跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:90c8:68ff:e28a:b3d9) 您好!臺灣時間:2025/01/16 07:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭振謹
研究生(外文):Chen-Chin Cheng
論文名稱:具Imiquimod藥物抗性基底細胞癌細胞株,其特徵之探討
論文名稱(外文):The Characterization of Imiquimod-Resistant Basal Cell Carcinoma Cells
指導教授:謝政哲謝政哲引用關係
口試委員:吳俊穎陳春榮
口試日期:2017-07-19
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生物醫學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:64
中文關鍵詞:基底細胞癌藥物抗性
外文關鍵詞:Basal Cell CarcinomaImiquimodResistant
相關次數:
  • 被引用被引用:0
  • 點閱點閱:315
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目前治療基底細胞癌(basal cell carcinoma,BCC)的療法分為兩種,一種是侵入性的療法利用手術將病灶切除;而另一種是非侵入性的療法利用藥物塗抹或是口服藥物來達到毒殺癌細胞的效果。侵入性的療法雖然可以有效的移除癌細胞,但是對於年齡較高不適合動手術、術後不美觀的問題,使得非侵入性的療法逐漸受到重視。Imiquimod是類鐸受體7、8(Toll-like receptor 7、8,TLR7 and TLR8) 的配體(ligand),在細胞及活體實驗中具有抗腫瘤及抗病毒的能力,臨床上是治療基底細胞癌的抗癌用藥。而現階段非侵入式療法所遇到的瓶頸是在處理藥物之後會有藥物抗性的產生,使得基底細胞癌在獲得藥物抗性的能力之後變成很難治療。目前對於BCC如何獲得藥物抗性的能力及相關的機制都是不清楚,所以我們實驗室透過BCC緩慢提高IMQ的濃度訓練出具有IMQ藥物抗性的細胞株BCC-R,透過BCC-R來模擬臨床具有IMQ藥物抗性的基底細胞癌進行研究。我的研究先證明BCC-R與BCC是具有不同的細胞特性,且BCC-R為IMQ藥物抗性的細胞株,接著去探討2株細胞的差異。我們發現BCC-R不論是否處理IMQ,Mcl-1表現是比較強的,使得BCC-R在處理IMQ之後比較不會細胞凋亡;而在IMQ誘導細胞自噬的部分,BCC-R在LC3-II的表現量確實是比BCC來的低,而BCC-R在細胞自噬相關的蛋白Beclin-1、ATG7和ATG16 表現量是比較高的。我們也從Microarray的數據發現BCC-R在溶小體相關的基因表現與BCC相比高達2倍的差異,我們也透過Lysotracker的結果證明BCC-R確實溶小體的量比較多,在處理IMQ之後溶小體的量又更多。BCC-R在溶小體的蛋白質LAMP1、LAMP2和CTSD表現量與BCC相比是較強的。而先前的文獻有提到癌細胞在處理IMQ之後,IMQ會進到溶小體內,而我們的實驗證明了BCC-R細胞株的溶小體在IMQ藥物抗性中扮演重要的角色。我們認為這些發現有助於臨床的研究,亦對於IMQ具有藥物抗性的機制提供了重要的方向。
Two approaches for treating basal cell carcinoma (BCC) are currently used; one is the surgical resection of lesions, and the other, a noninvasive approach, involves administering cytotoxic medication topically or orally to kill cancer cells. Although the surgical approach is effective in removing cancer cells, it is not recommended for elderly people who cannot undergo surgery or for people who are concerned about postoperative wounds and scars. Consequently, noninvasive BCC treatments have been increasingly emphasized. Imiquimod, a ligand of Toll-like receptors 7 and 8 (TLR7 and TLR8), has been demonstrated to be antitumor and antivirus in living cells and in vivo. Clinically, it is an anticancer drug for treating BCC. Drug resistance is currently the major bottleneck for the noninvasive approach because drug-resistant BCC is difficult to treat. Currently, neither how BCC develops its drug-resistant ability nor the mechanism for this development is known; to more profoundly understand these topics, our laboratory developed BCC-R, an imiquimod (IMQ)-resistant cell line, by gradually increasing the IMQ concentration on BCC. Subsequently, we used BCC-R to clinically stimulate the drug resistance of BCC to IMQ. Our study first demonstrated the different cell properties of BCC-R and BCC and that BCC-R is a cell line with drug resistance to IMQ. Subsequently, we examined the differences between the two cell lines and determined that regardless of whether they were treated using IMQ or not, the expression of Mcl-1 was always stronger in BCC-R than in BCC, which explains why BCC-R was less susceptible to apoptosis than BCC in IMQ treatment. As for IMQ-induced cell autophagy, the expression of LC3-II was indeed weaker in BCC-R than in BCC, but the expression of cell autophagy–related proteins, namely Beclin-1, ATG7, and ATG16, was determined to be stronger in BCC-R than in BCC.According to the microarray data, lysosome-related gene expression in BCC-R was two times greater than in BCC. The lysotracker results suggested that BCC-R had more lysosomes than BCC did, and the amount increased after IMQ treatment. Compared with BCC, BCC-R exhibited a stronger expression of lysosomal proteins LAMP1, LAMP2, and CTSD. Our experiment demonstrated that lysosomes may play a key role in the drug resistance of the BCC-R cell line to IMQ. Our findings are critical for clinical research, and they provide key insights into the mechanisms of drug resistance to IMQ.
中文摘要………………………………………………………………………………i
英文摘要………………………………………………………………………………ii
目錄……………………………………………………………………………………iii
第一章 緒論…………………………………………………………………………1

第一節…………………………………………………………………………………1

一、 細胞自噬……………………………………………………………………1
二、 細胞凋亡……………………………………………………………………4

第二節…………………………………………………………………………………7

一、 基底細胞癌…………………………………………………………………7
二、 Imiquimod…………......……………………………………………………8
三、 Imiquimod誘導細胞自噬與細胞凋亡……………..………………………8

第三節……………………………………………………………………………..…10

一、 藥物抗性…………………………………………………………………...10
二、 藥物抗性之理論…………………………………………………………...10
三、 基底細胞癌與藥物抗性...…………………………………………………11
四、 Imiquimod與基底細胞癌...………………………………………………12

第二章 研究目的………………………………………………………..…………13

第三章 研究材料與方法...…………………………………………...……………14

一、 細胞培養……………………………………………………………………14
二、 藥物配置……………………………………………………………………15
三、 細胞外觀……………………………………………………………………15
四、 細胞存活率分析……………………………………………………………15
五、 後天獲得藥物抗性的穩定度………………………………………………16
六、 細胞生長曲線………………………………………………………………16
七、 細胞群落形成分析…………………………………………………………17
八、 西方墨點法…………………………………………………………………17
九、 流式細胞儀之分析…………………………………………………………19
十、 Lysotracker…………………………………………………………………20
十一、 細胞移動分析………………………………………………………………21
十二、 結球實驗……………………………………………………………………21
十三、 Microarray分析……………….……………………………………………22
十四、 分析與統計方法……………………………………………………………22

第四章 結果...…………………………………………………...…………………23

一、證明Imiquimod抗性的基底細胞癌細胞株(BCC-R) ……………………….23
二、BCC-R在處理高劑量的Imiquimod之後,存活的細胞具有增值成群落的能力……………………………………………………………………………….…24
三、BCC-R對於由Imiquimod所誘導細胞凋亡是有抗性………………….……24
四、BCC-R會改變由Imiquimod所誘導細胞自噬…………………….…………25
五、BCC-R細胞株溶小體在Imiquimod抗性中扮演重要的角色…….…………25
六、BCC-R與BCC在皮膚分化上的差異…………...……………………………26
七、BCC-R具有較大的doubling time…………………………..…………………27
八、BCC-R與BCC相比較,較不像癌症幹細胞…...…………...……………….27
九、BCC-R細胞株移動能力是比較弱的………………………………………….28
十、BCC-R具有多重藥物抗性的能力…………………………………………….28

第五章 結論………………………………………………………………………..30

第六章 討論………………………………………………………………………..31

第七章 參考文獻…………………………………………………………………..37

第八章 實驗結果圖………………………………………………………………..45

圖一、證明Imiquimod抗性的基底細胞癌細胞株(BCC-R) ……………………..45
圖二、BCC-R對於Imiquimod所誘導的細胞凋亡和細胞自噬有抵抗力…………49
圖三、BCC-R細胞株溶小體在Imiquimod抗性中可能扮演重要的角色………...51
圖四、BCC與BCC-R在皮膚分化上的差異………………………….……………54
圖五、BCC-R與BCC相比較,比較不像癌症幹細胞………….…………………55
圖六、BCC-R細胞株移動能力是比較弱的……………………….……………….56
圖七、BCC-R具有多重藥物抗性的能力…………………….…………………….58
圖八、本研究的實驗結果總結………………………………………………………60

第九章 附圖與附表………………………………………………………………..61

附圖一、細胞自噬的進行機制示意圖………………………………………………61
附圖二、細胞凋亡的進行示意圖……………………………………………………62
附圖三、Imiquimod藉由刺激樹突細胞而活化細胞性免疫反應抑制腫瘤的存活63
附表一、抗體一覽表…………………………..……………………………………..64
1.Jens Füllgrabe, Daniel J Klionsky & Bertrand Joseph. The return of the nucleus: transcriptional and epigenetic control of autophagy. (2014) Nat Rev Mol Cell Biol. 15,65-74.
2.Baehrecke, EH. Autophagy: dual roles in life and death?(2005) Nat.Rev.Mol.Cell Biol. 6, 505-510.
3.Vellai,T. Autophagy gene and ageing.(2009) Cell Death Differ. 1,94-102.
4.Rabinowitz,JD & White,E. Autophagy and metabolism.(2010) Science. 330,1344-1348.
5.Shintani T, & Klionsky, DJ. Autophagy in health and disease: a double-edged sword. (2004) Science 306, 990–995.
6.Rubinsztein DC, Gestwicki JE, Murphy LO & Klionsky DJ. Potential therapeutic applications of autophagy. (2007) Nature Rev. Drug Discov. 6, 304–312.
7.Cuervo AM, et al. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. (2004) Science. 305, 1292-1295.
8.Kaushik S, Massey AC, Mizushima N, & Cuervo AM. Constitutive activation of chaperone-mediated autophagy in cells with impaired macroautophagy. (2008) Mol Biol Cell. 19,2179-2192.
9.Yorimitsu T & Klionsky DJ. Autophagy: molecular machinery for self-eating. (2005) Cell Death Differ. 2, 1542-1552.
10.Lum JJ, DeBerardinis RJ & Thompson CB. Autophagy in metazoans: cell survival in the land of plenty. (2005) Nature Rev Mol Cell Biol. 6, 439–448.
11.Levine B, & Yuan J. Autophagy in cell death: an innocent convict? (2005) J. Clin Invest. 115, 2679–2688.
12.Levine B, & Klionsky DJ. Development by selfdigestion: molecular mechanisms and biological functions of autophagy. (2004) Dev Cell 6, 463–477.
13.Jin S.Autophagy,mitochondrial quality control and oncogenesis.(2006) Autophagy.2,80-84.
14.Sabatini DM.mTOR and cancer: insights into a complex relationship. (2006) Nat Rev Cancer. 6,729-734.
15.Shaw RJ.LKB1 and AMP-activated kinase control of mTOR signaling and growth.(2009) Acta Physiol. 196,65-80.
16.Danial NN. & Korsmeyer SJ. Cell death: critical control points. (2004) Cell 116, 205–219.
17.Green DR. Apoptotic pathways: ten minutes to dead. (2005) Cell 121, 671–674.
18.Kroemer G, et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. (2005) Cell Death Differ. 12 (Suppl. 2), 1463–1467.
19.Kroemer G,Galluzzi L & Brenner C. Mitochondrial membrane permeabilization in cell death. (2007) Physiol Rev. 87, 99–163.
20.Galonek HL. & Hardwick JM. Upgrading the BCL-2 network. (2006) Nature Cell Biol. 8, 1317–1319.
21.Adams JM. & Cory S. The Bcl-2 apoptotic switch in cancer development and therapy. (2007) Oncogene 26, 1324–1337.
22.Vousden KH. & Lane DP. p53 in health and disease. (2007) Nature Rev. Mol. Cell Biol. 8, 275–283.
23.Tinel A. et al. Autoproteolysis of PIDD marks the bifurcation between pro-death caspase-2 and prosurvival NF-κB pathway. (2007) EMBO J. 26, 197–208.
24.Krammer PH. CD95’s deadly mission in the immune system. (2000) Nature. 407, 789–795.
25.Nakayama J, Ohtsuki M, & Oda T. Caspase-independent cell death by Fas ligation in human thymus-derived T cell line, HPB-ALL cells. (2007) Microbiol Immunol. 10,1029-1037.
26.C S M Wong, R C Strange, & J T Lear. Basal cell carcinoma. (2003) BMJ. 327, 794–798.
27.Saida Rezakovic, Kristina Zuzul, & Kresimir Kostovic. Basal cell carcinoma-review of treatment modalities. (2014) J Dermatolog Clin Res. 1035, 1-6.
28.Carola Berking, Axel Hauschild, Oliver Kölbl, et al.Basal cell carcinoma-treatments for the commonest skin cancer. (2014) Deutsches Ärzteblatt International. 111,389-395.
29.Holmes SA, Malinovszky K, & Roberts DL. Changing trends in non-melanoma skin cancer in South Wales. (2000) Br J Dermatol 143, 1224-1229.
30.Marks R, Staples M, & Giles G. Trends in non-melanocytic skin cancer treated in Australia: the second national survey. (1993) Int J Cancer 53, 585-590.
31.Miller DL, & Weinstock MA. Nonmelanoma skin cancer in the United States: incidence. (1994) J Am Acad Dermatol 30, 774-778.
32.Bath-Hextall F, Bong J, Perkins W & Williams H. Interventions for basal cell carcinoma of the skin: systematic review. (2014) BMJ. 329, 705,.
33.Corona R, et al. Risk factors for basal cell carcinoma in a Mediterranean population. (2002) Arch Dermatol 137, 1162-1168.
34.Gallagher RP, & Lee TK. Adverse effects of ultraviolet radiation: a brief review. (2006) Prog Biophys Mol Biol. 92,119-131.
35.Oberyszyn TM. Non-melanoma skin cancer:importance of gender, immunosuppressive status and vitamin d.(2008) Cancer let.261,127-136.
36.Corona R, et al. Risk factors for basal cell carcinoma in a Mediterranean population. (2002) Arch Dermatol 137, 1162-1168.
37.Lear JT, et al. Risk factors for basal cell carcinoma in the UK: case-control study in 806 patients. (1997) J R Soc Med 90, 371-374.
38.Gallagher RP, et al. Chemical exposures, medical history and risk of squamous and basal cell carcinoma of the skin. (1996) Cancer Epidemiol Biomarkers Prev 5, 419-424.
39.Maloney ME. Arsenic in dermatology. (1996) Dermatol Surg 22, 301-304.
40.Hartevelt MM, Bavinck JN, Kootte AM, & Vermeer BJ, Vandenbroucke JP. Incidence of skin cancer after renal transplantation in the Netherlands. (1990) Transplantation 49, 506-509.
41.Corona R, et al. Risk factors for basal cell carcinoma in a Mediterranean population.(2002) Arch Dermatol. 137,1162-1168
42.Lear JT, et al. Risk factors for basal cell carcinoma in the UK: case-control study in 806 patients.(1997) J R Soc Med.90,371-374.
43.Gallagher RP, et al. Chemical exposures, medical history and risk of squamous and basal cell carcinoma of the skin.(1996) Cancer Epidemiol Biomarkers Prev.5,419-424.
44.Tyring S. Imiquimod applied topically: A novel immune response modifier. (2001) Skin Therapy Lett. 6,1-4.
45.Anne Lynn S. Chang, et al. Safety and efficacy of vismodegib in patients with basal cell carcinoma nevus syndrome: pooled analysis of two trials.(2016) J Dermatolog Clin Res.11,120-125.
46.C. Lance Cowey. Targeted therapy for advanced basal-cell carcinoma : vismodegib and beyond.(2013) Dermatol Ther. 3,17-31
47.C S M Wong, R C Strange, & J T Lear. Basal cell carcinoma. (2003) BMJ. 327, 794–798.
48.Lacarrubba F, Nasca MR, & Micali G. Advances in the use of topical imiquimod to treat dermatologic disorders. (2008) Ther Clin Risk Manag. 4, 87-97.
49.Tyring S. Imiquimod applied topically: A novel immune response modifier. (2001) Skin Therapy Lett. 6, 1-4.
50.M. P. Schön & M. Schön. Immune modulation and apoptosis induction:two sides of the antitumoral activity of imiquimod.(2004) Apoptosis.9, 291-298.
51.Margarete Schön, et al. Tumor-Selective Induction of Apoptosis and the Small-Molecule Immune Response Modifier Imiquimod. (2003) Journal of the National Cancer Institute, 95.
52.Evelinen L. J. M. Smits Peter, & Ponsaerts Zwin. Berneman Viggo F. I. Van Tendeloo. The Use of TLR7 and TLR8 Ligands for the Enhancement of Cancer Immunotherapy. (2008) The Oncologist. 13, 859–875.
53.Suzuki H, et al. Imiquimod, a topicalimmune response modifier, induces migration of Langerhanscells. (2000) J Invest Dermatol. 114, 135–141.
54.Dubrez-Daloz L, Dupoux A, & Cartier J.IAPs: more than just inhibitors of apoptosis protein.(2008) Cell Cycle. 7, 1036-1046.
55.Danson S, Dean E, Dive C, & Ranson M. IAPs as a target for anticancer therapy.(2007) Curr Cancer Drug Targets. 7, 785-794.
56.Dean EJ, et al. X-linked inhibitor of apoptosis protein as a therapeutic target. (2007) Expert Opin Ther Targets.11,1459-1471.
57.Burns R, et al. The imidazoquinolines, imiquimod and R-848, induce functional, but not phenotypic, maturation of human epidermal Langerhans cells. (2000) Clin Immunol. 94, 13–23.
58.Michael P. Schön, et al. Death receptor-independent apoptosis in malignant melanoma induced by the small-molecule immune response modifier imiquimod.(2004) J Invest Dermatol. 122, 1266-1276.
59.Delgado MA, et al. Toll-like receptors control autophagy.(2008) EMBO J. 27,1110-1121.
60.Gutierrez MG, et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages.(2004) Cell. 119,753-766.
61.Jongdae Lee, et al. Activation of anti-hepatitis C virus responses via Toll-like receptor 7.(2006) PNAS. 103, 1828-1833.
62.Hemmi H, et al. Samll anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway.(2002) Nat Immunol. 3,196-200
63.Shi-Wei Huang, K-T Liu, C-C Chang, et al. Imiquimod simultaneously induces autophagy and apoptosis in human basal cell carcinoma cells.(2010) Br J Dermatol. 163,310-320.
64.Eric B Smith, et al. Antitumor effect of imidazquinolines in urothelical cell carcinoma of the bladder.(2007) The Journal of Urology. 177,2347-2351.
65.Sano S, Chan KS, Carbajal S, et al. Stat3 links activated keratinocytes and immunocyte required for development of psoriasis in a novel transgenic mouse model.(2005) Nat Med. 11,43-49.
66.Fu-Shing Liu. Mechanisms of chemotherapeutic drug resistance in cancer therapy a quick review.(2009) Taiwan J Obstet Gynecol. 48,239-244.
67.June L Biedler, Hansjörg Riehm. Cellular Resistance to Actinomycin D in Chinese Hamster Cells in Vitro : Cross-Resistance, Radioautographic, and Cytogenetic studies.
68.Aaron N Hata, Matthew J Niederst, et al. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition.(2016) Nature Medicine. 22,262-269.
69.Michael Ramirez, Satwik Rajaram, et al. Diverse drug-resistance mechanisms can emerge from drug-tolerant cancer persister cells.(2016) Nature Communications. 7,1-8.
70.Geoffrey R Oxnard. The cellular origins of drug resistance in cancer.(2016) Nature Medicine. 22,232-234.
71.Naoki Oshimori, Daniel Oristian, Elaine Fuchs. Tgf-beta promotes heterogeneity and drug resistnace in squamous cell carcinoma.(2015) Cell. 160,963-976.
72.O'Brien CA, Kreso A, Dick JE. Cancer stem cells in solid tumors: an overview. (2009) Semin Radiat Oncol. 2, 71-77.
73.Gemma Leon, Lauren MacDonagh, Stephen P Finn, Sinead Cuffe, Martin P Barr. Cancer stem cells in drug resistant lung cancer: targeting cell surface markers and signaling pathways.(2016) Pharmacology & Therapeutics. 158,71-90.
74.Genevieve Housman, et al. Drug resistance in cancer: an overview. (2014) Cancer. 6,1769-1792.
75.Joseph J Casciari, Stratis V Sotrchos & Robert M Sutherland. Variations in tumor cell growth rates and metabolism with oxygen concentration, glucose concentration, and extracellular pH.(1992) J Cell Physiol. 2 386-394.
76.Olivier Trédan, Carlos M Galmarini et al. Drug resistance and the solid tumor microenvironment.(2007) 19, 1441-1454.
77.Jennifer S Fang, Robert D Gillies & Robert A Gatenby. Adaptation to hypoxia and acidosis in carcinogenesis and tumor progression.(2008) Semin Cancer Biol.5,330-337.
78.Ming-Ju Tsai, Wei-An Chang, Ming-Shyan Huang & Po-Lin Kuo. Tumor microenvironment: a new treatment target for cancer.(2014) ISRN Biochemistry. 1,1-8.
79.Shannon M Mumenthaler, Jasmine Foo, Nathan C Choi, et al. The impact of microenvironmental heterogeneity on the evolution of drug resistance in cancer cells.(2015) Cancer Inform. 14, 19-31.
80.Martina McDermott , Alex J Eustace, Steven Busschots et al. In vitro development of chemotherapy and targeted therapy drug-resistant cancer cell lines: a practical guide with case studies.(2014) Frontiers In ONCOLOGY. 4,1-16.
81.L Feller, R A G Khammissa, B Kramer, M Altini & J Lemmer. Basal cell carcinoma, squamous cell carcinoma and melanoma of the head and face.(2016) Head Face Med. 12,1-7.
82.Nicolaas A P Franken, Hans M Rodermond et al. Clonogenic assay of cells in vitro.(2006) Nature Protocols.1,2315-2319.
83.Carla Russo, Ivan Cornella Taracido, Luisa Galli Stampino et al. Small molecule toll-like receptor 7 agonists localize to the MHC class II loading compartment of human plasmacytoid dendritic cells. (2011) Blood. 21,5683-5691.
84.Sameerah Shaheen, Mehreen Ahmed, Federica Lorenzi, Abdolrahman S Nateri. Spheroid-formation (Colonosphere) assay for in vitro assessment and expansion of stem cells in colon cancer.(2016) Stem cell Rev.4,492-499.
85.Amrita Bose, Muy Teck Teh, Ian C Mackenzie & Ahmad Waseem. Keratin k15 as a biomarker of epidermal stem cells.(2013) Int J MOL Sci. 10,19385-19398.
86.Cancer Research UK, London Research Institute, 44 Lincolns Inn Fields. Tumour cells coerce host tissue to cancer spread.(2013) Bonekey Rep.371,1-7.
87.Biedler JL, Riehm H. Cellular resistance to actinomycin D in Chinese hamster cells in vitro: cross-resistance, radioautographic, and cytogenetic studies.(1970) Cancer Res. 4,1174-1184.
88.Denning MF. Epidermal keratinocytes: regulation of multiple cell phenotypes by multiple protein kinase C isoforms.(2004) Int J Biochem Cell Biol.7,1141-1146.
89.Nina Kramer, Angelika Walzl, Christine Unger et al. In vitro cell migration and invasion assays.(2013) Mutat Res. 1,10-24.
90.Mukherjee S, Mazumdar M, Chakraborty S, et al. Curcumin inhibits breast cancer stem cell migration by amplifying the E-cadherin/β-catenin negative feedback loop.(2014) Stem Cell Res Ther.5,1-19.
91.Olga Vasiljeva, Anna Papazoglou, Achim Krüger et al. Tumor cell–derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. (2006) Cancer Res.10,5242-5250.
92.Stefan P Glaser, Erinna F Lee, Evelyn Trounson, et al. Anti-apoptotic Mcl-1 is essential for the development and sustained growth of acute myeloid leukemia.(2012) Genes Dev. 2,120-125.
93.Michael M Gottesman, Tito Fojo, Susan E Bates et al. Multidrug resistance in cancer: role of atp–dependent transporters. (2002) Nature Reviews Cancer. 2,18-58.
94.Gillet JP & Gottesman MM. Mechanisms of multidrug resistance in cancer. (2010) Methods Mol Biol.596,47-76.
95.Serguei Vinogradov & Xin Wei. Cancer stem cells and drug resistance: the potential of nanomedicine. (2013) Nanomedicine (Lond) 7,597-615.
96.Folkins C, et al. Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors.(2007) Cancer Res. 8,3560-3564.
97.Hovinga KE, et al. Inhibition of notch signaling in glioblastoma targets cancer stem cells via an endothelial cell intermediate.(2010) Stem cells. 6,1019-1029.
98.Dawood S, et al. Cancer Stem Cells: Implications for Cancer Therapy. (2014) Oncology. 12,1101-1107.
99.Kawai A, et al. Autophagosome-lysosome fusion depends on the pH in acidic compartments in CHO cells. (2007) Autophagy. 3,154-157.
100.Chang SH, et al. Imiquimod-induced autophagy is regulated by ER stress-mediated PKR activation in cancer cells.(2017) J Dermatol Sci. 87, 138-148.
101.Berman B, et al. Mechanisms of action of new treatment modaliies for actinic keratosis.(2006) J Drug Dermatol. 5,167-173.
102.Chakrabarty A & Geisse JK. Medical therapies for non-melanoma skin cancer. (2004) Clin Dermatol. 3,183-188.
103.Gross K, et al. 5% 5-Fluorouracil cream for the treatment of small superficial basal cell carcinoma: efficacy, tolerability, cosmetic outcome, and patient satisfaction.(2007) Dermatol Surg. 4,433-439.
104. Shelley WB & Wood MG. Nodular superficial pigmented basal cell epitheliomas. Long-term fluorouracil treatment. (1982) Arch Dermatol. 118,928-930.
105. Čeović R, et al. Multiple basal cell carcinomas of lower legs with stasis dermatitis: A therapeutic challenge.(2012) Acta Dermatovenerol Croat. 3,191-196.
106.Suruchi Aditya & Aditya Rattan. Vismodegib: A smoothened inhibitor for the treatment of advanced basal cell carcinoma. (2013) Indian Dermatol Online J. 4,365-368.
107.Scales SJ & de Sauvage FJ. Mechanisms of Hedgehog pathway activation in cancer and implications for therapy. (2009) Trends Pharmacol Sci. 6,303-312.
108.Rubin LL & de Sauvage FJ. Targeting the Hedgehog pathway in cancer. (2006) Nat Rev Drug Discov. 12,1026-1033.
109.Epstein EH. Basal cell carcinomas: attack of the hedgehog.(2008) Nat Rev Cancer. 10,743-754.
110.Sumaira Aasi, et al. New onset of keratoacanthomas after vismodegib treatment for locally advanced basal cell carcinomas: a report of 2 cases. (2013) JAMA Dermatol. 2,242-243.
111.Zhu GA, et al. Two different scenarios of squamous cell carcinoma within advanced Basal cell carcinomas: cases illustrating the importance of serial biopsy during vismodegib usage. (2014) JAMA Dermatol. 9,970-973.
112.Ruiz-Salas V, et al. Vismodegib: a review. (2014) Actas Dermosifiliogr. 8,744-751.
113.Sharpe HJ, et al. Genomic analysis of smoothened inhibitor resistance in basal cell carcinoma. (2015) Cancer Cell. 3,327-341.
114.Pricl S, et al. Smoothened (SMO) receptor mutations dictate resistance to vismodegib in basal cell carcinoma. (2015) Mol Oncol. 2,389-397.
115.Kwasniak LA & Garcia-Zuazaga J. Basal cell carcinoma: evidence-based medicine and review of treatment modalities. (2011) Int J Dermatol. 6,645-658.
116.Echelard Y, et al. Sonic hedgehog, a member of a family of putative signaling molecules, is implocated in the regulation. (1993) Cell. 7,1417-1430.
117.Krauss S, et al. A functionally conserved homolog of the drosophila segment polarity gene hh is expressed in tissues with polzrizing activity in zebrafish embryos. (1993) Cell. 7,1431-1444.
118.Roelink H, et al. Floor plate and motor neuron induction by vhh-1, a vertebrate homolog of hedgehog expressed by the notochord. (1994) Cell. 4,761-775.
119.Hebrok M, et al. Regulation of pancreas development by hedgehog signaling. (2000) Development. 22,4905-4913.
120.Yao HH, et al. Desert Hedgehog/Patched 1 signaling specifies fetal leydig cell fate in testis organogenesis. (2002) Genes Dev. 11,1433-1440.
121.Kawahira H, et al. Combined activities of hedgehog signaling inhibitors regulate panceras development. (2003) Development. 20,4871-4879.
122.Ingham PW & McMahon AP. Hedgehog signaling in animal development: paradigms and principles. (2001) Gene Dev. 23,3059-3087.
123.Pathi S, et al. Comparative biological responses to human sonic, indian, and desert hedgehog. (2001) Mech Dev. 106,1-2.
124.Fan H, et al. Induction of basal cell carcinoma features in transgenic human skin expressing sonic hedgehog. (1997) Nat Med. 7,788-792.
125.Oro AE, et al. Basal cell carcinomas in mice overexpressing sonic hedgehog. (1997) Science. 276,817-821.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊