跳到主要內容

臺灣博碩士論文加值系統

(44.200.27.215) 您好!臺灣時間:2024/04/24 18:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林品緯
研究生(外文):Pin-Wei Lin
論文名稱:化學水浴法硫化鋅沉積及其在一維奈米感測器之應用
論文名稱(外文):Chemical Bath Deposition of ZnS and Its Application to One-dimensional Sensors
指導教授:武東星
口試委員:洪瑞華歐信良
口試日期:2017-07-29
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:75
中文關鍵詞:化學水浴法硫化鋅脈衝雷射沉積氧化鋅光偵測器
外文關鍵詞:chemical bath depositionZnSpulsed laser depositionZnOphotodetector
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一種新穎方式製備單晶ZnO奈米柱結構並應用在光感測器的製作。首先利用化學水浴法成長一層ZnS薄膜在藍寶石基板上,接著利用脈衝雷射鍍膜在基板溫度900 ℃下成長ZnO。由於ZnS在900 ℃時會被分解成Zn金屬奈米粒子與硫氣體,此時硫氣體會被抽出真空腔體,而Zn奈米粒子則留在基板上。Zn奈米粒子具六方晶結構且其晶相為Zn(002),這有助於後續脈衝雷射鍍膜成長ZnO(002)單晶奈米柱。有別於一般成長多晶結構ZnO奈米柱的水熱法或者水溶液法,本研究使用的成長技術可讓ZnO奈米柱具有較高結晶品質,這也使得其製作而成的金屬-半導體-金屬光偵測器具有優良的光電特性。
本論文也針對ZnS的Zn/S濃度比例及厚度對後續ZnO的表面形貌與元件特性做探討。挑選Zn/S比例為1/50、1/100及1/150且固定薄膜厚度為60 nm的三種ZnS薄膜,發現當Zn/S為1/100時,ZnO有最明顯的奈米柱結構。在1V偏壓下,當Zn/S比例為1/50、1/100及1/150時,ZnO光偵測器的暗電流分別為1.57×10-7、1.26×10-7與2.57×10-8 A;光電流分別為1.06×10-5、2.41×10-5與8.06×10-7 A;訊噪比分別為67.5、191.3與31.4。
接著固定Zn/S比例為1/100成長出厚度為60、90及120 nm的ZnS薄膜,再製作ZnO光偵測器。在1V偏壓下,當ZnS厚度為60、90及120 nm時,光偵測器的暗電流分別為1.26 × 10-7、2.18 × 10-7與7.54 × 10-8 A;光電流分別為2.41 × 10-5、6.25 × 10-5與3.75 × 10-6 A;訊噪比分別為191.3、 286.7與49.7。結果得知,當ZnS薄膜的Zn/S為1/100且厚度為90 nm時,此時的ZnO光偵測器就有最佳的元件特性。
A novel fabrication technique for single crystalline ZnO(002) nanorods has been proposed in this research. First, a chemical-bath deposited (CBD)ZnS thin film was prepared on sapphire substrate. Then, the ZnO was grown by pulsed laser deposition (PLD) on the CBD-ZnS at a substrate temperature of 900 ℃. When the substrate temperature was increased to 900 ℃, the ZnS film can be decomposed to Zn nanoparticles and sulfur fumes. The sulfur fumes were exhausted; meanwhile, Zn nanoparticles were formed on sapphire. The formation of Zn nanoparticles with the hexagonal Zn(002) phase is helpful to grow the single crystalline ZnO(002) nanorods. In comparison to conventional poly-crystalline ZnO nanorods deposited by hydrothermal and vapor–liquid–solid methods, the single crystalline ZnO nanorods presented in this study possess a higher crystal quality. Thus, the metal-semiconductor-metal photodetectors (PDs) fabricated with the single crystalline ZnO nanorods have an excellent optoelectronic performance.
The effects of Zn/S ratio and film’s thickness of CBD-ZnS on the ZnO morphology and device performance were also investigated. First, the thickness of ZnS films was fixed at 60 nm, and the Zn/S ratios of 1/50, 1/100, and 1/150 were selected. It can be found that the PLD-ZnO grown the ZnS layer with the Zn/S ratio of 1/100 possessed a more obvious nanostructure. Under a bias voltage of 1 V, the dark currents of the ZnO PDs prepared on the ZnS layers with Zn/S ratios of 1/50, 1/100, and 1/150 were 1.57×10-7, 1.26×10-7, and 2.57×10-8 A, while their photocurrents were measured to be 1.06×10-5, 2.41×10-5, and 8.06×10-7 A, respectively. The signal-to-noise ratios of these three PDs were 67.5, 191.3, and 31.4, respectively.
Then, the Zn/S ratio of ZnS film was kept at 1/100, and three thicknesses of 60, 90, and 120 nm were chosen. The dark currents (@1 V) of the ZnO PDs grown on the 60-, 90-, and 120-nm-thick ZnS layers were 1.26 × 10-7, 2.18 × 10-7, and 7.54 × 10-8 A, while their photocurrents (@1 V) were 2.41 × 10-5, 6.25 × 10-5, and 3.75 × 10-6 A, respectively. The signal-to-noise ratios of these three PDs were 191.3, 286.7, and 49.7, respectively. Based on the results, when the Zn/S ratio and thickness of the ZnS film were 1/100 and 90 nm, respectively, the ZnO PD fabricated on the CBD-ZnS possessed the optimum optoelectronic performance.
誌謝 i
摘要 ii
ABSTRACT iii
目錄 v
表目錄 viii
圖目錄 ix
第一章 序論 1
1-1 前言 1
1-2 氧化鋅材料 3
1-3 紫外光光偵測器 3
1-4 研究動機 5
第二章 基礎理論與文獻回顧 7
2-1 一維奈米結構材料 7
2-2 氧化鋅材料 8
2-2-1 氧化鋅晶體結構與材料特性 8
2-2-2 氧化鋅之導電性與光學特性 10
2-3 化學水浴法成長緩衝層 12
2-3-1 化學水浴法技術原理 13
2-3-2 硫化鋅緩衝層材料特性 14
2-4 脈衝雷射鍍膜 15
2-4-1 脈衝雷射鍍膜原理 15
2-4-2 脈衝雷射鍍膜成長氧化鋅材料 16
2-5 光偵測器 17
2-5-1 半導體光偵測器 18
2-5-2 金屬-半導體-金屬光偵測器(metal-semiconductor-metal, MSM) 18
第三章 實驗步驟與方法 19
3-1 化學水浴法成長硫化鋅薄膜 19
3-1-1 化學水浴法設備與藥品介紹 20
3-1-2 硫化鋅薄膜成長條件 20
3-2 脈衝雷射鍍膜成長氧化鋅奈米結構 21
3-2-1 脈衝雷射鍍膜系統 (Pulsed Laser Deposition) 21
3-2-2 氧化鋅奈米結構成長條件 22
3-3 紫外光金屬-半導體-金屬光偵測器之製作 23
3-4 量測儀器介紹 23
3-4-1 X光繞射分析儀 (X-ray Diffraction Analysis) 23
3-4-2 霍爾效應分析儀 (Hall Effect Analyzer) 26
3-4-3 掃描式電子顯微鏡 (Scanning Electron Microscope) 29
3-4-4 穿透式電子顯微鏡 (Transmission Electron Microscope) 30
3-4-5 化學分析電子能譜儀 (Electron Spectroscopy For Chemical Analysis) 32
3-4-6 紫外線/可見光光譜儀 (Ultraviolet–visible spectroscopy) 34
第四章 結果與討論 35
4-1 化學水浴法沉積硫化鋅薄膜 35
4-1-1 化學水浴法製備硫化鋅薄膜的成長機制 35
4-1-2 薄膜結晶與組成分析 37
4-1-3 掃描式電子顯微鏡分析 38
4-2 不同濃度比例之硫化鋅底層對於氧化鋅之表面形貌與元件特性的影響 39
4-2-1 掃描式電子顯微鏡分析 41
4-2-2 X光繞射分析 47
4-2-3 氧化鋅光偵測器之暗電流與光電流分析 48
4-2-4 氧化鋅光偵測器之光響應分析 50
4-3 不同厚度之硫化鋅對於氧化鋅之表面形貌與元件特性的影響 52
4-3-1 掃描式電子顯微鏡分析 52
4-3-2 穿透式電子顯微鏡分析 57
4-3-3 氧化鋅光偵測器之暗電流與光電流分析 58
4-3-4 氧化鋅光偵測器之光響應分析 59
4-3-5 不同沉積技術製備MSM氧化鋅光偵測器之特性比較 62
第五章 結論與未來展望 63
5-1 結論 63
5-2 未來展望 64
參考文獻 66
[1]E. Monroy, F. Omnes, and F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors,” Semicond. Sci. Technol., vol. 18, no. 4, pp. R33-R51, 2003.
[2]D. Hariskos, S. Spiering, and M. Powalla, “Buffer layers in Cu(In,Ga)Se solar cells and modules,” Thin Solid Films, vol. 480, pp. 99-109, 2005.
[3]M. Itzler, S. Donati, M. S. Unlu, and K. Kato, “Introduction to the issue on photodetectors and imaging,” IEEE J. Sel. Top. Quantum Electron, vol. 10, no. 4, pp. 665-667, 2004.
[4]E. Ozbay, N. Biyikli, I. Kimukin, T. Kartaloglu, T. Tut, and O. Aytur, “High-performance solar-blind photodetectors based on AlxGa1-xN heterostructures,” IEEE J. Sel. Top. Quantum Electron, vol. 10, no. 4, pp. 742-751, 2004.
[5]D. S. Tsai, W. C. Lien, D. H. Lien, K. M. Chen, M. L. Tsai, D. G. Senesky, Y. C. Yu, A. P. Pisano, and J. H. He, “Solar-blind photodetectors for harsh electronics,” Sci. Rep. vol. 4, p. 2628, 2013.
[6]M. C. Jeong , B. Y. Oh, M. H. Ham, S. W. Lee, and J. M. Myoung, “ZnO-nanowire-inserted GaN/ZnO heterojunction light-emitting diodes,” Small, vol. 3, no. 4, pp. 568-572, 2007.
[7]I. Cantarell and I. Almodovar, “Prediction, acceleration and correction of fatique effects in photomultiplier tubes,” Int. J. Radiation Isotopes, vol. 16, no. 2, pp. 91-95, 1965.
[8]A. R. Franklin, W. W. Holloway, and D. H. Mcmahon, “Photomultiplier tube cooling device,” Rev. Sci. Instrum., vol. 36, no. 2, p.232, 1965.
[9]G. Chodil, D. Hearn, and R. C. Jopson, “Background events in photomultiplier tubes at high altitudes,” Rev. Sci. Instrum, vol. 36, no. 3, pp. 394-395, 1965.
[10]Rajan, S. T., Subramanian, B., Kumar, A. K. N., Jayachandran, M. & Rao, M. S. R. Fabrication of nanowires of Al-doped ZnO using nanoparticle assisted pulsed laser deposition (NAPLD) for device applications. J. Alloys Compd. 584, 611–616 (2014).
[11]Kumar, E. S., Chandran, M., Bellarmine, F., Mannam, R., Nakamura, D., Higashihata, M., Okada, T. & Rao, M. S. R. Formation of one-dimensional ZnO nanowires from screw-dislocation-driven two-dimensional hexagonal stacking on diamond substrate using nanoparticle-assisted pulsed laser deposition. J. Phys. D: Appl. Phys. 47, 034016-1–034016-7 (2014).
[12]Nakamura, D., Shimogaki, T., Nakao, S., Harada, K., Muraoka, Y., Ikenoue, H. & Okada, T. Patterned growth of ZnO nanowalls by nanoparticle-assisted pulsed laser deposition. J. Phys. D: Appl. Phys. 47, 034014-1–034014-8 (2014).
[13]Fei-Peng Yu ,Growth and characterization of metal oxides for ultraviolet photodetector applications(2017/7/25)
[14]Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelt of semiconducting oxide”Science, 291 (2001) 1947-1949.
[15]D. Jiang, J. Zhang, Y. Lu, K. Liu, D. Zhao, Z. Zhang, D. Shen, and X. Fan, “Ultraviolet Schottky detector based on epitaxial ZnO thin film“, Solid State Electron. 52 (2008) 679-682.
[16]S. Liang, H. Sheng, Y. Liu, Z. huo, Y. Lu, and H. Shen, “ZnO Schottky ultraviolet photodetectors” J. Cryst. Growth, 225 (2001) 110-113.
[17]K. W. Liu, J. G. Ma, J. Y. Zhang, Y. M. Lu, D. Y. Jiang, B. H. Li, D. X. Zhao, Z.Zhang, B. Yao, and D. Z. Shen, “Ultraviolet photoconductive detector with high visible rejection and fast photoresponse based on ZnO thin film” Solid State Electron. 51 (2007) 757-761.
[18]D. D. Lin, W. Pan, and H. Wu, “Morphological control of centimeter long aluminum-doped zinc oxide nanofibers prepared by electrospinning”, J. Am. Ceram. Soc. 90 (2007) 71-76.
[19]M. Andrés Vergés, A. Mifsud, and C. J. Serna, “Formation of rod-like zinc oxide microcrystals in homogeneous Solutions”, J. Chem. Soc. Faraday Trans. 86 (1990) 959-963.
[20]R. A. Laudise, A. A. Ballman, “Hydrothermal synthesis of zinc oxide and zinc sulfide”, J. Phys. Chem. 64 (1960) 688-691.
[21]M. H. huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, Adv. Mater. 13 (2001) 113-116.
[22]W. I. Park, D. H. Kim, S. W. Jung, G. C. Yi, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods”, Appl. Phys. Lett. 80(2002) 4232-4234.
[23]W. T. Chiou, W. Y. Wu, and J. M. Ting, “Growth of single crystal ZnO nanowires using sputter deposition” Diam. Relat. Mater. 12 (2003) 1841-1844.
[24]H. Zhang, D. R. Yang, X. Y. Ma, N. Du, J. B. Wu, and D. L. Que, “Straight and Thin ZnO Nanorods: Hectogram-Scale Synthesis at Low Temperature and Cathodoluminescence” J. Phys. Chem. B, 110 (2006) 827-830.
[25]S. Xu, N. Adiga, S. Ba, T. Dasgupta, C. F. J. Wu, and Z. L. Wang, “Optimizing and Improving the Growth Quality of ZnO Nanowire Arrays Guided by Statistical Design of Experiments”, ACS Nano, 3 (2009) 1803-1812.
[26]S.Y. Myong et al., “Extremely transparent and conductive ZnO:Al thin films prepared by photo-assisted metalorganic chemical vapor deposition (photo-MOCVD) using AlCl3(6H2O) as new doping material,” Jpn. J. Appl. Phys.,vol. 36, p. L1078, 1997.
[27]B. M. Ateav et al., “Highly conductive and transparent Ga-doped epitaxial ZnO film on sapphire by CVD,” Thin Solid Film, vol. 260, no. 1, pp. 19-20, 1995.
[28]C. G Van de Walle, “Defect analysis and engineering in ZnO,” Physica B: Condensed Matter, vol.308, pp. 899-903, 2001.
[29]A. Janotti and C. G Van de Walle, “New insights into the role of native point defects in ZnO,”J. Cryst. Growth, vol. 287, no. 1, pp. 58-65, 2006.
[30]Xu, H., H. Wang, T. Jin, and H. Yan, “Rapid fabrication of luminescent Eu:YVO4 films by microwave-assisted chemical solution deposition,” Nanotechnology, vol. 16, no. 1, p. 65, 2005.
[31]M. Andrés Vergés, A. Mifsud, and C. J. Serna, “Formation of rod-like zinc oxide microcrystals in homogeneous Solutions”, J. Chem. Soc. Faraday Trans. 86 (1990) 959-963.
[32]L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solution”, Adv. Mater. 15 (2003) 464-466.
[33]S. Xu, Y. Shen, Y. Ding, and Z. L. Wang, “Growth and transfer of monolithic horizontal ZnO nanowire superstructures onto flexible substrates”, Adv. Func. Mater. 20 (2010) 1493-1495.
[34]H. W. Schock and R. Noufi, “CIGS-based solar cells for the next millennium,” Prog. Photovoltaics, vol. 8, no. 1, pp. 151-160, 2000.
[35]D. Hariskos, S. Spiering, and M. Powalla, “Buffer layers in Cu(In,Ga)Se solar cells and modules,” Thin Solid Films, vol. 480, pp. 99-109, 2005.
[36]M. Itzler, S. Donati, M. S. Unlu, and K. Kato, “Introduction to the issue on photodetectors and imaging,” IEEE J. Sel. Topics Quantum Electron., Vol. 10, no. 4, pp. 665-667, 2004.
[37]E. Ozbay, N. Biyikli, I. Kimukin, T. Kartaloglu, T. Tut, and O. Aytur, “High-performance solar-blind photodetectors based on AlxGa1-xN heterostructures,” IEEE J. Sel. Topics Quantum Electron., Vol. 10, no. 4, pp. 742-751, 2004.
[38]M. Itzler, S. Donati, M. S. Unlu, and K. Kato, “Introduction to the issue on photodetectors and imaging,” IEEE J. Sel. Topics Quantum Electron., Vol. 10, no. 4, pp. 665-667, 2004.
[39]D. Walker, V. Kumar, K. Mi, P. Sandvik, P. Kung, X. H. Zhang, and M. Razeghi, “Solar-blind AlGaN photodiodes with very low cutoff wavelength,” Appl. Phys. Lett., vol. 76, no. 4, pp. 403-405, 2000.
[40]K. W. Liu, D. Z. Shen, C. X. Shan, J. Y. Zhang, D. Y. Jiang, Y. M. Zhao, B. Yao, and D. X. Zhao, “The growth of ZnMgO alloy films for deep ultraviolet detection,” J. Phys. D, Appl. Phys., vol. 41, no. 12, p. 125104, 2008.
[41]A. Soltani, H. A. Barkad, M. Mattalah, B. Benbakhti, J. C. De Jaeger, W. J. Zhang, Y. M. Chong, Y. S. Zou, S. T. Lee, A. BenMoussa, B. Giordanengo, and J. F. Hochedez, “193 nm deep ultraviolet, visible-blind cBN photodiodes using a new IDTs design based on cubic boron nitride,” Appl. Phys. Lett., vol. 92, no. 5, p. 053501, 2008.
[42]M. Y. Liao, Y. Koide, and J. Alvarez, “Thermally-stable visible-blind diamond photodiode using WC schottky contact,” Appl. Phys. Lett., vol. 87, no. 2, p. 022105, 2005.
[43]G. Xu, S. Ji, C. Miao, G. Liu, and C. Ye, “Effect of ZnS and CdS coating on the photovoltaic properties of CuInS2-sensitized photoelectrodes,” J. Mater. Chem., vol. 22, no. 11, pp. 4890-4896, 2012.
[44]K. Liu, M. Sakurai, and Masakazu, “ZnO-based ultraviolet photodectors,” Sensors, vol. 10, no. 9, pp. 8604-8634, 2010.
[45]Xu, H., H. Wang, T. Jin, and H. Yan, “Rapid fabrication of luminescent Eu:YVO4 films by microwave-assisted chemical solution deposition,” Nanotechnology, vol. 16, no. 1, p. 65, 2005.
[46]D. H. Hwang, J. H. Ahn, K. N. Hui, K. S. Hui, and Y. G. Son, “Structural and optical properties of ZnS thin films deposited by RF magnetron sputtering,” Nanoscale Res. Lett., vol. 7, no. 1, pp.
[47]J. P. Bosco, S. B. Demers, G. M. Kimball, N. S. Lewis, and H. A. Atwater, “Band alignment of epitaxial ZnS/Zn3P2 heterojunctions,” J. Appl. Phys., vol. 112, no. 9, p. 093703, 2012.
[48]S. Yano, R. Schroeder, H. Sakai, and B. Ullrich, “High-electric-field photocurrent in thin-film ZnS formed by pulsed-laser deposition,” Appl. Phys. Lett., vol. 82, no. 13, pp. 2026-2028, 2003.
[49]M. W. Huang, Y. W. Cheng, K. Y. Pan, C. C. Chang, F. S. Shieu, and H. C. Shih, “The preparation and cathodoluminescence of ZnS nanowires grown by chemical vapor deposition,” Appl. Surf. Sci., vol. 261, pp. 665-670, 2012.
[50]G. Xu, S. Ji, C. Miao, G. Liu, and C. Ye, “Effect of ZnS and CdS coating on the photovoltaic properties of CuInS2-sensitized photoelectrodes,” J. Mater. Chem., vol. 22, no. 11, pp. 4890-4896, 2012.
[51]K. Nagamani, N. Revathi, P. Prathap, Y. Lingappa, and K. T. Ramakrishna Reddy, “Al-doped ZnS layers synthesized by solution growth method,” Curr. Appl. Phys., vol. 12, no. 2, pp. 380-384, 2012.
[52]G. L. Agawane, S. W. Shin, M. S. Kim, M. P. Suryawanshi, K. V. Gurav, A. V. Moholkar, J. Y. Lee, J. H. Yun, P. S. Patil, and J. H. Kim, “Green route fast synthesis and characterization of chemical bath deposited nanocrystalline ZnS buffer layers,” Curr. Appl. Phys., vol. 13, no. 5, pp. 850-856, 2013.
[53]F. A. Cotton and G. Wilkinson, “Advanced Inorganic Chemistry,” A Wiley-Interscience Publication, New York, 1980.
[54]B. V. Crist, “Annotated Handbooks of Monochromatic XPS Spectra,” J. Surf. Anal, vol.4, pp. 428-434, 1998.
[55]D. H. Hwang, J. H. Ahn, K. N. Hui, K. S. Hui, and Y. G. Son, “Structural and optical properties of ZnS thin films deposited by RF magnetron sputtering,” Nanoscale Res. Lett., vol. 7, no. 1, pp. 1-7, 2012.
[56]P. Mitra and J. Khan, “Chemical deposition of ZnO films from ammonium zincate bath,” Mater. Chem. Phys., vol. 98, no.2, pp. 279-284, 2006.
[57]Y. Matsumoto, U. Unal, N. Tanaka, A. Kudo, and H. Kato, “Electrochemical approach to evaluate the mechanism of photocatalytic water splitting on oxide photocatalysts,” J. Solid State Chem., vol. 177, no. 11, pp. 4205-4212, 2004.
[58]L. Chen, D. Zhang, and Q. Chen, “The effects of the complexing agents on the growth and properties of modified chemical-bath-deposited ZnS thin films,” Nano/Micro Engineered and Molecular Systems, 2006. NEMS'06. 1st IEEE International Conference on. IEEE, pp. 599-602, 2006.
[59]B. Gilbert, B. H. Frazer, H. Zhang, F. Huang, J. F. Banfield, D. Haskel, J. C. Lang, G. Srajer, and G. D. Stasio, “X-ray absorption spectroscopy of the cubic and hexagonal polytypes of zinc sulfide,” Phys. Rev. B, vol. 66, no. 24, p. 245205, 2002.
[60]A. Goudarzi, G. M. Aval, R. Sahraei, and H. Ahmadpoor, “Ammonia-free chemical bath deposition of nanocrystalline ZnS thin film buffer layer for solar cells,” Thin Solid Films, vol. 516, no. 15, pp. 4953-4957, 2008.
[61]J. Cheng, D. Fan, H. Wang, B. Liu, Y. Zhang, and H. Yan, “Chemical bath deposition of crystalline ZnS thin films,” Semicond. Sci. Technol., vol. 18, no.7, pp. 676-679, 2003.
[62]B. V. Crist, “Annotated handbooks of monochromatic XPS spectra,” J. Surf. Anal, 4, pp. 428-434, 1998.
[63]W. Gao, A. Khan, P. R. Berger, R. G. Hunsperger, G. Zydzik, H. M. O’Bryan, D. Sivco, and A. Y. Cho, “In0.53Ga0.47As metal-semiconductor-metal photodiodes with transparent cadmium tin oxide schottky contacts,” Appl. Phys. Letts., vol. 65, no. 15, pp. 1930-1932, 1994.
[64]Y. K. Su, Y. Z. Chiou, F. S. Juang, S. J. Chang and J. K. Sheu, “GaN and InGaN metal-semiconductor-metal photodetectors with different schottky contact metals,” Jpn. J. Appl. Phys., vol. 40, no. 4S, pp. 2996-2999, 2001.
[65]C. Soci, A. Zhang , B. Xiang , S. A. Dayeh , D. P. R. Aplin , J. Park , X. Y. Bao , Y. H. Lo , and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett., vol. 7, no. 4, pp. 1003-1009, 2007.
[66]Zhao, M., Wang, X., Yang, G., Zhou, M. Y., Liu, W. J., Luo, T. W., Tan, H. F. & Sun, X. R. Bias induced cutoff redshift of photocurrent in ZnO ultraviolet photodetectors. Appl. Surf. Sci. 359, 432–434 (2015).
[67]Yang, L. C., Wang, R. X., Xu, S. J., Xing, Z., Fan, Y. M., Shi, X. S., Fu, K. & Zhang, B. S. Effects of annealing temperature on the characteristics of Ga-doped ZnO film metal-semiconductor-metal ultraviolet photodetectors. J. Appl. Phys. 113, 084501-1–084501-5 (2013).
[68]Liu, Y. H., Young, S. J., Ji, L. W. & Chang, S. J. Ga-Doped ZnO Nanosheet Structure-Based Ultraviolet Photodetector by Low-Temperature Aqueous Solution Method. IEEE Trans. Electron Devices 62, 2924–2927 (2015).
[69]Young, S. J., Liu, Y. H., Hsiao, C. H., Chang, S. J., Wang, B. C., Kao, T. H., Tsai, K. S. & Wu, S. L. ZnO-Based Ultraviolet Photodetectors With Novel Nanosheet Structures. IEEE Trans. Nanotechnol. 13, 238–244 (2014).
[70]Liu, N., Fang, G., Zeng, W., Zhou, H., Cheng, F., Zheng, Q., Yuan, L., Zou, X. & Zhao, X. Direct Growth of Lateral ZnO Nanorod UV Photodetectors with Schottky Contact by a Single-Step Hydrothermal Reaction. ACS Appl. Mater. Interfaces 2, 1973–1979 (2010).
[71]Park, C., Lee, J., So, H. M. & Chang, W. S. An ultrafast response grating structural ZnO photodetector with back-to-back Schottky barriers produced by hydrothermal growth. J. Mater. Chem. C 3, 2737–2743 (2015).
[72]Liu, C. W., Chang, S. J., Hsiao, C. H., Lo, K. Y., Kao, T. H., Wang, B. C., Young, S. J., Tsai, K. S. & Wu, S. L. Noise Properties of Low-Temperature-Grown Co-Doped ZnO Nanorods as Ultraviolet Photodetectors. IEEE J. Sel. Top. Quant. Electron. 20, 3800707 (2014).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊