (2016). Chemistry and bioactivity of Gardenia jasminoides. Journal of Food and Drug Analysis, 43-61.
4. Nagatoshi, M., Terasaka, K., Owaki, M., Sota, M., Inukai, T., Nagatsu, A., & Mizukami, H. (2012). UGT75L6 and UGT94E5 mediate sequential glucosylation of crocetin to crocin in Gardenia jasminoides. FEBS letters, 586(7), 1055-1061.
5. Ahrazem, O., Rubio-Moraga, A., Nebauer, S. G., Molina, R. V., & Gómez-Gómez, L. (2015). Saffron: its phytochemistry, developmental processes, and biotechnological prospects. Journal of Agricultural and Food Chemistry, 63(40), 8751-8764.
6. Moraga, A. R., Nohales, P. F., Pérez, J. A. F., & Gómez-Gómez, L. (2004). Glucosylation of the saffron apocarotenoid crocetin by a glucosyltransferase isolated from Crocus sativus stigmas. Planta, 219(6), 955-966.
7. Pfister, S., Meyer, P., Steck, A., & Pfander, H. (1996). Isolation and structure elucidation of carotenoid− glycosyl esters in gardenia fruits (gardenia jasminoides ellis) and saffron (crocus sativus linne). Journal of Agricultural and Food Chemistry, 44(9), 2612-2615.
8. Li, N., Lin, G., Kwan, Y.-W., & Min, Z.-D. (1999). Simultaneous quantification of five major biologically active ingredients of saffron by high-performance liquid chromatography. Journal of Chromatography A, 849(2), 349-355.
9. Van Calsteren, M.-R., Bissonnette, M. C., Cormier, F., Dufresne, C., Ichi, T., LeBlanc, J. Y., Roewer, I. (1997). Spectroscopic characterization of crocetin derivatives from Crocus sativus and Gardenia jasminoides. Journal of Agricultural and Food Chemistry, 45(4), 1055-1061.
10. Giaccio, M. (2004). Crocetin from saffron: an active component of an ancient spice. Critical Reviews in Food Science and Nutrition, 44(3), 155-172.
11. J?rgensen, K., Olsen, M. R., & Skibsted, L. H. (1992). Crocetin photodegradation as influenced by water activity in homogeneous solution. Zeitschrift für Lebensmitteluntersuchung und-Forschung A, 195(6), 555-558.
12. Lim, T. K. (2014). Edible medicinal and non-medicinal plants (Vol. 8): Springer. 77-136
13. Bathaie, S. Z., & Mousavi, S. Z. (2010). New applications and mechanisms of action of saffron and its important ingredients. Critical Reviews in Food Science and Nutrition, 50(8), 761-786.
14. Alavizadeh, S. H., & Hosseinzadeh, H. (2014). Bioactivity assessment and toxicity of crocin: a comprehensive review. Food and Chemical Toxicology, 64, 65-80.
15. Hosseinzadeh, H., Shariaty, M., Sameni, A., & Vahabzadeh, M. (2010). Acute and sub-acute toxicity of crocin, a constituent of Crocus sativus L.(saffron), in mice and rats. Pharmacologyonline, 2, 943-951.
16. Bostan, H. B., Mehri, S., & Hosseinzadeh, H. (2017). Toxicology effects of saffron and its constituents: a review. Iranian Journal of Basic Medical Sciences, 20(2), 110.
17. Johns, T., & Romeo, J. T. (2012). Functionality of food phytochemicals (Vol. 31): Springer Science & Business Media, 215
18. Christodoulou, E., Kadoglou, N. P., Kostomitsopoulos, N., & Valsami, G. (2015). Saffron: a natural product with potential pharmaceutical applications. Journal of Pharmacy and Pharmacology, 67(12), 1634-1649.
19. Baba, S. A., & Ashraf, N. (2016). Apocarotenoids of Crocus sativus L: From biosynthesis to pharmacology: Springer.
20. Nassiri-Asl, M., & Hosseinzadeh, H. (2014). Neuropharmaco-logy effects of saffron (Crocus sativus) and Its active constituents. Bioactive Nutraceuticals and Dietary Supplements in Neurological and Brain Disease. Prevention and Therapy, 29-39.
21. 劉同征, & 錢之玉. (2002). 西紅花酸在大鼠的藥代動力學研究. 藥學學報(05).
22. Xi, L., Qian, Z., Du, P., & Fu, J. (2007). Pharmacokinetic properties of crocin (crocetin digentiobiose ester) following oral administration in rats. Phytomedicine, 14(9), 633-636.
23. Asai, A., Nakano, T., Takahashi, M., & Nagao, A. (2005). Orally administered crocetin and crocins are absorbed into blood plasma as crocetin and its glucuronide conjugates in mice. Journal of Agricultural and Food Chemistry, 53(18), 7302-7306.
24. 杜鵬, 錢之玉, 余衛平, & 邢艷霞. (2004). RP-HPLC法研究西紅花酸在大鼠體內的藥代動力學和組織分布特性. 藥物分析雜志(02).
25. 張穎, 劉建勛, 林力, & 李利群. (2012). 大鼠口服西紅花苷-1后吸收入血成分及藥動學. 中國藥學雜志(02).
26. 馮曉賓, 周桂芬, 錢曉東, 姚沖, & 李曉紅. (2017). 西紅花水提液在大鼠血中的移行成分分析. 中草藥(04).
27. Mohammadpour, A. H., Ramezani, M., Anaraki, N. T., Malaekeh-Nikouei, B., Farzad, S. A., & Hosseinzadeh, H. (2013). Development and validation of HPLC method for determination of crocetin, a constituent of saffron, in human serum samples. Iranian Journal of Basic Medical Sciences, 16(1), 47.
28. Chryssanthi, D. G., Lamari, F. N., Georgakopoulos, C. D., & Cordopatis, P. (2011). A new validated SPE-HPLC method for monitoring crocetin in human plasma—Application after saffron tea consumption. Journal of Pharmaceutical and Biomedical Analysis, 55(3), 563-568.
29. Umigai, N., Murakami, K., Ulit, M., Antonio, L., Shirotori, M., Morikawa, H., & Nakano, T. (2011). The pharmacokinetic profile of crocetin in healthy adult human volunteers after a single oral administration. Phytomedicine, 18(7), 575-578.
30. Zhang, Y., Fei, F., Zhen, L., Zhu, X., Wang, J., Li, S., Geng R., Sun, X., Sun, X., Chen, Y., T. (2017). Sensitive analysis and simultaneous assessment of pharmacokinetic properties of crocin and crocetin after oral administration in rats. Journal of Chromatography B, 1044, 1-7.
31. Kanakis, C. D., Tarantilis, P. A., Tajmir-Riahi, H. A., & Polissiou, M. G. (2007). Crocetin, dimethylcrocetin, and safranal bind human serum albumin: stability and antioxidative properties. Journal of Agricultural and Food Chemistry, 55(3), 970-977.
32. Jafarisani, M., Bathaie, S. Z., & Mousavi, M. F. (2017). Saffron carotenoids (crocin and crocetin) binding to human serum albumin as investigated by different spectroscopic methods and molecular docking. Journal of Biomolecular Structure and Dynamics(just-accepted), 1-26.
33. Abourashed, E. A. (2013). Bioavailability of plant-derived antioxidants. Antioxidants, 2(4), 309-325.
34. Kyriakoudi, A., Tsimidou, M. Z., O’Callaghan, Y. C., Galvin, K., & O’Brien, N. M. (2013). Changes in total and individual crocetin esters upon in vitro gastrointestinal digestion of saffron aqueous extracts. Journal of Agricultural and Food Chemistry, 61(22), 5318-5327.
35. Kyriakoudi, A., Tsimidou, M. Z., O’Callaghan, Y. C., Galvin, K., & O’Brien, N. M. (2013). Changes in total and individual crocetin esters upon in vitro gastrointestinal digestion of saffron aqueous extracts. Journal of Agricultural and Food Chemistry, 61(22), 5318-5327.
36. Lautenschläger, M., Sendker, J., Hüwel, S., Galla, H., Brandt, S., Düfer, M., . . . Hensel, A. (2015). Intestinal formation of trans-crocetin from saffron extract (Crocus sativus L.) and in vitro permeation through intestinal and blood brain barrier. Phytomedicine, 22(1), 36-44.
37. Oliveira, H., Cai, X., Zhang, Q., de Freitas, V., Mateus, N., He, J., & Fernandes, I. (2017). Gastrointestinal absorption, antiproliferative and anti-inflammatory effect of the major carotenoids of Gardenia jasminoides Ellis on cancer cells. Food & Function, 8(4), 1672-1679.
38. Hauss, D. J. (2007). Oral lipid-based formulations. Advanced Drug Delivery Reviews, 59(7), 667-676.
39. O’Driscoll, C. M. (2002). Lipid-based formulations for intestinal lymphatic delivery. European Journal of Pharmaceutical Sciences, 15(5), 405-415.
40. Porter, C. J., Trevaskis, N. L., & Charman, W. N. (2007). Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nature Reviews Drug Discovery, 6(3), 231-248.
41. Feeney, O. M., Crum, M. F., McEvoy, C. L., Trevaskis, N. L., Williams, H. D., Pouton, C. W., Porter, C. J. (2016). 50years of oral lipid-based formulations: Provenance, progress and future perspectives. Advanced Drug Delivery Reviews, 101, 167-194
42. Kalepu, S., Manthina, M., & Padavala, V. (2013). Oral lipid-based drug delivery systems–an overview. Acta Pharmaceutica Sinica B, 3(6), 361-372.
43. Khan, A. A., Mudassir, J., Mohtar, N., & Darwis, Y. (2013). Advanced drug delivery to the lymphatic system: lipid-based nanoformulations. International Journal of Nanomedicine, 8, 2733.
44. Kentish, S., Wooster, T., Ashokkumar, M., Balachandran, S., Mawson, R., & Simons, L. (2008). The use of ultrasonics for nanoemulsion preparation. Innovative Food Science & Emerging Technologies, 9(2), 170-175.
45. Qian, C., & McClements, D. J. (2011). Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: factors affecting particle size. Food Hydrocolloids, 25(5), 1000-1008.
46. Komaiko, J., & McClements, D. J. (2015). Low-energy formation of edible nanoemulsions by spontaneous emulsification: Factors influencing particle size. Journal of Food Engineering, 146, 122-128.
47. Henry, J. V., Fryer, P. J., Frith, W. J., & Norton, I. T. (2009). Emulsification mechanism and storage instabilities of hydrocarbon-in-water sub-micron emulsions stabilised with Tweens (20 and 80), Brij 96v and sucrose monoesters. Journal of Colloid and Interface Science, 338(1), 201-206.
48. Aulton, M. E., & Taylor, K. M. (2017). Aulton's Pharmaceutics E-Book: The Design and Manufacture of Medicines: Elsevier Health Sciences, 87-89
49. Rowe, R. C., Sheskey, P. J., Quinn, M. E., & Association, A. P. (2009). Handbook of Pharmaceutical Excipients: Pharmaceutical Press.
50. Ash, M. (2004). Handbook of green chemicals: Synapse Info Resources, 884.
51. Ash, M. (2004). Handbook of green chemicals: Synapse Info Resources, 797.
52. Lo, Y.-l. (2003). Relationships between the hydrophilic–lipophilic balance values of pharmaceutical excipients and their multidrug resistance modulating effect in Caco-2 cells and rat intestines. Journal of Controlled Release, 90(1), 37-48.
53. McClements, D. J. (2012). Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter, 8(6), 1719-1729.
54. Qadir, A., Faiyazuddin, M., Hussain, M. T., Alshammari, T. M., & Shakeel, F. (2016). Critical steps and energetics involved in a successful development of a stable nanoemulsion. Journal of Molecular Liquids, 214, 7-18.
55. Jaiswal, M., Dudhe, R., & Sharma, P. (2015). Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech, 5(2), 123-127.
56. Fryd, M. M., & Mason, T. G. (2012). Advanced nanoemulsions. Annual Review of Physical Chemistry, 63, 493-518.
57 Gupta, A., Eral, H. B., Hatton, T. A., & Doyle, P. S. (2016). Nanoemulsions: formation, properties and applications. Soft Matter, 12(11), 2826-2841.
58. McClements, D. J., & Rao, J. (2011). Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Critical Reviews in Food Science and Nutrition, 51(4), 285-330.
59. Chang, M. T., Chen, C. R., Liu, T. H., Lee, C. P., & Tzen, J. T. (2013). Development of a protocol to solidify native and artificial oil bodies for long‐term storage at room temperature. Journal of the Science of Food and Agriculture, 93(6), 1516-1519
60. Shargel, L., Wu-Pong, S., & Yu, A. (2016). 應用生物藥劑學與藥物動力學 (6 ed.), 譯者 劉正雄 教授