(18.210.12.229) 您好!臺灣時間:2021/03/03 17:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:曾威翔
研究生(外文):Wei-Hsiang Tseng
論文名稱:利用乙醇催化反應產生碳膜於Li-Al-CO3 LDH 之場發射特性研究
論文名稱(外文):Field emission properties investigation of carbon films formed on Li-Al-CO3 LDH by catalytic reaction of ethanol
指導教授:汪俊延
口試委員:王建義葉建弦林宏茂
口試日期:2017-07-24
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:41
中文關鍵詞:鋰鋁層狀雙氫氧化物煅燒乙醇催化反應場發射拉曼
外文關鍵詞:Li-Al-CO3 layered double hydroxideCalcinationcatalytic reaction of ethanolfield emissionRaman
相關次數:
  • 被引用被引用:0
  • 點閱點閱:90
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本研究是利用鋰鋁介金屬化合物(Al-Li IMC)與去離子水,製備出含有 Al3+ / L+之鹼性離子水溶液,利用水溶液以直接浸置的方式,並藉由大氣環境中二氧化碳溶於水溶液而提供CO32-離子,於玻璃基材上成長鋰-鋁層狀雙氫氧化物 ( Li-Al Layered double hydroxide )白色薄膜,後續稱為 Li-Al LDH,並由本實驗室開發之Li-Al-CO3 LDH經300 °C煅燒後應用於析氫反應具有催化的特性,而後將此觸媒應用於乙醇催化反應。將鍍好之Li-Al LDH試片煅燒至500 oC持溫三小時後,利用氮氣(流量為每分鐘15 ml)將乙醇蒸氣帶入500 oC石英管內做不同時間的乙醇催化反應,並討論其表面積碳與場發射特性的關係。從SEM之觀察中,可發現當反應時間越長,在薄膜表面有積碳之現象。經拉曼光譜儀分析顯示,在反應一至三小時的試片中 Disorder 的比值由大逐漸變小,四小時至六小時的比值逐漸趨於平緩的飽和狀態,而 Amorphous Carbon 也隨著反應的時間增長而增加,由霍爾效應分析的片電阻量測可知缺陷峰與 Amorphous Carbon 影響薄膜導電率。又經場發射量測發現,以反應四小時之試片,其起始電場最低,為 2.75 V/μm。而一小時之試片未有場發射現象產生,其餘二、三、五、六小時之試片其起始電場分別為 7.14 V/μm、 4.68 V/μm、 3.61 V/μm和 6.03 V/μm。
This study prepared the ionized alkaline aqueous solution containing Al3+ and L+ ions by mixing lithium-aluminum intermetallic compounds (Al-Li IMC) with DI-water. The surface of glass substrate was covered with the aqueous solution by the method of immersion. The growth of the white film of lithium-aluminum layered hydroxide (Li-Al Layered double hydroxide, hereafter Li-Al LDH) on the glass substrate was generated by the reaction of the Al3+ and L+ containing alkaline aqueous solution with CO32- ion from carbon dioxide in atmosphere environment. And the Li-Al-CO3 LDH developed by our laboratory was calcined at 300 °C and used in the hydrogen evolution reaction to catalyze the properties, and then the catalyst was applied to ethanol catalyzed reaction. After the calcined Li-Al LDH test piece was calcined to 500 °C for three hours, the ethanol vapor was introduced into a 500 °C quartz tube using nitrogen (flow rate of 15 ml per minute) to perform ethanol reaction at different times and discussed The relationship between the surface area carbon and the field emission characteristics. From the SEM observation, it can be found that when the reaction time is longer, there is a phenomenon of carbon deposition on the surface of the film. The Raman spectroscopy analysis showed that the ratio of Disorder in the test piece was gradually increased from one to three hours, and the ratio of four hours to six hours gradually became saturated, while that of Amorphous Carbon increased with the time of the reaction The increase in sheet resistance by the Hall effect analysis shows that the defective peaks with Amorphous Carbon affect the film conductivity. And the field emission measurement found that the reaction of four hours of the test piece, the turn-on field is the 2.75 V/μm. The turn-on field of the remaining two, three, five, six hour test pieces is 7.14 V/μm, 4.68 V/μm, 3.61 V/μm and 6.03 V/μm, respectively.
總目錄

摘要 i
ABSTRACT ii
總目錄 iv
表目錄 vi
圖目錄 vii
第一章 前言 1
1-1 研究背景 1
1-2 LDHs (Layered double hydroxide)的結構 1
1-3 電子場發射的原理及特性 2
1-4 比較奈米碳管做為場發射電子源 3
第二章 實驗方法與步驟 5
2-1 實驗流程 5
2-2 實驗基材前處理 6
2-3 鋰鋁離子共沉積液體配製 6
2-4 LDH薄膜試片製程 6
2-5 LDH之煅燒 6
2-6 乙醇催化反應 7
2-7 表面形貌分析 7
2-8 XRD結構分析 7
2-9 拉曼光譜儀 8
2-10 Hall電性分析 8
2-11 場發射特性量測 8
第三章 實驗結果與討論 9
3-1 SEM表面形貌分析 9
3-2 XRD 結晶結構繞射圖 9
3-3 拉曼光譜分析 9
3-4 Hall電性分析 10
3-5 場發射效應量測 11
3-6 將煅燒500 oC之LDH使用鍍碳機產生碳膜於LDH上之薄膜性質比較 12
第四章 結論 13
參考文獻 37


表目錄

Table. 1 (ID/IG)、(ID’/IG) 、(I1510/IG) 、(I1240/IG)的比值 14
Table. 2 經霍爾量測之時間與片電阻係數表表 15
Table. 3 不同參數的起始電場 16



圖目錄

Fig. 1 金屬-真空界面之電子場發射示意圖 17
Fig. 2 Fowler-Nordheim圖 18
Fig. 3 X-Ray diffraction patterns of Al-Li IMC. 19
Fig. 4 Li-Al-CO3 LDH薄膜製程 20
Fig. 5 乙醇催化設備簡圖 21
Fig. 6 電子場發射設備示意圖 22
Fig. 7 電子場發射試片示意圖 23
Fig.8 LDH、經500 ℃煅燒後LDH與不同時間乙醇催化反應表面形貌比較
(a) LDH (b) LDH_cal@500 oC (c) 1hr (d) 2hr 24
Fig.9 LDH、經500 ℃煅燒後LDH與不同時間乙醇催化反應表面形貌比較
(e) 3hr (f) 4hr (g) 5hr (h) 6hr 25
Fig. 10 LDH film on AEBA substrate cross-section. 26
Fig. 11 LDH與不同煅燒溫度LDH薄膜之XRD繞射圖 27
Fig. 12 LDH、經500 ℃煅燒後LDH與不同時間乙醇催化反應薄膜之XRD
繞射圖 28
Fig. 13 煅燒後與經500 oC乙醇催化反應後觸媒之拉曼圖 29
Fig. 14 經4hr 500 oC乙醇催化反應後拉曼分峰圖 30
Fig. 15 (D/IG)、(A/IG)之關係圖 31
Fig. 16 經霍爾量測不同時間乙醇催化反應之片電阻圖 32
Fig. 17 不同乙醇催化反應時間之J-E圖 33
Fig. 18 不同乙醇催化反應時間之起始電場 34
Fig. 19 不同乙醇催化反應時間之F-N圖 35
Fig. 20 (a) 經500 ℃煅燒後LDH使用鍍碳機產生碳膜之表面
(b) 經500 ℃煅燒後LDH使用鍍碳機產生碳膜之J-E圖 36
參考文獻

1.陳文河,"21世紀桌上型顯示器之世代交替-TFT-LCD v.s. CRT之探討" ,墊子月刊的八卷 第八期,八月(2002)
2.馮明憲、陳盈佳,"顯示技術產業發展回顧與展望",電子月刊第五卷 第七期,七月(1999)
3.沈觀保,"TFT-LCD平面顯示器製程設備介紹",機械月刊第二十九卷 第九期,九月(2003)
4.Liu, Z., et al., Synthesis, Anion Exchange, and Delamination of Co−Al Layered Double Hydroxide:  Assembly of the Exfoliated Nanosheet/Polyanion Composite Films and Magneto-Optical Studies. Journal of the American Chemical Society, 2006. 128(14): p. 4872-4880.
5.Fogg, A.M., A.J. Freij, and G.M. Parkinson, Synthesis and Anion Exchange Chemistry of Rhombohedral Li/Al Layered Double Hydroxides. Chemistry of Materials, 2002. 14(1): p. 232-234.
6.Miyata, S., Anion-exchange properties of hydrotalcite-like compounds. Clays Clay Miner, 1983. 31(4): p. 305-311.
7.Wang, Y. and H. Gao, Compositional and structural control on anion sorption capability of layered double hydroxides (LDHs). J Colloid Interface Sci, 2006. 301(1): p. 19-26.
8.Fridman, A., Plasma Physics And Engineering. 2004. 501
9.Ruiping Gao, Z.P., And Zhong L. Wang, Work Function At The Tips OfMultiwalled Carbon Nanotubes.Applied Physics Letters, 2001. 78: P. 1757-1759.
10.Chi, Y.-H., et al., Preparation of a novel Pd/layered double hydroxide composite membrane for hydrogen filtration and characterization by thermal cycling. International Journal of Hydrogen Energy, 2013. 38(31): p. 13734-13741.
11.Fowler, R.H. And L. Nordheim, .W.. InProc. The Royal Society (London). A. 1928, . P. 173-181.
12.Haryanto, A., et al., Current Status of Hydrogen Production Techniques by Steam Reforming of Ethanol:  A Review. Energy & Fuels, 2005. 19(5): p. 2098-2106.
13.A. G. Rinzler,J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordlander, D. T. Colbert, and R. E. Smally, “Unraveling nanotubes: field emission form an atomic wire”,Science,269,pp. 1550-1553(1995)
14.W. A. de Heer,A. Chatelain, and D. Ugart,”A carbon nanotubes: field-emission electron source”,Science,270,pp.1179-1180(1995)
15.Y.M. Shyu and F. C. N. Hong,”Low-temperature growth and field emission of aligned carbon nanotubes by chemical vapor deposition”,Mater. Chem. Phys.,72,pp.223-227(2001)
16.Y. H. Wang,J. Lin, and C.H. A. Huan,”Macroscopic field emission properties of aligned carbon nanotubes array and randomly oriented carbon nanotubes layer” Thin Solid Films,405,pp.243-247(2002)
17.O. Groning, O. M. Kuttel, C. H. Emmenegger, P. Groning, L.Schlapbach, J. Vac. Sci. & Techn. B, 18, 665 (2000).
18.T. W. Ebbesen, P. M. Ajayan, H. Hiura, and K. Tanigaki, Nature, 367,519 (1994).
19.T. W. Ebbesen and P. M. Ajayan, Nature, 358, 220 (1992).
20.A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H.Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. omanek,J. E. Fischer, and R. E. Smalley, Science, 273, 483 (1996).
21.M. Endo, K. Takeachi, S. Igarashi, K. Kobori, M. Shiraishi, and H. W.Kroto, J. Phys. Chem. Solids, 54, 1841 (1993).
22.B. C. Statishkumar, A. Govindaraj, and C. N. R. Rao, Chem. Phys.Lett., 307, 158 (1999).
23.V. Ivanov, J. B. Nagy, Ph. Lambin, A. Lucas, X. B. Zhang, X. F.Zhang, D. Bernaerts, G. Van Tendeloo, S. Amelinckx, and J. VanLanduyt, Chem. Phys. Lett., 223, 329 (1994).
24.Y. C. Choi, Y. M. Shin, S. C. Lim, D. J. Bae, Y. H. Lee, B. S. Lee,and D. Chung, J. Appl. Phys., 88, 4898 (2000).
25.Y. Chen, L. P. Guo, D. J. Johnson, and R. H. Prince, J. CrystalGrowth, 193, 342 (1998).
26.C. Bower, W. Zhu, S. Jin, and O. Zhou, Appl. Phys. Lett., 77, 830(2000)
27.V. I. Merkulov, D. H. Lowndes, Y.Y. Wei, G. Eres, and E. Voelkl,Appl. Phys. Lett., 76, 3555, (2000).
28.Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal,and P. N. Provencio, Science, 282, 1105 (1998).
29.C. Bower, O. Zhou, W. Zhu, D. J. Werder, and S. Jin, Appl. Phys.Lett., 77, 2767 (2000).
30.Shoushan Fan , Michael G. Chapline, Nathan R. Franklin, Thomas W.Tombler, Alan M. Cassell, Hongjie Dai, Science, 283, 512 (1999).
31.楊素華,藍慶忠,"奈米碳管發射顯示器",科學月刊第382期,十月(2004)
32.Chi, Y.-H., et al., Preparation of a novel Pd/layered double hydroxide composite membrane for hydrogen filtration and characterization by thermal cycling. International Journal of Hydrogen Energy, 2013. 38(31): p. 13734-13741.
33.Haryanto, A., et al., Current Status of Hydrogen Production Techniques by Steam Reforming of Ethanol:  A Review. Energy & Fuels, 2005. 19(5): p. 2098-2106.
34.J. Link Shumaker,a Czarena Crofcheck,a, S. Adam Tackett,b Eduardo Santillan-Jimenez,b and Mark Crockerb, “Biodiesel production from soybean oil using calcined Li–Al layered double hydroxide catalysts” Catalysis Letters, Vol. 115, Nos. 1–2, May 2007 (_2007)
35.Lijie Cia, Bingqing Weia, Cailu Xua, Ji Lianga, Dehai Wua, Sishen Xieb,Weiya Zhoub, Yubao Lib, Zuqin Liub, Dongsheng TangbaDepartment of Mechanical Engineering, Tsinghua University, Beijing 100084, People’s Republic of China Institute of Physics, Center for Condensed Matter Physics, Chinese Academy of Science, Beijing 100080,People’s Republic of China
36.M.S. Dresselhaus, A. Jorio, R. Saito, Characterizing Graphene, Graphite, and Carbon Nanotubes by Raman Spectroscopy, Annual Review of Condensed Matter Physics, 1 (2010) 89-108.
37.P.D. Green, C.A. Johnson, K.M. Thomas, Applications of laser Raman microprobe spectroscopy to the characterization of coals and cokes, Fuel, 62 (1983) 1013-1023.
38.M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cancado, A. Jorio, R. Saito, Studying disorder in graphite-based systems by Raman spectroscopy, Physical chemistry chemical physics : PCCP, 9 (2007) 1276-1291.
39.S. Prawer,K.W. Nugent, D.N. Jamieson, J.O. Orwa, L.A. Bursill, J.L. Peng, The Raman spectrum of nanocrystalline diamond, Chemical Physics Letters, 332 (2000) 93-97.
40.T. Jawhari, A. Roid, J. Casado, Raman spectroscopic characterization of some commercially available carbon black materials, Carbon, 33 (1995) 1561-1565.
41.Tamor and C. H. Wu, Research Staff Ford Motor Company. Dearborn. Michigan 48121-2053
42.Ruiping Gao, Z.P., And Zhong L. Wang, Work Function At The Tips Of Multiwalled Carbon Nanotubes. Applied Physics Letters, 2001. 78: P. 1757
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔