跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/02/13 08:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳芃瑋
研究生(外文):Peng-Wei Chen
論文名稱:蝕刻溶液組成對非切割晶片技術多孔矽蝕刻製程影響之研究
論文名稱(外文):The Effect of Chemical Composition on Porous Etching for Epi and Lift-off Silicon Wafer Process
指導教授:劉漢文
指導教授(外文):Han-Wen Liu
口試委員:王珽玉江雨龍
口試委員(外文):Teng-Yu WangYeu-Long Jiang
口試日期:2017-07-18
學位類別:碩士
校院名稱:國立中興大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:77
中文關鍵詞:非切割晶片技術(Kerf-free technology)切割損耗(Kerf-loss)磊晶及分離製程(Epi and lift-off process)電化學蝕刻(Electrochemical etching)多孔矽(Porous silicon)乙醇(Ethanol)異丙醇(Isopropyl alcohol)
外文關鍵詞:Kerf-free technologyKerf-lossEpi and lift-off processElectrochemical etchingPorous siliconEthanolIsopropyl alcohol
相關次數:
  • 被引用被引用:0
  • 點閱點閱:329
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
矽晶太陽光電模組總成本當中,矽晶片材料占整體50%,電池製程及封裝模組占另外50%。由於生產技術精進,太陽能電池的製程及封裝模組成本已經壓縮至極限,若需要再降低總成本,得從矽晶片材料消耗成本著手。在商業化的矽晶片生產過程中會浪費許多矽原料,浪費最多矽原料的製程階段是切片製程,此階段會造成約34%矽材料的損耗 (Kerf-loss),對於講求低成本的太陽能產業是一種負擔,因此近年來研發出一種不使用切割方式的矽晶片製程,來取代傳統的切片製程。本篇論文著重在蝕刻溶液組成與濃度調整,以利於溶液成本降低及後續回收,尋找P型與N型矽晶片的最佳蝕刻條件。
磊晶及分離製程(Epi and lift-off process)是一種可以在不損耗矽材料,就能得到單晶矽晶片的新興技術。此技術有三個主要步驟:多孔矽層形成、磊單晶矽以及磊晶矽分離。多孔矽層是將矽晶片置入酸性蝕刻溶液,並透過電化學蝕刻法得到。酸性蝕刻溶液中加入乙醇,是為了改善矽晶片表面與蝕刻溶液的接觸力,使蝕刻製程容易進行。由於乙醇在室溫下的揮發性高,蝕刻溶液較難穩定控制成分比例,因此使用異丙醇取代乙醇加入蝕刻溶液中,減少蝕刻溶液的揮發性,提高蝕刻製程的穩定性。
The cost of silicon wafer fabrication is about 50% of the total cost of silicon based photovoltaic module, and the solar cell manufacture process and module costs account for another 50%. In conventional silicon photovoltaic value chain, it will waste lots of silicon. Slicing is the most wasteful part. The kerf-loss will waste 34% of silicon. Epi and lift-off processes have developed to replace slicing one. This study focuses on the composition and concentration of etching solutions and finds out the best etching recipe for the p-type and n-type silicon.
Epi and lift-off processes can create single crystalline silicon wafers without kerf-loss. There are three basic steps in epi and lift-off process: porous layer formation, epitaxial growth, and exfoliation. The porous layer is fabricated by electrochemical etching in hydrofluoric acid solution. The ethanol is usually added into the etching solution to enhance the contact between substrate surface and solution. Because the ethanol is volatile, the ethanol content in the etching solution is changeable to destroy the stability of the solution composition in this study. A relative solvent, isopropanol, is also adopted to replace the ethanol to reduce evaporation rate of the solutions. In this study, we focus on three points: the composition of the etching solutions, changing the concentration of the etching solutions and investigating the etching characteristics of p-type and n-type silicon substrate, individually.
誌謝 i
摘要 ii
Abstract iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 簡介 1
1.1背景介紹 1
1.2文獻探討 2
1.2.1 Crystal Solar 2
1.2.2 IMEC 3
1.2.3 NexWafe 4
1.2.4 UNSW 4
1.3研究架構與目的 5
1.4論文架構 6
第二章 理論基礎與文獻回顧 7
2.1 ELO技術的前身 7
2.2電化學蝕刻概論 9
2.2.1電化學蝕刻的原理 9
2.2.2蝕刻樣貌分佈 10
2.3多孔矽的形成 12
2.3.1矽材料溶解過程 12
2.3.2多孔矽形成機制 13
2.4氣相磊晶(Vapor Phase Epitaxy) 14
2.5單雙層多孔矽層的差異 14
2.6起始層厚度調控 18
第三章 實驗介紹 20
3.1製程儀器介紹 20
3.1.1電化學蝕刻裝置 20
3.1.2電源供應器 21
3.1.3磊晶儀器 22
3.1.4雷射切割機 22
3.2材料與藥品 23
3.3實驗流程介紹 24
3.3.1蝕刻溶液組成調配(etching solution composition) 24
3.3.2電流密度調控(current density control) 25
3.3.3高溫退火(annealing) 25
3.3.4磊晶(epitaxy) 26
3.3.5分離磊晶矽(separate epitaxial silicon) 26
3.3.6磊晶矽晶片拋光(epitaxial silicon polish) 27
3.4量測儀器介紹 28
3.4.1場發射掃描式電子顯微鏡(FE-SEM) 28
3.4.2 X射線繞射分析(XRD) 28
第四章 結果與討論 29
4.1蝕刻溶液的濃度對矽晶片的蝕刻影響 29
4.1.1蝕刻溶液濃度對P-type矽晶片的蝕刻影響 29
4.1.2蝕刻溶液濃度對N-type矽晶片的蝕刻影響 34
4.2蝕刻時間對矽晶片的蝕刻影響 38
4.2.1蝕刻時間對P-type矽晶片的蝕刻影響 38
4.2.2蝕刻時間對N-type矽晶片的蝕刻影響 41
4.3電流密度對矽晶片的蝕刻影響 47
4.3.1電流密度對P-type矽晶片的蝕刻影響 47
4.3.2電流密度對N-type矽晶片的蝕刻影響 53
4.4磊晶矽的分析 64
4.4.1磊晶矽SEM圖 64
4.4.2磊晶矽XRD分析 67
第五章 結論 72
參考文獻 74
[1]楊德仁,太陽能電池材料,125~140、153~159頁,五南圖書出版公司,06月(2001)
[2]E. Kobayashi, Y. Watabe, R. Hao, and T. S. Ravi, “Efficient Heterojunction Solar Cells on n-type Epitaxial Kerfless Silicon Wafers”, 31st European Photovoltaic Solar Energy Conference and Exhibition,
[3]E. Kobayashi, Y. Watabe, R. Hao, and T. S. Ravi, “High efficiency heterojunction solar cells on n-type kerfless mono crystalline silicon wafers by epitaxial growth”, APPLIED PHYSICS LETTERS 106, 223504 (2015)
[4]K. Van Nieuwenhuysen, I. Gordon, T. Bearda, C. Boulord, M. Debucquoy, V. Depauw, F. Dross, J. Govaerts, S. Granata, R. Labie, X. Loozen, R. Martini, Barry O'Sullivan, H. S. Radhakrishnan, K. Baert and J. Poortmans, “High-Quality Epitaxial Foils, obtained by a Layer Transfer Process, for Integration in Back-Contacted Solar Cells processed on Glass” Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE
[5]N. Milenkovic, M. Drießen, B. Steinhauser, J. Benick, S. Lindekugel, M. Hermle, S. Janz and S. Reber, “Epitaxial N-type Silicon Solar Cells with 20% Efficiency”, IEEE 43rd Photovoltaic Specialists Conference (PVSC), 0058 – 0061 (2016)
[6]Lu Wang, Jianshu Han, Anthony Lochtefeld, Andrew Gerger, Mark Carroll, Donald Stryker, Susan Bengtson, Michael Curtin, Hongzhao Li, Yu Yao, Dong Lin, Jingjia Ji, Alison Lennon, Robert Opila, Allen Barnett, “Ultra-Thin Mono-crystalline Si Solar Cells on Steel Substrate with near 17% Efficiency”, 28th European Photovoltaic Solar Energy Conference and Exhibition, 2641-2644 (2013)
[7]C.S. Solanki, R.R. Bilyalov, J. Poortmans, J. Nijs, R. Mertens, “Porous silicon layer transfer processes for solar cells”, Solar Energy Materials & Solar Cells 83 101–113 (2004)
[8]R. Brendel, K. Feldrapp, R. Horbelt, and R. Auer, “15.4% efficient and 25μm-thin crystalline Si solar cell from layer transfer using porous silicon” Physical state sol. 197 pp. 497-501 (2003)
[9]F. Dross et al. “Crystalline thin-film silicon solar cells: where crystalline quality meets thin-film processing” Prog. Photovolt: Res. App.,pp. 770-784 (2012)
[10]H. Tayanaka, K. Yamauchi, and T. Matsushita, “Thin-film crystalline silicon solar cells obtained by separation of a porous silicon sacrificial layer,” in Proc. 2nd World Conf. Exhib. Photovoltaic Solar Energy Convers, Vienna, Austria, 1998, pp. 1272–1277
[11]N. Ott et al, “Evolution of the microstructure during annealing of porous silicon multi layers.” J. Appl. Phys. 95, pp. 497 (2004)
[12]K. Yamagata, Kawasaki, T. Yonehara, Atsugi, “Method of Producing Semiconductor Substrate”, United States Patent, US 5250460 A, 1992
[13]D. B. Turner, "Electropolishing silicon in hydrofluoric acid solutions", Journal of the Electrochemical Society, vol. 105, pp. 402 (1958)
[14]R. L. Smith and S. D. Collins, “Porous Silicon Formation Mechanisms,” Journal of Applied Physics, vol. 71, pp. R1-R22 (1992)
[15]X. G. Zhang, S. D. Collins, and R. L. Smith, ” Porous Silicon Formation and Electropolishing of Silicon by Anodic Polarization in HF Solution”, J. Electrochem. Soc., Vol. 136, No. 5, May 1989
[16]V. Lehmann, and S. Rönnebeck, “The Physics of Macropore Formation in Low-Doped p-Type Silicon”, Journal of The Electrochemical Society, vol. 146 (8), 2968-2975 (1999)
[17]V. Lehmann and U. Gösele, “Porous silicon formation: A quantum wire effect” Applied Physics Letters, vol.58, pp. 856-858 (1991)
[18]R. Herino, i G. Bomchil,* K. Barla, and C. Bertrand, “Porosity and Pore Size Distributions of Porous Silicon Layers”, J. Electrochemical Society 134(8) 1994-2000 (1987)
[19]Lehmann and H. Föll.,”Formation Mechanism and Properties of Electrochemically Etched Trenches in n-Type Silicon” J. Electrochemical Society 137, 653 (1990)
[20]L. N. Aleksandrov and P. L. Novikov, "Morphology of porous silicon structures formed by anodization of heavily and lightly doped silicon," Thin Solid Films, vol. 330, pp. 102-107 (1998)
[21]M. I. J. Beale, N. G. Chew, M. J. Uren, A. G. Cull is, and J. D. Benjamin, ”Microstructure and formation mechanism of porous silicon”, Appl. Phys. Lett. 46 (1). 1 January 1985
[22]Z. J. He, Y .P. Huang, R. Kwor, “A modified computer model for the formation of porous silicon”, Thin Solid Films, 265, 96-100 (1995)
[23]John-Hee Park, Chemical Vapor Deposition, ASM International, July 2001
[24]M. Karim, R. Martini, H. S. Radhakrishnan, K. Van Nieuwenhuysen, V. Depauw, W. Ramadan, I. Gordon and J. Poortmans, “Tuning of strain and surface roughness of porous silicon layers for higher-quality seeds for epitaxial growth” Karim et al. Nanoscale Research Letters 2014, 9:348
[25]Bensaid A, Patrat G, Brunel M, de Bergevin F, Herino R, “Characterization of porous silicon layers by grazing-incidence x-ray fluorescence and diffraction” Solid State Commun 79, 923-928 (1991)
[26]Barla K, Herino R, Bomchil G, Pfister JC, “Determination of lattice parameter and elastic properties of porous silicon by x-ray diffraction” J of Crystal Growth 68, 727-732 (1984)
[27]Bellet D, Dolino G, “ X-ray diffraction observation of porous-silicon wetting” Phys Rev B 1994, 50:17162-17165
[28]H. S. Radhakrishnan, R. Martini, V. Depauw, K. Van Nieuwenhuysen, T. Bearda, I. Gordon, J. Szlufcik, J. Poortmans, “Kerfless layer-transfer of thin epitaxial silicon foils using novel multiple layer porous silicon stacks with near 100% detachment yield and large minority carrier diffusion lengths” Solar Energy Materials & Solar Cells, 135(2015)
[29]Labunov V, Bondarenko V, Glinenko L, Dorofeev A, Tabulina L, “Heat treatment effect on porous silicon”. Thin Solid Films 137: pp. 123–134 (1986)
[30]Sugiyama H, Nittono O “Annealing effect on lattice distortion in anodized porous silicon layers.” Jap J of Appl Phys. 28: L2013–L2016 (1989)
[31]N. Ott, M. Nerding, G. Müller, R. Brendel, H.P. Strunk, “Structural changes in porous silicon during annealing”, Phys. Status Solidi 197 93-97 (2003)
[32]H. S. Radhakrishnan, R. Martini, V. Depauw, K. Van Nieuwenhuysen, M. Debucquoy, J. Govaerts, et al., “Improving the quality of epitaxial foils produced using a porous silicon-based layer transfer process for high-efficiency thin-film crystalline silicon solar cells”, IEEE J. Photovoltaics 4 70-77 (2014)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊