跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/01/23 04:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:盧安祺
研究生(外文):An-Chi Lu
論文名稱:奈米乳化液包埋藏紅花酸提升其生物可利用率
論文名稱(外文):Enhancing bioavailability of crocetin via encapsulation in nano-emulsion
指導教授:曾志正曾志正引用關係
指導教授(外文):Jason T.C. Tzen
口試委員:溫曉薇麥富德
口試委員(外文):Hsiao-Wei WenFu-Der Mai
口試日期:2017-07-31
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生物科技學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:54
中文關鍵詞:藏紅花酸奈米乳液生物可利用率
外文關鍵詞:crocetinnanoemulsionbioavailavility
相關次數:
  • 被引用被引用:0
  • 點閱點閱:487
  • 評分評分:
  • 下載下載:62
  • 收藏至我的研究室書目清單書目收藏:0
前人研究藏紅花酸 (crocetin) 具有多種生物活性例如:增強氧擴散速率、抗氧化、抗發炎、抗高血壓、抗血栓、抗動脈粥狀硬化、抑制視網膜損傷和改善睡眠質量。雖然藏紅花酸具有許多生物活性,但藏紅花酸難溶於水造成口服藏紅花低的生物可利用率。因此開發適合藏紅花酸包埋的方法來提高生物可利用率。

根據張銘聰博士所建立的包埋薑黃素和油體固定化的技術將此加以改良成適合藏紅花酸包埋的方法。形成水包油的 (O/W) 奈米乳液包埋 (encapsulation) 藏紅花酸,先將藏紅花酸分散於 Span® 80親脂性介面活性劑中,加入芝麻油 (sesame oil) 和 IGEPAL® CO-720 親水性介面活性劑,最後加入磷酸鈉緩衝溶液 (10 mM) 和檸檬酸鈉溶液用超音波震盪混和彼此製成奈米乳液。為了測試埋率,將奈米乳液加在蔗糖溶液(40%)上方並高速離心,用高效液相層析方法分析糖水中未包埋的藏紅花酸濃度,換算後包埋率可達到99%。長時間久放造成奈米乳液的絮凝現象,因此將奈米乳液進行固定化 (solidfication)來避免聚集。固定化以加入不同比例甘露醇作為賦形劑並進行冷凍乾燥成粉末。實驗結果發現加入13.3%濃度的甘露醇固化後回溶的奈米乳液為最佳,並透過顯微鏡觀察發先固定化前後的奈米乳液仍可維持穩定分離的微胞達3個月,利用動態光散射儀量測的奈米乳液和回溶固定化奈米乳液的粒徑大小(平均粒徑: 124 ~ 343nm)。包埋率會因放置時間越長而下降,三個月後以 3.3% 甘露醇固定化組下降最多有 24%。
進行動物實驗以每組四隻大鼠分成對照組和實驗組,對照組餵食50 mg/kg 藏紅花酸的5%羧甲基纖維素鈉 (CMC-Na) 分散,實驗組餵食包埋後25 mg/kg藏紅花酸奈米乳液,管餵前先禁食12小時,取0、30、60、90、120、240、360分鐘的血液並以HPLC分析和作時間和血漿中藏紅花酸濃度圖。包埋藏紅花酸的奈米乳液吸收率比直接口服藏紅花酸好。
Previous studies have demonstrated that crocetin possesses various biological activities such as enhancing oxygen diffusion rate, antioxidant, anti-inflammatory, antihypertensive, antithrombotic, anti-atherosclerotic, inhibiting retinal damage and improve the quality of sleep. Although crocetin possesses several types of bioactivity, crocetin is poorly soluble in water and leads to low oral bioavailability. Therefore, development of crocetin via encapsulation enhances oral bioavailability of crocetin.
According as Dr. Ming-Tsung Chang established techniques of encapsulated curcumin and solidified oil bodies, so these were adjusted to be suitable for encapsulated crocetin . Forming oil-in-water (O/W) nanoemulsion encapsulates crocetin. Crocetin is dispersed in Span® 80 of lipophilic surfactant, then added with sesame oil and IGEPAL® CO-720 as hydrophilic surfactant. Finally, sodium phosphate buffer solution (10 mM) and sodium citrate solution are added and mixed to form nanoemulsion by ultrasonication. In order to test the encapsulation efficiency, the nanoemulsion was added on the sucrose solution (40%) with high-speed centrifugation. Analysis of non-encapsulated crocetin in sucrose solution was performed by HPLC method. The calculation of the encapsulation efficiency reaches to 99%. Prolonged storage causes flocculation of nanoemulsion, so nanoemulsion is solidified to avoid aggregation. Solidification was performed by adding different proportions of mannitol as excipients and lyophilisation as powder. The experiment discovered that 13.3% of mannitol redissolved well. Under microscopy examination, the solidfication of nanoemulsion maintained separation with micelle type until 3 months. The particle size of the nanoemulsion and the solidification nanoemulsion were measured by dynamic light scattering (average particle size range: 124 ~ 343 nm). The encapsulation efficiency is decreased in the long time storage .3.3% mannitol solidification decreased to 24% after three month.
Rats were divided into control and experimental groups. The control groups were fed crocetin 50 mg/kg and crocetin was dispersed in 5% CMC-Na (Sodium Carboxymethyl Cellulose) .The experimental groups were fed crocetin 25mg/kg of nanoemulsion. Before rats were fasted in 12 hours, rats were fed in gavage.0, 30, 60, 90, 120, 240, 360 minutes of blood samples were taken and analyzed by HPLC and made time and plasma concentrations of crocetin. The absorption of crocetin via nanoemulsion is better than directly oral crocetin.
壹.緒論…………1
貳.文獻回顧…………2
一、藏紅花苷(CROCIN)藏紅花酸(CROCETIN)來源和應用…………2
(一)梔子和水梔子…………2
(二)番紅花…………4
(三)物理化學性質…………6
(四)生物活性…………9
(五)藥物動力學相關研究…………11
二、脂溶性藥物吸收代謝途徑…………16
三、奈米乳液研究進展…………20
參.料與方法…………24
一、實驗設計與流程…………24
二、實驗材料…………25
(一)化學試劑…………25
(二)動物實驗及耗材…………26
(三)儀器設備…………26
三、實驗方法…………27
(一)藏紅花苷鹼水解得藏紅花酸…………27
(二)奈米乳液包埋藏紅花酸和固定化…………28
(三)粒徑測量和包埋率測試實驗…………30
(四)動物實驗…………31
肆.實驗結果與討論…………33
一、藏紅花苷鹼水解得藏紅花酸…………33
二、奈米乳液包埋藏紅花酸和固定化…………38
三、粒徑測量和包埋率測試實驗…………40
四、動物實驗…………45
伍.結論……………48
陸.參考文獻…………49
1. 行政院衛生署台灣中華藥典編修委員會。(2013)。台灣中藥典第二版。台北: 行政院衛生署中醫藥委員會, 220.
2. 謝詠筌, 呂康祖, 溫彩玉, 劉宜祝, & 羅吉方. (2011). 市售梔子類藥材之鑑別. 食品藥物研究年報(2), 374-380.
3. Xiao, W., Li, S., Wang, S., & Ho, C.-T. (2016). Chemistry and bioactivity of Gardenia jasminoides. Journal of Food and Drug Analysis, 43-61.
4. Nagatoshi, M., Terasaka, K., Owaki, M., Sota, M., Inukai, T., Nagatsu, A., & Mizukami, H. (2012). UGT75L6 and UGT94E5 mediate sequential glucosylation of crocetin to crocin in Gardenia jasminoides. FEBS letters, 586(7), 1055-1061.
5. Ahrazem, O., Rubio-Moraga, A., Nebauer, S. G., Molina, R. V., & Gómez-Gómez, L. (2015). Saffron: its phytochemistry, developmental processes, and biotechnological prospects. Journal of Agricultural and Food Chemistry, 63(40), 8751-8764.
6. Moraga, A. R., Nohales, P. F., Pérez, J. A. F., & Gómez-Gómez, L. (2004). Glucosylation of the saffron apocarotenoid crocetin by a glucosyltransferase isolated from Crocus sativus stigmas. Planta, 219(6), 955-966.
7. Pfister, S., Meyer, P., Steck, A., & Pfander, H. (1996). Isolation and structure elucidation of carotenoid− glycosyl esters in gardenia fruits (gardenia jasminoides ellis) and saffron (crocus sativus linne). Journal of Agricultural and Food Chemistry, 44(9), 2612-2615.
8. Li, N., Lin, G., Kwan, Y.-W., & Min, Z.-D. (1999). Simultaneous quantification of five major biologically active ingredients of saffron by high-performance liquid chromatography. Journal of Chromatography A, 849(2), 349-355.
9. Van Calsteren, M.-R., Bissonnette, M. C., Cormier, F., Dufresne, C., Ichi, T., LeBlanc, J. Y., Roewer, I. (1997). Spectroscopic characterization of crocetin derivatives from Crocus sativus and Gardenia jasminoides. Journal of Agricultural and Food Chemistry, 45(4), 1055-1061.
10. Giaccio, M. (2004). Crocetin from saffron: an active component of an ancient spice. Critical Reviews in Food Science and Nutrition, 44(3), 155-172.
11. J?rgensen, K., Olsen, M. R., & Skibsted, L. H. (1992). Crocetin photodegradation as influenced by water activity in homogeneous solution. Zeitschrift für Lebensmitteluntersuchung und-Forschung A, 195(6), 555-558.
12. Lim, T. K. (2014). Edible medicinal and non-medicinal plants (Vol. 8): Springer. 77-136
13. Bathaie, S. Z., & Mousavi, S. Z. (2010). New applications and mechanisms of action of saffron and its important ingredients. Critical Reviews in Food Science and Nutrition, 50(8), 761-786.
14. Alavizadeh, S. H., & Hosseinzadeh, H. (2014). Bioactivity assessment and toxicity of crocin: a comprehensive review. Food and Chemical Toxicology, 64, 65-80.
15. Hosseinzadeh, H., Shariaty, M., Sameni, A., & Vahabzadeh, M. (2010). Acute and sub-acute toxicity of crocin, a constituent of Crocus sativus L.(saffron), in mice and rats. Pharmacologyonline, 2, 943-951.
16. Bostan, H. B., Mehri, S., & Hosseinzadeh, H. (2017). Toxicology effects of saffron and its constituents: a review. Iranian Journal of Basic Medical Sciences, 20(2), 110.
17. Johns, T., & Romeo, J. T. (2012). Functionality of food phytochemicals (Vol. 31): Springer Science & Business Media, 215
18. Christodoulou, E., Kadoglou, N. P., Kostomitsopoulos, N., & Valsami, G. (2015). Saffron: a natural product with potential pharmaceutical applications. Journal of Pharmacy and Pharmacology, 67(12), 1634-1649.
19. Baba, S. A., & Ashraf, N. (2016). Apocarotenoids of Crocus sativus L: From biosynthesis to pharmacology: Springer.
20. Nassiri-Asl, M., & Hosseinzadeh, H. (2014). Neuropharmaco-logy effects of saffron (Crocus sativus) and Its active constituents. Bioactive Nutraceuticals and Dietary Supplements in Neurological and Brain Disease. Prevention and Therapy, 29-39.
21. 劉同征, & 錢之玉. (2002). 西紅花酸在大鼠的藥代動力學研究. 藥學學報(05).
22. Xi, L., Qian, Z., Du, P., & Fu, J. (2007). Pharmacokinetic properties of crocin (crocetin digentiobiose ester) following oral administration in rats. Phytomedicine, 14(9), 633-636.
23. Asai, A., Nakano, T., Takahashi, M., & Nagao, A. (2005). Orally administered crocetin and crocins are absorbed into blood plasma as crocetin and its glucuronide conjugates in mice. Journal of Agricultural and Food Chemistry, 53(18), 7302-7306.
24. 杜鵬, 錢之玉, 余衛平, & 邢艷霞. (2004). RP-HPLC法研究西紅花酸在大鼠體內的藥代動力學和組織分布特性. 藥物分析雜志(02).
25. 張穎, 劉建勛, 林力, & 李利群. (2012). 大鼠口服西紅花苷-1后吸收入血成分及藥動學. 中國藥學雜志(02).
26. 馮曉賓, 周桂芬, 錢曉東, 姚沖, & 李曉紅. (2017). 西紅花水提液在大鼠血中的移行成分分析. 中草藥(04).
27. Mohammadpour, A. H., Ramezani, M., Anaraki, N. T., Malaekeh-Nikouei, B., Farzad, S. A., & Hosseinzadeh, H. (2013). Development and validation of HPLC method for determination of crocetin, a constituent of saffron, in human serum samples. Iranian Journal of Basic Medical Sciences, 16(1), 47.
28. Chryssanthi, D. G., Lamari, F. N., Georgakopoulos, C. D., & Cordopatis, P. (2011). A new validated SPE-HPLC method for monitoring crocetin in human plasma—Application after saffron tea consumption. Journal of Pharmaceutical and Biomedical Analysis, 55(3), 563-568.
29. Umigai, N., Murakami, K., Ulit, M., Antonio, L., Shirotori, M., Morikawa, H., & Nakano, T. (2011). The pharmacokinetic profile of crocetin in healthy adult human volunteers after a single oral administration. Phytomedicine, 18(7), 575-578.
30. Zhang, Y., Fei, F., Zhen, L., Zhu, X., Wang, J., Li, S., Geng R., Sun, X., Sun, X., Chen, Y., T. (2017). Sensitive analysis and simultaneous assessment of pharmacokinetic properties of crocin and crocetin after oral administration in rats. Journal of Chromatography B, 1044, 1-7.
31. Kanakis, C. D., Tarantilis, P. A., Tajmir-Riahi, H. A., & Polissiou, M. G. (2007). Crocetin, dimethylcrocetin, and safranal bind human serum albumin: stability and antioxidative properties. Journal of Agricultural and Food Chemistry, 55(3), 970-977.
32. Jafarisani, M., Bathaie, S. Z., & Mousavi, M. F. (2017). Saffron carotenoids (crocin and crocetin) binding to human serum albumin as investigated by different spectroscopic methods and molecular docking. Journal of Biomolecular Structure and Dynamics(just-accepted), 1-26.
33. Abourashed, E. A. (2013). Bioavailability of plant-derived antioxidants. Antioxidants, 2(4), 309-325.
34. Kyriakoudi, A., Tsimidou, M. Z., O’Callaghan, Y. C., Galvin, K., & O’Brien, N. M. (2013). Changes in total and individual crocetin esters upon in vitro gastrointestinal digestion of saffron aqueous extracts. Journal of Agricultural and Food Chemistry, 61(22), 5318-5327.
35. Kyriakoudi, A., Tsimidou, M. Z., O’Callaghan, Y. C., Galvin, K., & O’Brien, N. M. (2013). Changes in total and individual crocetin esters upon in vitro gastrointestinal digestion of saffron aqueous extracts. Journal of Agricultural and Food Chemistry, 61(22), 5318-5327.
36. Lautenschläger, M., Sendker, J., Hüwel, S., Galla, H., Brandt, S., Düfer, M., . . . Hensel, A. (2015). Intestinal formation of trans-crocetin from saffron extract (Crocus sativus L.) and in vitro permeation through intestinal and blood brain barrier. Phytomedicine, 22(1), 36-44.
37. Oliveira, H., Cai, X., Zhang, Q., de Freitas, V., Mateus, N., He, J., & Fernandes, I. (2017). Gastrointestinal absorption, antiproliferative and anti-inflammatory effect of the major carotenoids of Gardenia jasminoides Ellis on cancer cells. Food & Function, 8(4), 1672-1679.
38. Hauss, D. J. (2007). Oral lipid-based formulations. Advanced Drug Delivery Reviews, 59(7), 667-676.
39. O’Driscoll, C. M. (2002). Lipid-based formulations for intestinal lymphatic delivery. European Journal of Pharmaceutical Sciences, 15(5), 405-415.
40. Porter, C. J., Trevaskis, N. L., & Charman, W. N. (2007). Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nature Reviews Drug Discovery, 6(3), 231-248.
41. Feeney, O. M., Crum, M. F., McEvoy, C. L., Trevaskis, N. L., Williams, H. D., Pouton, C. W., Porter, C. J. (2016). 50years of oral lipid-based formulations: Provenance, progress and future perspectives. Advanced Drug Delivery Reviews, 101, 167-194
42. Kalepu, S., Manthina, M., & Padavala, V. (2013). Oral lipid-based drug delivery systems–an overview. Acta Pharmaceutica Sinica B, 3(6), 361-372.
43. Khan, A. A., Mudassir, J., Mohtar, N., & Darwis, Y. (2013). Advanced drug delivery to the lymphatic system: lipid-based nanoformulations. International Journal of Nanomedicine, 8, 2733.
44. Kentish, S., Wooster, T., Ashokkumar, M., Balachandran, S., Mawson, R., & Simons, L. (2008). The use of ultrasonics for nanoemulsion preparation. Innovative Food Science & Emerging Technologies, 9(2), 170-175.
45. Qian, C., & McClements, D. J. (2011). Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: factors affecting particle size. Food Hydrocolloids, 25(5), 1000-1008.
46. Komaiko, J., & McClements, D. J. (2015). Low-energy formation of edible nanoemulsions by spontaneous emulsification: Factors influencing particle size. Journal of Food Engineering, 146, 122-128.
47. Henry, J. V., Fryer, P. J., Frith, W. J., & Norton, I. T. (2009). Emulsification mechanism and storage instabilities of hydrocarbon-in-water sub-micron emulsions stabilised with Tweens (20 and 80), Brij 96v and sucrose monoesters. Journal of Colloid and Interface Science, 338(1), 201-206.
48. Aulton, M. E., & Taylor, K. M. (2017). Aulton's Pharmaceutics E-Book: The Design and Manufacture of Medicines: Elsevier Health Sciences, 87-89
49. Rowe, R. C., Sheskey, P. J., Quinn, M. E., & Association, A. P. (2009). Handbook of Pharmaceutical Excipients: Pharmaceutical Press.
50. Ash, M. (2004). Handbook of green chemicals: Synapse Info Resources, 884.
51. Ash, M. (2004). Handbook of green chemicals: Synapse Info Resources, 797.
52. Lo, Y.-l. (2003). Relationships between the hydrophilic–lipophilic balance values of pharmaceutical excipients and their multidrug resistance modulating effect in Caco-2 cells and rat intestines. Journal of Controlled Release, 90(1), 37-48.
53. McClements, D. J. (2012). Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter, 8(6), 1719-1729.
54. Qadir, A., Faiyazuddin, M., Hussain, M. T., Alshammari, T. M., & Shakeel, F. (2016). Critical steps and energetics involved in a successful development of a stable nanoemulsion. Journal of Molecular Liquids, 214, 7-18.
55. Jaiswal, M., Dudhe, R., & Sharma, P. (2015). Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech, 5(2), 123-127.
56. Fryd, M. M., & Mason, T. G. (2012). Advanced nanoemulsions. Annual Review of Physical Chemistry, 63, 493-518.
57 Gupta, A., Eral, H. B., Hatton, T. A., & Doyle, P. S. (2016). Nanoemulsions: formation, properties and applications. Soft Matter, 12(11), 2826-2841.
58. McClements, D. J., & Rao, J. (2011). Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Critical Reviews in Food Science and Nutrition, 51(4), 285-330.
59. Chang, M. T., Chen, C. R., Liu, T. H., Lee, C. P., & Tzen, J. T. (2013). Development of a protocol to solidify native and artificial oil bodies for long‐term storage at room temperature. Journal of the Science of Food and Agriculture, 93(6), 1516-1519
60. Shargel, L., Wu-Pong, S., & Yu, A. (2016). 應用生物藥劑學與藥物動力學 (6 ed.), 譯者 劉正雄 教授
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top