跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2025/01/17 02:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇育瑯
研究生(外文):Yu-Lang Su
論文名稱:不同FeO比例對FeO-CaO-SiO2-Al2O3-MgO渣系高溫特性影響之研究
論文名稱(外文):Effect of FeO content on High-temperature properties in FeO-CaO-SiO2-Al2O3-MgO system
指導教授:吳威德吳威德引用關係
口試委員:李義剛謝之駿
口試日期:2017-05-31
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:72
中文關鍵詞:電弧爐脫磷發泡
外文關鍵詞:Electric arc furnacedephosphorizationfoaming
相關次數:
  • 被引用被引用:1
  • 點閱點閱:288
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以Thermo-Calc熱力學模擬設計出不同鹼度與FeO比例之FeO-CaO-SiO2-5%MgO-5%Al2O3 五元氧化渣配方(C/S=2.5與3.0、FeO=10~40wt.%),接著進行WDS-XRF分析氧化物成份、FeO含量的化學濕式滴定法以及XRD結晶相的鑑定,確認實際之配方組成。高溫特性分析中以DV III RV黏度計進行高溫黏度測量,且對樣品進行高溫流動影像觀察,探討不同配方對軟化、熔化行為及流動性能之影響,並結合Thermo-Calc預測熔點,定義出本研究渣系於電弧爐脫磷與發泡的適用範圍。最後,進行實際脫磷試驗與發泡高度分析來找出本FeO-CaO-SiO2-MgO-Al2O3 渣系之較佳脫磷劑與發泡劑成份範圍。
經由結晶相分析與成份分析結果顯示,本研究渣系在不同鹼度下改變FeO含量(9.9-43.2 wt.%)之組成相皆由FeO、Ca2SiO4與CaMoO4所構成。由黏度分析中發現,熔渣的黏度值大小受Ca2SiO4固相顆粒的影響,且黏度值會隨鹼度提升與FeO含量的減少而上升,故C/S=2.1-9.9%FeO與C/S=2.6-20.6%FeO有較高的黏度值。透過高溫流動影像觀察方面,發現黏度值1300cP以上且Ca2SiO4固相分率達20%之配方,在高溫能保持結構穩定性,減緩軟化速率,提升熔化的溫度;而黏度值183cP以下且Ca2SiO4固相分率低於10%之配方,因大量FeO提前熔化導致結構快速崩解,大幅降低熔化溫度,使得熔渣流動性較好。
高溫發泡量測結果顯示,黏度在25cP∼1810 cP之間,發泡指數與黏度值呈線性正比關係,且C/S=2.6-20.6%FeO在1560 oC時發泡指數高達109.7%,為發泡性能最好之配方。而脫磷能力評估方面,經熱力學經驗式計算得知,在高鹼度且適當的FeO含量之脫磷劑能有效提升脫磷能力,而透過實際脫磷試驗結果發現C/S=2.1-20.0%FeO在1530-1550 oC時脫磷率高達89.2%。
In this study, FeO-CaO-SiO2-5% MgO-5% Al2O3 slag system (C / S = 2.5 and 3.0, FeO = 10 ~ 40 wt. (%)) with different basicity and FeO ratio was designed by Thermo-Calc thermodynamics simulation. The Actual composition of slag was confirmed by WDS-XRF analysis, the Fe chemical titration and XRD phase identification. In the high temperature characteristic analysis, using DV III RV viscometer, the high temperature optical image observation, and pre-thermodynamics simulation investigate the softening, melting and flow properties. Finally, the actual dephosphorization test and foaming height analysis were carried out to find out optimum composition range of dephosphorization agent and foaming agent in FeO-CaO-SiO2-5% MgO-5% Al2O3 slag system.
The x-ray diffraction results revealed that the composition of the FeO content (9.9-43.2 wt. (%)) at different basicity is composed of FeO, Ca2SiO4 and CaMoO4. It was found that the viscosity of slag was affected by Ca2SiO4 solid particles, and the viscosity increased with the increase of basicity or the decrease of FeO content, and thus C/S=2.1-9.9%FeO and C/S=2.6-20.6%FeO have a higher viscosity. Through the high temperature optical image observation, it found that the viscosity of 1300cP above and Ca2SiO4 solid fraction rate of 20% of the formula, high temperatures to maintain structural stability and slow down the softening rate enhance the melting temperature as well; and the viscosity of 183cP below and Ca2SiO4 solid fraction ratio were less than 10% of the formula, due to a large number of FeO melting in advance leading to rapid disintegration of the structure, which significantly reduce the melting temperature, making slag flow better.
The results show that the viscosity is between 25cP and 1810cP, and the foaming index is linearly proportional to the viscosity, and the foaming index of C/S=2.6-20.6%FeO is 109.7% at 1560oC, which is the best performance of the foam formulation. In the dephosphorization capacity assessment, the thermodynamic empirical formula that in the high basicity and the appropriate FeO content of the dephosphorization agent can effectively improve the ability of dephosphorization. The results showed that the dephosphorization rate of C/S=2.1-20.0%FeO was up to 89.2% at 1530-1550oC.
致謝 i
摘要 ii
Abstract iii
總目錄 iv
圖目錄 vi
表目錄 viii
第一章 前言 1
第二章 文獻回顧 4
2-1 電弧爐煉鋼 4
2-1-1 電弧爐煉鋼概述 4
2-1-2 電弧爐煉鋼製程 5
2-2 熔渣成份特性 6
2-2-1 熔渣中氧化物性質 6
2-3 熔渣黏度特性 13
2-3-1 熔渣黏度之模型 14
2-3-2量測黏度之方法 15
2-3-3熔渣黏度與溫度關係 15
2-3-4熔渣黏度與發泡關係 17
2-4 熔渣熔化之特性 18
2-4-1 熔渣溶化溫度 18
2-4-2 熔化溫度與相圖 19
2-4-3 熔化溫度的測定 20
2-5 氧化渣脫磷能力 22
2-5-1 氧化活性 22
2-5-2 脫磷操作 23
2-5-3磷分配比與磷容量計算 25
2-6 發泡操作 27
2-6-1發泡渣的形成機制和作用 27
2-6-2發泡性能與發泡指數 28
2-6-3熔渣泡沫化高度的测量方法 29

第三章 實驗與方法 30
3-1實驗流程 30
3-2試片製備 31
3-2-1 配方設計 31
3-2-2 熔煉製程 32
3-3熱力學模擬 33
3-4成份分析與相鑑定 34
3-4-1 Fe化學濕式滴定分析 34
3-4-2 X-射線螢光分析(XRF) 35
3-4-3 X-射線繞射分析(XRD) 35
3-4-4 火花放電式光譜分析儀(Spark) 36
3-5熔渣高溫特性分析 37
3-5-1 黏度測試 37
3-5-2 高溫流動影像觀察 38
3-5-3 發泡能力測試 39
第四章 結果與討論 40
4-1 成份分析 40
4-1-1 XRD相鑑定 40
4-1-2成份分析 43
4-2 熔化特性分析 44
4-2-1 Thermo-Calc熱力學模擬相圖 44
4-2-2黏度分析 47
4-2-3高溫流動影像分析 52
4-2-4 熔化特性對於脫磷及發泡的條件限制 57
4-3 發泡能力分析 58
4-3-1 高溫發泡量測 58
4-3-2 黏度對於發泡之影響 60
4-4 脫磷能力分析 62
4-4-1 磷容量與磷分配比之計算 62
4-4-2 實際脫磷結果分析 64
第五章 結論 67
參考文獻 68
參考文獻
[1] 蕭連華、戴棟、崔寶民、劉翠花,“唐鋼電弧爐泡沫渣埋弧冶煉的實踐與探討”,河北冶金,第二期,第22-77頁,西元2001年。
[2] 林偉凱,泛談國內電弧爐之使用效率概況與未來之發展方向,金屬中心,第1-3頁,西元2007年。
[3] 劉根來,煉鋼原理與工藝,冶金工業出版社,第95-96頁,西元2006年。
[4] 黃同軍,史連君,曹小軍,“電爐泡沫渣工藝”,特鋼技術,第二期,第33-35頁,西元1990年。
[5] D. L. Schroeder, “Advantages of foaming slag control in EAF operation,” Steel Times, Vol. 228, No. 10, pp. 368, 2000.
[6] X. W. Pan, “Energy improvement in induction furnace using foaming slag with variation of carbon injection,” Journal of Energy in Southern Africa, Vol. 26, No. 2, pp. 64-73, 2015.
[7] J. C. Li, Q. Lu, X. J. Liu, S. H. Zhang, and D.H. Liu, “Phosphorus Capacity of CaO-SiO2-Al2O3-MgO-FexO Slag,” Journal of Iron and Steel research, Vol. 22, No. 5, pp. 377-381, 2015.
[8] L. Pilon and R. Viskanta, “Minimum superficial gas velocity for onset of Foaming,” Chemical Engineering and Processing, Vol. 43, No. 2, pp. 149-160, 2004.
[9] B. Bhoi, A. K. Jouhari, and H. S. Ray, “Smelting reduction reactions by solid carbon using induction durance: Foaming behavior and kinetics of FeO reduction in CaO-Sio2-FeO slag,” Ironmaking and Steelmaking, Vol. 33, No. 3, pp. 245-252, 2006.
[10] T. Taschler, “Refractory Materials for the Copper and Lead Industry,” Tehran International Conference on Refractories, Vol. 4, pp. 4-6, 2004.
[11] W. H. Dennis, Metallurgy: 1863-1963, Aldine Transaction, pp. 111, 2010.
[12] 陳建任,“2016鋼鐵年鑑-總論篇”,經濟部技術處產業技術知識服務計畫,財團法人金屬工業研發中心,西元2016年。
[13] 劉根來,煉鋼原理與工藝,冶金工業出版社,第95-96頁,西元2006年。
[14] 宋文林,電弧爐煉鋼,冶金工業出版社,第1-8頁,西元1995年。
[15]X. Song, Z. Yuan, J. Jia, D. Wang, P. Li, and Z. Deng, “Effect of Phosphorus Grain Boundaries Segregation and Precipitations on Mechanical Properties for Ti-IF Steel after Recrystallization Annealing,” Journal of Materials Science and Technology, Vol. 26, No. 9, pp. 793-797, 2010.
[16]J. Perhacova, A. Vyrostkova, P. Sevc, J. Janovec, and H. J. Grabke, “ Phosphorus segregation in CrMoV low-alloy steels,” Surface Science, Vol. 454, pp. 642-646, 2000.

[17] Y. Waseda and J. M. Toguri, The Structure and Properties of Oxide Melts: Application of Basic Science to Metallurgical Processing, World Scientific, pp. 133, 1998.
[18] K. Wu and Z. Liang, “Industrial Experiment of Desulfurization in LF Refining Process at Baotou Iron and Steel Co., Ltd,” Iron and Steel, Vol. 36, No. 8, pp. 16-18, 2001.
[19] Y. N. Wang, W. C. Song, and H, Li, “Vanadium extraction and dephosphorization from V-bearing hot metal with fluxes containing CaO,” Journal of Central South University, Vol. 22, No. 8, pp. 2887-2893, 2015.
[20] L.C. Oertel and A. C. E. Silva, “Application of Thermodynamic Modeling to Slag-Metal Equilibria in Stell Making,” Calphad, Vol. 23, No. 3, pp. 379-391, 1999.
[21] Y. Wang and K. Morita, “Measurement of CaO-SiO2-SaCl2 slag density by an improved Archimedean method,” Journal of Mining and Metallurgy, Vol. 51, pp. 113-116, 2015.
[22] J. Bažan and J. Kret, “Iron and Steelmaking,” VŠB - Technical University of Ostrava, pp. 35, Ostrava, 2015.
[23] S. Basu, A. K. Lahiri, and S. Seetharaman, “Phosphorus Partition between Liquid Steel and CaO-SiO2-P2O5-MgO Slag Containing Low FeO,” Metallurgical and Materials Transactions B, Vol. 38, No. 3, pp. 357-366, 2007.
[24] S. Basu, A. K. Lahiri, and S. Seetharaman, “Phosphorus Partition between Liquid Steel and CaO-SiO2-P2O5-MgO Slag Containing 15 to 25 pct FeO,” Metallurgical and Materials Transactions B, Vol. 38, No.4, pp. 623-670, 2007.
[25] R. Saadieh, Master thesis: “Slag Refining of Iron with Respect to Phosphorus,” Department of Materials Science and Engineering, Norwegian University of Science and Technology, 2014.
[26] A. Ghosh and A. Chatterjee, Ironmaking and Steelmaking: Theory and Practice, PHI Learning Pvt. Ltd, pp. 271, 2008.
[27] D. Vieiraa, R. A. M. Almeidaa, W. V. Bielefeldta, A. C. F. Vilelaa, “Slag Evaluation to Reduce Energy Consumption and EAF Electrical Instability,” Materials Research, Vol. 19, No.5, pp. 1127-1131, 2016.
[28] 張雷,李竹,王海川,廖直友,李杰,“50tUHP電弧爐泡沫渣技術的應用”,特殊鋼,第4期,第41-42頁,西元2000年
[29] A. E. A. Nogueira, M. B. Mourão, C. Takano, and D. M. Santos, “Effect of slag composition on iron nuggets formation from carbon composite pellets,” Materials Research, Vol. 13, No.2, pp. 191-195, 2010.
[30] D. S. Viswanath, T. Ghosh, D. H. L. Prasad, N. V. K. Dutt, and K. Y. Rani, Viscosity of Liquids: Theory, Estimation, Experiment, and Data, Springer Science & Business Media, pp. 11, 2007.
[31] L. Wu, M. Ek. M. Song, and D. Sichen, “The Effect of Solid Particles on Liquid Viscosity,” steel research , Vol. 82, No.4, pp. 388-498, 2011.
[32] S.A.C. Stadler, J.J. Eksteen, and C. Aldrich, “An experimental investigation of foaming in acidic, high FexO slags,” Minerals Engineering, Vol. 20, No.12, pp. 1121-1128, 2007.
[33] M. Takemoto, J. Lee, T. Tanaka, “A Model for Estimation of Viscosity of Molten Silicate Slag,” ISIJ International, Vol. 45, No. 5, pp. 651-656, 2005.
[34] G. H. Zhang, K. C. Chou, Q. G. Xu, K. C. Mills, “ Modeling Viscosities of CaO-MgO-FeO-MnO-SiO2 Molten Slags,” Metallurgical and Materials Transaction B, Vol. 43, No. 1, pp. 64-72, 2012.
[35] A. Fluegel, “Glass viscosity calculation based on a global statistical modelling approach,” Glass Technol :Eur. J. Glass Sci. Technol. , Vol.48, No. 1, pp. 13-30, 2007.
[36] T. Xulong, Z. Zuotai, G. Min, Z. Mei, and W. Xidong, “Viscosities Behavior of CaO-SiO2-MgO-A12O3 Slag with Low Mass Ratio of CaO to SiO2, and Wide Range of Al2O3 Content,” Journal of Iron and Steel Research, Vol. 18, No. 2, pp. 1-16, 2011.
[37] S. H. Seok, S. M. Jung, Y. Seok, and D. J. Min, “Viscosity of Highly Basic Slags,” ISIJ International, Vol. 47, No. 8, pp. 1090-1096, 2007.
[38] L. Struble and G. K. Sun, “Viscosity of Portland Cement Paste as a Function of Concentration,” Advanced Cement Based Materials, Vol. 2, No. 2, pp. 62-69, 1995.
[39] A. Kitanovski and A. Poredos, “Concentration distribution and viscosity of ice- slurry in heterogeneous flow,” International Journal of Refrigeration, Vol. 25, No. 6, pp. 827-835, 2002.
[40] 林佑俞,“轉爐煉鋼爐渣黏度與成分及固態相關性之研究”,台灣大學材料科學與工程研究所碩士論文,西元2009年。
[41] E. Pretorius and H. Oltmann, “Simulation of the EAF Refining Stage Fundamentals of the EAF Process,” AISE Steel Technology, Vol. 80, No. 3, pp. 25-33, 2003.
[42] 李慶良, “不同氧化鎂與氧化鋁比例對氧化渣之黏度與發泡性的影響” ,國立中興大學材料科學與工程研究所碩士論文,西元2016年。
[43] H. C. Chuang, W. S. Hwang, and S. H. Liu, “ Effects of Basicity and FeO Content on the Softening and Melting Temperatures of the CaO-SiO2-MgO-Al2O3 Slag System,” Materials Transactions, Vol. 50, No. 6, pp. 1448 -1456, 2009.
[44] S. BasuEmail, A. K. Lahiri, and S. Seetharaman, “Activity of Iron Oxide in Steelmaking Slag,” Metallurgical and Materials Transactions B, Vol. 39, No. 3, pp. 447-456, 2008.
[45] 江嘉斌,鋼鐵冶金學,中國礦冶工程協會,第135-138頁,西元1986年。
[46] 宋文林,電弧爐煉鋼,冶金工業出版社,第95頁,西元1995年。

[47]G. W. Healy, “New Look at Phophorus Distribution,” Journal of Iron and Steel Research, Vol. 208, No. 7, pp. 664-668, 1970.
[48]H. Suito and R. Inoue, “Phophorus Distribution between MgO-Saturated CaO-FexO-SiO2-P2O5-MnO Slags and Liquid Iron,” ISIJ International, Vol. 24, No. 1, pp. 40-46, 1984.
[49]H, Suito, R. Inoue, and M. Takada, “Phophorus Distribution between Liquid Iron and MgO Saturates Slag of the System CaO-MgO-FexO-SiO2,” ISIJ International, Vol. 21, No. 4, pp. 250-259, 1981.
[50]I. D. Sommerbille, X. F. Zhang, and J. M. Toguri, “Equation for the Equilibrium Distribution of Phophorus between Basic Slags and Steel,” Transactions of Iron and Steel Society of AIME, Vol. 6, pp. 29-35, 1985.
[51]C. Chen, L. Zhang, and Jean Lehmann, “Thermodynamic Modelling of Phosphorus in Steelmaking Slags,” High Temperature Materials and Processes, Vol. 32, No. 3, pp. 237-246, 2013.
[52]N. Maruoka, S. Ono, H. Shibata, and S. Kitamura, “Equilibrium Distribution Ratio of Phosphorus between Solid Iron and Magnesiowustite-Saturated Al2O3-CaO-FetO-MgO-SiO2 Slag at 1623 K,” ISIJ International, Vol. 53, No. 10, pp. 1709-1714, 2013.
[53]張鑑,爐外精煉的理論與實踐,北京冶金工業出版社,第150-159頁,西元1993年。
[54]H. S. Kim, D. J. Min,and J. H. Park, “Foaming Behavior of CaO-SiO2-FeO-MgO-X ( =Al2O3, MnO, P2O5,and CaF2) Slags at High Temperatures,” ISIJ International, Vol. 41, No. 4, pp. 317-324, 2001.
[55]李文忠,李绪寶,“50tUHP電弧爐泡沫渣技術的應用”,特殊鋼,第4期,第41-42頁,西元2000年。
[56]L. Pilon and R. Viskanta, “Minimum Superficial Gas Velocity for onset of Foaming,” Chemical Engineering and Processing, Vol. 43, No. 2, pp. 149-160, 2004.
[57]L. Pilon, A. G. Fedorov, and R. Viskanta, “Steady-State Thickness of Liquid–Gas Foams,” Journal of Colloid and Interface Science, Vol. 242, No. 2, pp. 425-436, 2001.
[58] K. Ito and R. Fruehan, “Study on the Foaming of CaO-SiO2-FeO Slags: Part I. Foaming Parameters and Experimental Results,” Metallurgical Transactions B, Vol. 20, No. 4, pp. 509-14, 1989.
[59] K. Ito and R. Fruehan, “Study on the Foaming of CaO-SiO2-FeO Slags: Part II. Dimensional Analysis and Foaming in Iron and Steelmaking Processes,” Metallurgical Transactions B, Vol. 20, No. 4, pp. 515-521, 1989.
[60] R. Jiang and R. Fruehan, “Slag Foaming in Bath Smelting,” Metallurgical transactions B, Vol. 22, No. 4, pp. 481-489, 1991.

[61] R. Fruehan and J. Kerr, “Additions to Generate Foam in Stainless Steelmaking,” Metallurgical and Materials Transactions B, Vol. 35, No. 4, pp. 643-650, 2004.
[62] S. M. Jung and R. J. Fruehan, “Foaming Characteristics of BOF Slags,” ISIJ international, Vol. 40, No. 4, pp. 348-355, 2000.
[63] A. Kapilashrami, M. Görnerup, S. Seetharaman, and A. Lahiri, “Foaming of Slags under Dynamic Conditions,” Metallurgical and Materials Transactions B, Vol. 37, No. 1, pp. 109-117, 2006.
[64] Y. S. Lee, D. J. Min, S. M. Jung, and S. H. Yi, “Influence of Basicity and FeO Content on Viscosity of Blast Furnace Type Slags Containing FeO,” ISIJ International, Vol. 44, No. 8, pp. 1283–1290, 2004.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊