跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2024/12/13 23:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:馮軼群
研究生(外文):Yi-Qun Feng
論文名稱:同步振動對電漿積層製造成品機械性質與微觀結構影響之研究
論文名稱(外文):The Effects of Synchronous Vibration on Microstructural Evolution and Mechanical Property of Workpiece Deposited by Continuous Plasma Transferred Arc Additive Manufacturing
指導教授:吳威德吳威德引用關係
口試委員:李義剛謝之駿
口試日期:2017-05-31
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:82
中文關鍵詞:M2鉬系高速鋼316L不銹鋼振動消除殘留應力轉移式電弧電漿積層製造殘留應力顯微結構組織硬度拉伸性質
外文關鍵詞:M2 high-speed steel316L stainless steelVibration stress reliefPlasma transferred arcAdditive manufactureResidual stressMicrostructure characteristicHardnessTensile strength
相關次數:
  • 被引用被引用:0
  • 點閱點閱:292
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以SS400低碳鋼為基板,並選用M2鉬系高速鋼及316L不銹鋼粉末為填料,經由轉移式電漿電弧(Plasma Transferred Arc, PTA)進行積層製造,並探究同步振動積層之不同振動模式對該技術獲得成品之應力消除效果、微觀組織變化及機械性質之影響。
316L積層製造實驗發現:透過同步振動積層可以有效降低殘留應力,消除率達到19.1% - 34.2%,其中以共振效果最佳。透過同步振動在達到晶粒細化的同時,也使得晶粒之生長方向得到一致性。因組織在同步振動時得到強化導致硬度得到提升,平均硬度由共振處理最高可達190HV。同時,發現晶粒細化作用使材料的降伏強度從300N/mm2提升至375N/mm2。
在M2積層製造的應力分析中,出現了由M2相變態膨脹而產生壓縮應力的表現,並經振動處理後獲得更大的壓縮應力表現,原因為凝固時振動促進差排滑移使得膨脹約束力得到削弱。因積層製造的熱影響作用,導致了各層間相組成之轉變,而在同層間可發現同步振動組織細化之效果。因為,上變韌鐵之相變態產生與金屬碳化物不同組成配比,導致了第二層硬度最低。第四層因殘留沃斯田鐵進一步轉化為麻田散鐵,以及難熔合金碳化物之散佈強化作用,而使硬度最高。
透過本研究發現,同步振動可以獲得較為均勻的應力值和細化晶粒的效果,且在沒有相變態影響之下,可以有效降低殘留應力累積。同時,透過同步振動技術可使積層製造之成品在硬度及拉伸試驗中可以獲得更好的表現。
Plasma transferred arc (PTA) is one of the additive manufacturing technique. In this study, the PTA process with synchronous vibration was applied to clad AISI 316L and AISI M2 pieces. Different vibration frequencies were applied during cladding process. The microstructure, residual stress, tensile strength and hardness of clad pieces were examined and discussed.
For the AISI 316L clad piece, the residual stress of clad piece with vibration was lower than that without vibration. The frequency which had the highest reduction rate 34.2% was the resonant. Also, the solidified grain size was smaller when the vibration was applied, and it tended to grow in one direction which resulted in a higher tensile strength and hardness.
The AISI M2 clad piece presented a compressive residual stress instead of a tensile residual stress because of the martensite phase transformation. With the vibration during cladding, the dislocation slippage was promoted, causing a higher compressive residual stress. Due to repeatedly heating, the formation bainite resulted in a lower hardness region. Also, the transformation of residual austenite and the dispersion of carbide increased the hardness.
For both 316L and M2 pieces, the vibratory cladding led to a small grain size microstructure and a higher hardness.
誌謝 i
摘要 ii
Abstract iii
總目錄 iv
圖目錄 vi
表目錄 vii
第一章 前言 1
第二章 文獻回顧 4
2-1積層製造技術介紹 4
2-1-1 金屬積層製造介紹及原理 4
2-1-2 金屬積層製造的發展 6
2-1-3 PTA-AM技術介紹 6
2-2 AISI 316L不銹鋼簡介 8
2-2-1 AISI 316L不銹鋼性質 8
2-2-2 AISI 316L不銹鋼用途 8
2-3 AISI M2高速鋼簡介 9
2-3-1 AISI M2高速鋼性質 9
2-3-2 AISI M2高速鋼熱的應用 10
2-3-3 AISI M2高速鋼熱處理問題 10
2-4 殘留應力量測簡介及原理 11
2-5 同步振動技術簡介 13
2-5-1 同步振動技術的歷史背景 13
2-5-2 同步振動技術原理 14
第三章 實驗方法 17
3-1 實驗流程架構與總論 17
3-2試片製備與制程 19
3-2-1 PTA積層製造設備與制程 19
3-2-2 同步振動設備與制程 20
3-2-3 AISI 316L 不銹鋼試片製作方法 21
3-2-4 AISI M2 高速鋼試片製作方法 23
3-3 分析方法 25
3-3-1 316L與M2試片的殘留應力量測 25
3-3-2 實驗試片顯微硬度量測 27
3-3-3 實驗試片光學顯微鏡觀察 27
3-3-4 AISI 316L 不銹鋼試片的拉伸試驗方法 27
第四章 結果與結論 28
Part 1 316L 28
4-1 殘留應力分析 28
4-1-1 316L積層製造之殘留應力量測結果與討論 28
4-2 金相觀察之分析 30
4-2-1 316L最上層金相 30
4-2-2 316L中段金相 34
4-2-3 316L最下層金相 37
4-3硬度量測分析 41
4-3-1 316L積層製造之硬度量測與討論 41
4-4 拉伸實驗分析 45
4-4-1 316L積層製造之拉伸實驗 45
Part 2 M2 47
4-5 殘留應力分析 47
4-5-1 M2積層製造之殘留應力量測結果與討論 47
4-6 金相觀察之分析 48
4-6-1 M2第五層(表層)金相 48
4-6-2 M2第四層金相 54
4-6-3 M2第三層金相 58
4-6-4 M2第二層金相 61
4-6-5 M2第一層(底層)金相 64
4-7硬度量測分析 71
4-7-1 M2積層製造之硬度量測與討論 71
第五章 結論 76
參考文獻 77
[1]M. Dahmen and M. Gobel, “Mechanical properties and fracture Behaviour of LMD Produced 2.4682 and Wrought 2.4630 Dissimilar Welds.” Physics Procedia, Vol. 83, pp. 426-436, 2016.
[2]B. ALMangour, D. Grzesiak, and J. Yang, “In-situ formation of novel TiC-particle-reinforced 316L stainless steel bulk-form composites by selective laser melting,” Journal of Alloys and Compounds, Vol. 706, pp. 409-418, 2017.
[3]H. Geng, J. L. Li, and F. Zhang, “Optimization of wire feed for GTAW based additive manufacturing,” Journal of Materials Processing Technology, Vol. 243, pp. 40-47, 2017
[4]R. Hildebrand, R. Eidson, and C. Tyler, “Development of a Low Cost, Rapid Prototype Lambda Wing-body Wind Tunnel Model,” 21st Applied Aerodynamics Conference, Orlando, USA, June, 2003, pp. 1-8.
[5]D. M. Keicher, J. E. Smugeresky, and J. A. Romero, “Using Laser Engineered Net Shaping (LENS) Process to Produce Complex Components from a CAD Solid Model,” Proceedings of SPIE, the International Society for Optical Engineering, Vol. 2993, pp. 91-97, 1997.
[6]F. G. Arcella and F. H. Froes, “Production of Titanium Aerospace Components from Powder Using Laser Forming,” JOM: The Journal of Minerals, Metals & Materials Society, Vol. 52, No. 5, pp. 28-30, 2000.
[7]尚曉峰、劉偉軍、王天然、王志堅,“鐳射工程化淨成型技術的研究”,工具技術,第38卷,第1期,第22-25頁,2004年。
[8]S. H. Nikam, N. K. Jain, and S. Jhavar, “Thermal modeling of geometry of single-track deposition in micro-plasma transferred arc deposition process,” Journal of Materials Processing Technology, Vol. 230, pp. 121-130, 2016.
[9]Sindo Kou, Welding Metallurgy, 2nd Ed., John Wiley & Sons, New Jersey, pp. 122-141, 2002.
[10]M. J. Marques, A. Ramasamy, A. C. Batista, J. P. Nobre, and A. Loureiro, “Effect of heat treatment on microstructure and residual stress fields of a weld multilayer austenitic steel clad,” Journal of Materials Processing Technology, Vol. 222, pp. 52-60, 2015.
[11]L. Tan, D. H. Zhang, C. F. Yao, D. X. Wu, and J. Y. Zhang, “Evolution and empirical modeling of compressive residual stress profile after milling, polishing and shot peening for TC17 alloy,” Journal of Manufacturing Processes, Vol. 26, pp. 155-165, 2017.
[12]K. Yuan and Y. Sumi, “Simulation of residual stress and fatigue strength of welded joints under the effects of ultrasonic iMPact treatment (UIT),” International Journal of Fatigue, Vol. 92, pp. 321-332, 2016.
[13]B. N. Mordyuk, Y. V. Milman, M. O. Lefimov, G. I. Prokopenko, V. V. Silberschmidt, M. I. Danylenko, and A. V. Kotko, “Characterization of ultrasonically peened and laser-shock peened surface layers of AISI 321 stainless steel,” Surface and Coatings Technology, Vol. 202, No. 9, pp. 4875-4883, 2008.
[14]M. C. Sun, Y. H. Sun, and R. K. Wang, “Vibratory stress relieving of welded sheet steels of low alloy high strength steel,” Materials Letters, Vol. 58, No. 7-8, pp. 1396-1399, 2004.
[15]D. Rao, J. Ge, and L. Chen, “Vibratory stress relief in manufacturing the rails of a maglev system,” Journal of Manufacturing Science and Engineering, Vol. 126, No. 2, pp. 388-191, 2004.
[16]C. W. Kuo, C. M. Lin, G. H. Lai, Y. C. Chen, Y. T. Chang, and W. Wu, “Characterization and mechanism of 304 stainless steel vibration welding,” Materials Transactions, Vol. 48, No. 9, pp. 2319-2323, 2007.
[17]盧秉恒、李滌塵,“增材製造(3D列印)技術發展”,機械製造與自動化,第42卷,第4期,第1-4頁,2013年。
[18]張海鷗,“金屬零件直接快速製造技術及發展趨勢”,航空製造技術,第8卷,第43-46頁,2010年。
[19]http://www.amcor-project.eu/about/concept.jsp
[20]http://3dinsider.com/3d-printing-guide/
[21]F. G. Arcella and F. H. Froes, “producing titanium aerospace components from powder using laser forming,” Journal of the Minerals Metals & Materials Society, Vol. 52, No. 5, pp. 28-30, 2000.
[22]D. Klosterman, R. Chartoff, and M. Agarwala, “Direct Fabrication of Polymer Composite Structures with Curved LOM,” Solid Freeform Fabrication Symposium Proceedings, University of Texas at August, pp. 401-409, 1999.
[23]李滌塵、曾俊華、周志華、盧秉恒、張征宇,“光固化快速成型飛機風動模型製造方法”,航空製造技術,第8卷,第26-29頁,2008年。
[24]P. Li, S. Q. Ji, X. Y. Zeng, Q. W. Hu, and W. H. Xiong, “Direct laser Fabrication of Thin-walled metal parts under open-loop control,” International Journal of Machine Tools and Manufacture, Vol. 47, No. 6, pp. 996-1002, 2007.
[25]H. Wang, W. Jiang, M. Valant, and R. Kovacevic, “Microplasma Powder Deposition as a New Solid Freeform Fabrication Process,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 217, No. 12, pp. 1641-1650, 2003.
[26]M. Terakubo, J. Oh, S. Kirihara, Y. Miyamoto, K. Matsuura, and M. Kudoh, “Freeform Fabrication of Ti-Ni and Ti-Fe Intermetallic Alloys by 3D Micro Welding,” Intermetallics, Vol. 15, No. 2, pp. 133-138, 2007.
[27]M. Katou, J. Oh, Y. Miyamoto, K. Matsuura, and M. Kudoh, “Freeform Fabrication of Titanium Metal and Intermetallic Alloys by Three-dimensional Micro Welding,” Materials and Design, Vol. 28, No. 7, pp. 2093-2098, 2007.
[28]P. A. Colegrove, H. E. Coules, J. Fairman, F. Martina, T. Kashoob, H. Mamash, and L. D. Cozzolino, “Microstructure and Residual Stress Improvement in Wire and Arc Additively Manufactured Parts through High-pressure Rolling,” Journal of Materials Processing Technology, Vol. 213, No. 10, pp. 1782-1791, 2013.
[29]溫斌和,“薄壁構件等離子弧增材製造成形特性及尺寸控制”,南京理工大學材料加工工程碩士論文,2016年。
[30]W. Aiyiti, W. Zhao, B. Lu, and Y. Tang, “Investigation of the overlapping parameters of MPAW-based rapid prototyping,” Rapid Prototyping Journal, Vol. 23, No. 3, pp. 165-172, 2006.
[31]https://www.castolin.com/content/our-technologies#welding
[32]T. Breczko, “X-Ray measurement of residual stress,” Wear, Vol. 82, pp. 27-35, 1982.
[33]K. Moussaoui, S. Segonds, W. Rubio, and M. Mousseigne, “Studying the measurement by X-ray diffraction of residual stresses in Ti6Al4V titanium alloy,” Materials Science and Engineering: A, Vol. 667, pp. 340-348, 2016..
[34]T. Kondoh, T. Goto, T. Sasaki, and Y. Hirose, “X-ray stress measurement for titanium aluminide intermetallic compound,” Advances in X-Ray Analysis, Vol. 43, pp. 107-116, 2000.
[35]T. Sasaki, and Y. Hirose, “Single incidence X-ray stress measurement for all plane stress components using imaging plate of two-dimensional X-ray detector,” Journal of the Society of Materials Science Japan, Vol. 44, No. 504, pp. 1138-1143, 1995.
[36]S. Taira, K. Tanaka, and T. Yamazaki, “A Method of X-Ray Microbeam Measurement of Local Stress and Its Application to Fatigue Crack Growth Problems,” Journal of the Society of Materials Science Japan, Vol. 27, No. 294, pp. 251, 1978.
[37]T. Sasaki, Y. Hirose, K. Sasaki, and S. Yasukawa, “Influence of image processing conditions of Debye Scherrer ring images in X-ray stress measurement using an imaging plate,” Advances in X-Ray Analysis, pp. 40-46, 1997.
[38]http://www.pulstec.co.jp/en/pr/xray/pr_x01_02.html
[39]饒德林、陳立功、倪純珍、顧振波,“振動時效技術的研究狀況”,銲接學報,第11期,第4-7頁,2004年。
[40]C. A. Walker, A. J. Waddell, and D. J. Johnston, “Vibratory stress relief-an investigation of the underlying processes,” Journal of Process Mechanical Engineering, Vol. 209, No. E1, pp. 51-58, 1995.
[41]A. S. M. Y. Munsi, A. J. Waddell, and C. A. Walker, “Vibratory stress relief - An investigation of the torsional stress effect in welded shafts,” The Journal of Strain Analysis for Engineering Design, Vol. 36, No. 5, pp. 453-464, 2001.
[42]劉曉丹、張海平、陶興華,“熱處理和振動時效複合法消除膨脹波紋管殘留應力”,熱加工工藝,第44卷,第6期,第189-192頁,2015年。
[43]姜傳海,洪波,葉亞萍,“金屬材料加熱與振動聯合去應力方法”,中華人民共和國專利,專利號碼:CN1752223A,2005年。
[44]http://www.bonal.com/tech/tech.html
[45]P. Sedek and M. S. Weglowski, “Application of Mechanical Vibration in the Machine Building Technology,” Key Engineering Materials, Vol. 504-506, pp. 1383-1388, 2012.
[46]G. August and J. Hebel, “Subresonant Vibrations Relieve Residual Stress,” Metal Progress, Vol.128, pp. 51-55, 1985.
[47]王家祥,“振動對FCC、BCC與HCP金屬材料的影響”,中興大學材料科學與工程研究所博士論文,2015年。
[48]J. S. Wang, C. W. Kuo, C. C. Hsieh, H. C. Liao, and W. Wu, “The effects of waveform in residual stress relief by vibration technique,” Trends in Welding Research - Proceedings of the 9th International Conference, June, 2012, pp. 427-437.
[49]http://www.victor-aviation.com/NDT-Production-Services/X-Ray-Diffraction.php
[50]Y. P. Ji, Z. C. Liu, and H. P. Ren, “Study on Microstructure of Quenched Martensite in W6Mo5Cr4V2 Steel,” Advanced Materials Research, Vol. 295-297, pp. 175-178, 2011.
[51]https://tubingchina.com/1.3343-tool-steel.htm
[52]黃振賢,金屬熱處理,新文京開發出版有限公司,第51頁,2004年。
[53]倪曉臣,“回火工藝對W6Mo5Cr4V2高速鋼扭轉性能影響研究”,武漢理工大學材料科學與工程學院碩士論文,2010年。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊