|
1.Duprez, L., et al., Major cell death pathways at a glance. Microbes and Infection, 2009. 11(13): p. 1050-1062. 2.Amaravadi, R.K. and C.B. Thompson, The Roles of Therapy-Induced Autophagy and Necrosis in Cancer Treatment. Clinical Cancer Research, 2007. 13(24): p. 7271-7279. 3.Alvarez, A., et al., Cell death. A comprehensive approximation. Necrosis. Microscopy. Science., Technology., Applications and Education, 2010: p. 1017-1024. 4.Steller, H., Mechanisms and genes of cellular suicide. Science, 1995. 267(5203): p. 1445-1449. 5.ORRENIUS, S., Apoptosis: molecular mechanisms and implications for human disease. Journal of internal medicine, 1995. 237(6): p. 529-536. 6.Green, D.R., Apoptotic Pathways: Ten Minutes to Dead. Cell. 121(5): p. 671-674. 7.Danial, N.N. and S.J. Korsmeyer, Cell death: critical control points. Cell, 2004. 116(2): p. 205-219. 8.Kroemer, G., et al., Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death & Differentiation, 2009. 16(1): p. 3-11. 9.Blankenberg, F.G., In vivo imaging of apoptosis. Cancer biology & therapy, 2008. 7(10): p. 1525-1532. 10.Green, D.R., et al., Immunogenic and tolerogenic cell death. Nature Reviews Immunology, 2009. 9(5): p. 353-363. 11.Thompson, C.B., Apoptosis in the pathogenesis and treatment of disease. Science, 1995. 267(5203): p. 1456. 12.Zitvogel, L., et al., Immune response against dying tumor cells. Advances in immunology, 2004. 84: p. 131-179. 13.Casares, N., et al., Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. Journal of Experimental Medicine, 2005. 202(12): p. 1691-1701. 14.Kepp, O., et al., The immunogenicity of tumor cell death. Current opinion in oncology, 2009. 21(1): p. 71-76. 15.Obeid, M., et al., Calreticulin exposure dictates the immunogenicity of cancer cell death. Nature medicine, 2007. 13(1): p. 54-61. 16.Krysko, O., et al., Many faces of DAMPs in cancer therapy. Cell death & disease, 2013. 4(5): p. e631. 17.Michalak, M., et al., Calreticulin: one protein, one gene, many functions. Biochemical Journal, 1999. 344(Pt 2): p. 281-292. 18.Gardai, S.J., et al., Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell, 2005. 123(2): p. 321-334. 19.Lauber, K., et al., Clearance of apoptotic cells: getting rid of the corpses. Molecular cell, 2004. 14(3): p. 277-287. 20.Henson, P.M. and D.A. Hume, Apoptotic cell removal in development and tissue homeostasis. Trends in immunology, 2006. 27(5): p. 244-250. 21.Solheim, J.C., Class IMHC molecules: assembly and antigen presentation. Immunological Reviews, 1999. 172(1): p. 11-19. 22.Panaretakis, T., et al., Mechanisms of pre‐apoptotic calreticulin exposure in immunogenic cell death. The EMBO Journal, 2009. 28(5): p. 578-590. 23.Zitvogel, L., et al., Immunogenic tumor cell death for optimal anticancer therapy: the calreticulin exposure pathway. Clinical Cancer Research, 2010. 16(12): p. 3100-3104. 24.Panaretakis, T., et al., The co-translocation of ERp57 and calreticulin determines the immunogenicity of cell death. Cell Death & Differentiation, 2008. 15(9): p. 1499-1509. 25.Kroemer, G., et al., Immunogenic cell death in cancer therapy. Annual review of immunology, 2013. 31: p. 51-72. 26.Wang, Y., et al., Autophagy-dependent ATP release from dying cells via lysosomal exocytosis. Autophagy, 2013. 9(10): p. 1624-1625. 27.Elliott, M.R., et al., Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature, 2009. 461(7261): p. 282-286. 28.la Sala, A., et al., Dendritic cells exposed to extracellular adenosine triphosphate acquire the migratory properties of mature cells and show a reduced capacity to attract type 1 T lymphocytes. Blood, 2002. 99(5): p. 1715-1722. 29.Martín-Fontecha, A., A. Lanzavecchia, and F. Sallusto, Dendritic Cell Migration to Peripheral Lymph Nodes, in Dendritic Cells, G. Lombardi and Y. Riffo-Vasquez, Editors. 2009, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 31-49. 30.Michaud, M., et al., Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science, 2011. 334(6062): p. 1573-1577. 31.Sandilos, J.K., et al., Pannexin 1, an ATP Release Channel, Is Activated by Caspase Cleavage of Its Pore-associated C-terminal Autoinhibitory Region. The Journal of Biological Chemistry, 2012. 287(14): p. 11303-11311. 32.Garg, A.D., et al., A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. The EMBO Journal, 2012. 31(5): p. 1062-1079. 33.Bianchi, M., M. Beltrame, and G. Paonessa, Specific recognition of cruciform DNA by nuclear protein HMG1. Science, 1989. 243(4894): p. 1056-1059. 34.Scaffidi, P., T. Misteli, and M.E. Bianchi, Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature, 2002. 418(6894): p. 191-195. 35.Sims, G.P., et al., HMGB1 and RAGE in inflammation and cancer. Annual review of immunology, 2009. 28: p. 367-388. 36.Apetoh, L., et al., Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med, 2007. 13(9): p. 1050-1059. 37.Bonaldi, T., et al., Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. The EMBO Journal, 2003. 22(20): p. 5551-5560. 38.Pasare, C. and R. Medzhitov, Control of B-cell responses by Toll-like receptors. Nature, 2005. 438(7066): p. 364-368. 39.Robinson, S.P., et al., Human peripheral blood contains two distinct lineages of dendritic cells. European journal of immunology, 1999. 29(9): p. 2769-2778. 40.Rissoan, M.-C., et al., Reciprocal control of T helper cell and dendritic cell differentiation. Science, 1999. 283(5405): p. 1183-1186. 41.Cella, M., et al., Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nature medicine, 1999. 5(8): p. 919-923. 42.Wieder, E., Dendritic cells: a basic review. International Society for Cellular Therapy, 2003. 43.Mellman, I. and R.M. Steinman, Dendritic cells: specialized and regulated antigen processing machines. Cell, 2001. 106(3): p. 255-258. 44.Banchereau, J. and R.M. Steinman, Dendritic cells and the control of immunity. Nature, 1998. 392(6673): p. 245-252. 45.Dieu, M.-C., et al., Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. Journal of Experimental Medicine, 1998. 188(2): p. 373-386. 46.Bykovskaia, S.N., et al., Differentiation of Immunostimulatory Stem-Cell- and Monocyte-Derived Dendritic Cells Involves Maturation of Intracellular Compartments Responsible for Antigen Presentation and Secretion. STEM CELLS, 2002. 20(5): p. 380-393. 47.Brossart, P. and M.J. Bevan, Presentation of Exogenous Protein Antigens on Major Histocompatability Complex Class I Molecules by Dendritic Cells: Pathway of Presentation and Regulation by Cytokines. Blood, 1997. 90(4): p. 1594-1599. 48.Thomas, R. and P.E. Lipsky, Presentation of self peptides by dendritic cells. Possible implications for the pathogenesis of rheumatoid arthritis. Arthritis & Rheumatism, 1996. 39(2): p. 183-190. 49.Kappler, J.W., N. Roehm, and P. Marrack, T cell tolerance by clonal elimination in the thymus. Cell, 1987. 49(2): p. 273-280. 50.Thompson, A.G. and R. Thomas, Induction of immune tolerance by dendritic cells: Implications for preventative and therapeutic immunotherapy of autoimmune disease. Immunol Cell Biol, 2002. 80(6): p. 509-519. 51.Wykes, M. and G. Macpherson, Dendritic cell–B-cell interaction: dendritic cells provide B cells with CD40-independent proliferation signals and CD40-dependent survival signals. Immunology, 2000. 100(1): p. 1-3. 52.Viola, A. and A. Lanzavecchia, T cell activation determined by T cell receptor number and tunable thresholds. Science, 1996. 273(5271): p. 104. 53.Boyman, O., et al., Activation of dendritic antigen‐presenting cells expressing common heat shock protein receptor CD91 during induction of psoriasis. British Journal of Dermatology, 2005. 152(6): p. 1211-1218. 54.COUILLIN, I., A. GOMBAULT, and L. Baron, ATP release and purinergic signaling in NLRP3 inflammasome activation. Frontiers in Immunology, 2013. 3(414). 55.Lee, S., et al., The role of high mobility group box 1 in innate immunity. Yonsei medical journal, 2014. 55(5): p. 1165-1176. 56.Qiu, Y., et al., HMGB1-Promoted and TLR2/4-Dependent NK Cell Maturation and Activation Take Part in Rotavirus-Induced Murine Biliary Atresia. PLoS Pathogens, 2014. 10(3): p. e1004011. 57.Ellerman, J.E., et al., Masquerader: High Mobility Group Box-1 and Cancer. Clinical Cancer Research, 2007. 13(10): p. 2836-2848. 58.Jemal, A., et al., Global cancer statistics. CA: A Cancer Journal for Clinicians, 2011. 61(2): p. 69-90. 59.Vacchelli, E., et al., Trial Watch: Chemotherapy with immunogenic cell death inducers. Oncoimmunology, 2014. 3: p. e27878. 60.Garg, A.D., et al., Dendritic cell vaccines based on immunogenic cell death elicit danger signals and T cell–driven rejection of high-grade glioma. Science Translational Medicine, 2016. 8(328): p. 328ra27-328ra27. 61.Akira, S., K. Takeda, and T. Kaisho, Toll-like receptors: critical proteins linking innate and acquired immunity. Nature immunology, 2001. 2(8): p. 675-680. 62.Takeda, K., T. Kaisho, and S. Akira, Toll-like receptors. Annual review of immunology, 2003. 21(1): p. 335-376. 63.Akira, S. and K. Takeda, Toll-like receptor signalling. Nat Rev Immunol, 2004. 4(7): p. 499-511. 64.Kaisho, T. and S. Akira, Toll-like receptor function and signaling. Journal of allergy and clinical immunology, 2006. 117(5): p. 979-987. 65.Li, X. and J. Qin, Modulation of Toll–interleukin 1 receptor mediated signaling. Journal of molecular medicine, 2005. 83(4): p. 258-266. 66.Motshwene, P.G., et al., An oligomeric signaling platform formed by the Toll-like receptor signal transducers MyD88 and IRAK-4. Journal of Biological Chemistry, 2009. 284(37): p. 25404-25411. 67.Konno, H., et al., TRAF6 establishes innate immune responses by activating NF-κB and IRF7 upon sensing cytosolic viral RNA and DNA. PloS one, 2009. 4(5): p. e5674. 68.Sato, S., et al., Essential function for the kinase TAK1 in innate and adaptive immune responses. Nature immunology, 2005. 6(11): p. 1087-1095. 69.Huang, Q., et al., Differential regulation of interleukin 1 receptor and Toll-like receptor signaling by MEKK3. Nature immunology, 2004. 5(1): p. 98-103. 70.Kadowaki, N., et al., Subsets of Human Dendritic Cell Precursors Express Different Toll-like Receptors and Respond to Different Microbial Antigens. The Journal of Experimental Medicine, 2001. 194(6): p. 863-870. 71.Krug, A., et al., Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12. European journal of immunology, 2001. 31(10): p. 3026. 72.Kawai, T. and S. Akira, TLR signaling. Cell Death & Differentiation, 2006. 13(5): p. 816-825. 73.Sun, S., et al., Toll-like receptor activation by helminths or helminth products to alleviate inflammatory bowel disease. Parasites & vectors, 2011. 4(1): p. 186. 74.Lacarrubba, F., M.R. Nasca, and G. Micali, Advances in the use of topical imiquimod to treat dermatologic disorders. Therapeutics and clinical risk management, 2008. 4(1): p. 87. 75.Miller, R.L., et al., Review Article Imiquimod applied topically: a novel immune response modifier and new class of drug. International Journal of Immunopharmacology, 1999. 21(1): p. 1-14. 76.Tyring, S., Imiquimod applied topically: a novel immune response modifier. Skin Therapy Lett, 2001. 6(6): p. 1-4. 77.Smits, E.L., et al., The use of TLR7 and TLR8 ligands for the enhancement of cancer immunotherapy. The oncologist, 2008. 13(8): p. 859-875. 78.Schön, M. and M. Schön, Immune modulation and apoptosis induction: two sides of the antitumoral activity of imiquimod. Apoptosis, 2004. 9(3): p. 291-298. 79.Stary, G., et al., Tumoricidal activity of TLR7/8-activated inflammatory dendritic cells. Journal of Experimental Medicine, 2007. 204(6): p. 1441-1451. 80.Sullivan, T.P., et al., Evaluation of Superficial Basal Cell Carcinomas After Treatment With Imiquimod 5% Cream or Vehicle for Apoptosis and Lymphocyte Phenotyping. Dermatologic Surgery, 2003. 29(12): p. 1181-1186. 81.Suzuki, H., et al., Imiquimod, a Topical Immune Response Modifier, Induces Migration of Langerhans Cells1. Journal of Investigative Dermatology. 114(1): p. 135-141. 82.Burns, R.P., et al., The Imidazoquinolines, Imiquimod and R-848, Induce Functional, but Not Phenotypic, Maturation of Human Epidermal Langerhans' Cells. Clinical Immunology, 2000. 94(1): p. 13-23. 83.Bernstein, D.I., et al., Effect of imiquimod as an adjuvant for immunotherapy of genital HSV in guinea-pigs. Vaccine, 1995. 13(1): p. 72-76. 84.Rook, A.H., The beauty of TLR agonists for CTCL. Blood, 2012. 119(2): p. 321-322. 85.Drobits, B., et al., Imiquimod clears tumors in mice independent of adaptive immunity by converting pDCs into tumor-killing effector cells. The Journal of Clinical Investigation, 2012. 122(2): p. 575-585. 86.Ma, F., et al., The TLR7 agonists imiquimod and gardiquimod improve DC-based immunotherapy for melanoma in mice. Cellular & molecular immunology, 2010. 7(5): p. 381-388. 87.McGuire, S., World Cancer Report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO Press, 2015. Advances in Nutrition, 2016. 7(2): p. 418-419. 88.Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2015. CA: a cancer journal for clinicians, 2015. 65(1): p. 5-29. 89.Kamińska, M., et al., Breast cancer risk factors. Przegla̜d Menopauzalny = Menopause Review, 2015. 14(3): p. 196-202. 90.Miller, A., et al., Reporting results of cancer treatment. cancer, 1981. 47(1): p. 207-214. 91.Fox, E.J., Mechanism of action of mitoxantrone. Neurology, 2004. 63(12 suppl 6): p. S15-S18. 92.Mazerski, J., S. Martelli, and E. Borowski, The geometry of intercalation complex of antitumor mitoxantrone and ametantrone with DNA: molecular dynamics simulations. Acta Biochimica Polonica, 1997. 45(1): p. 1-11. 93.Krysko, D.V., et al., Immunogenic cell death and DAMPs in cancer therapy. Nature Reviews Cancer, 2012. 12(12): p. 860-875. 94.Maes, W., et al., DC vaccination with anti-CD25 treatment leads to long-term immunity against experimental glioma. Neuro-oncology, 2009. 11(5): p. 529-542. 95.Wang, W., et al., Culture and Identification of Mouse Bone Marrow-Derived Dendritic Cells and Their Capability to Induce T Lymphocyte Proliferation. Medical science monitor: international medical journal of experimental and clinical research, 2016. 22: p. 244. 96.Narita, M., et al., A leukemic plasmacytoid dendritic cell line, PMDC05, with the ability to secrete IFN-α by stimulation via Toll-like receptors and present antigens to naïve T cells. Leukemia Research, 2009. 33(9): p. 1224-1232. 97.Chlebowski, R.T., et al., Mitoxantrone use in breast cancer patients with elevated bilirubin. Breast cancer research and treatment, 1989. 14(3): p. 267-274. 98.Martins, I., et al., Molecular mechanisms of ATP secretion during immunogenic cell death. Cell Death & Differentiation, 2014. 21(1): p. 79-91. 99.Bai, Y., et al., L-selectin-dependent lymphoid occupancy is required to induce alloantigen-specific tolerance. The Journal of Immunology, 2002. 168(4): p. 1579-1589. 100.Xin, H.-m., et al., In vitro maturation and migration of immature dendritic cells after chemokine receptor 7 transfection. Canadian Journal of Microbiology, 2009. 55(7): p. 859-866. 101.Gallucci, S. and P. Matzinger, Danger signals: SOS to the immune system. Current Opinion in Immunology, 2001. 13(1): p. 114-119. 102.Idzko, M., et al., Nucleotides induce chemotaxis and actin polymerization in immature but not mature human dendritic cells via activation of pertussis toxin–sensitive P2y receptors. Blood, 2002. 100(3): p. 925-932. 103.Savina, A. and S. Amigorena, Phagocytosis and antigen presentation in dendritic cells. Immunological reviews, 2007. 219(1): p. 143-156. 104.Bezu, L., et al., Combinatorial strategies for the induction of immunogenic cell death. Frontiers in immunology, 2015. 6: p. 187. 105.Morrison, D.K., MAP kinase pathways. Cold Spring Harbor perspectives in biology, 2012. 4(11): p. a011254. 106.Wada, T. and J.M. Penninger, Mitogen-activated protein kinases in apoptosis regulation. Oncogene, 2004. 23(16): p. 2838-2849. 107.Palucka, K. and J. Banchereau, Cancer immunotherapy via dendritic cells. Nat Rev Cancer, 2012. 12(4): p. 265-277. 108.Histiocytic, P.-l., et al., Expression of Programmed Cell Death 1 Ligands (PD-L1. 2016. 109.Brown, J.A., et al., Blockade of Programmed Death-1 Ligands on Dendritic Cells Enhances T Cell Activation and Cytokine Production. The Journal of Immunology, 2003. 170(3): p. 1257-1266. 110.Huang, S.W., et al., Imiquimod simultaneously induces autophagy and apoptosis in human basal cell carcinoma cells. British Journal of Dermatology, 2010. 163(2): p. 310-320. 111.An, H., et al., Involvement of ERK, p38 and NF-κB signal transduction in regulation of TLR2, TLR4 and TLR9 gene expression induced by lipopolysaccharide in mouse dendritic cells. Immunology, 2002. 106(1): p. 38-45. 112.Mahajan, N., A. Bahl, and V. Dhawan, C-reactive protein (CRP) up-regulates expression of receptor for advanced glycation end products (RAGE) and its inflammatory ligand EN-RAGE in THP-1 cells: Inhibitory effects of atorvastatin. International Journal of Cardiology. 142(3): p. 273-278. 113.Ponnusamy, M., et al., ERK pathway mediates P2X7 expression and cell death in renal interstitial fibroblasts exposed to necrotic renal epithelial cells. American Journal of Physiology - Renal Physiology, 2011. 301(3): p. F650-F659. 114.Mellman, I., G. Coukos, and G. Dranoff, Cancer immunotherapy comes of age. Nature, 2011. 480(7378): p. 480-489. 115.Pardoll, D.M., The blockade of immune checkpoints in cancer immunotherapy. Nature Reviews Cancer, 2012. 12(4): p. 252-264. 116.Kyi, C. and M.A. Postow, Checkpoint blocking antibodies in cancer immunotherapy. FEBS letters, 2014. 588(2): p. 368-376. 117.Tsai, K.K. and A.I. Daud, The Role of Anti-PD-1/PD-L1 Agents in Melanoma: Progress to Date. Drugs, 2015. 75(6): p. 563-575. 118.Tan, S., C.W. Zhang, and G.F. Gao, Seeing is believing: anti-PD-1/PD-L1 monoclonal antibodies in action for checkpoint blockade tumor immunotherapy. Signal Transduction and Targeted Therapy, 2016. 1: p. 16029. 119.Dolan, D.E. and S. Gupta, PD-1 pathway inhibitors: changing the landscape of cancer immunotherapy. Cancer Control, 2014. 21(3): p. 231-238.
|