參考文獻
[1] 蕭連華、戴棟、崔寶民、劉翠花,“唐鋼電弧爐泡沫渣埋弧冶煉的實踐與探討”,河北冶金,第二期,第22-77頁,西元2001年。
[2] 林偉凱,泛談國內電弧爐之使用效率概況與未來之發展方向,金屬中心,第1-3頁,西元2007年。
[3] 劉根來,煉鋼原理與工藝,冶金工業出版社,第95-96頁,西元2006年。
[4] 黃同軍,史連君,曹小軍,“電爐泡沫渣工藝”,特鋼技術,第二期,第33-35頁,西元1990年。
[5] D. L. Schroeder, “Advantages of foaming slag control in EAF operation,” Steel Times, Vol. 228, No. 10, pp. 368, 2000.
[6] X. W. Pan, “Energy improvement in induction furnace using foaming slag with variation of carbon injection,” Journal of Energy in Southern Africa, Vol. 26, No. 2, pp. 64-73, 2015.
[7] J. C. Li, Q. Lu, X. J. Liu, S. H. Zhang, and D.H. Liu, “Phosphorus Capacity of CaO-SiO2-Al2O3-MgO-FexO Slag,” Journal of Iron and Steel research, Vol. 22, No. 5, pp. 377-381, 2015.
[8] L. Pilon and R. Viskanta, “Minimum superficial gas velocity for onset of Foaming,” Chemical Engineering and Processing, Vol. 43, No. 2, pp. 149-160, 2004.
[9] B. Bhoi, A. K. Jouhari, and H. S. Ray, “Smelting reduction reactions by solid carbon using induction durance: Foaming behavior and kinetics of FeO reduction in CaO-Sio2-FeO slag,” Ironmaking and Steelmaking, Vol. 33, No. 3, pp. 245-252, 2006.
[10] T. Taschler, “Refractory Materials for the Copper and Lead Industry,” Tehran International Conference on Refractories, Vol. 4, pp. 4-6, 2004.
[11] W. H. Dennis, Metallurgy: 1863-1963, Aldine Transaction, pp. 111, 2010.
[12] 陳建任,“2016鋼鐵年鑑-總論篇”,經濟部技術處產業技術知識服務計畫,財團法人金屬工業研發中心,西元2016年。
[13] 劉根來,煉鋼原理與工藝,冶金工業出版社,第95-96頁,西元2006年。
[14] 宋文林,電弧爐煉鋼,冶金工業出版社,第1-8頁,西元1995年。
[15]X. Song, Z. Yuan, J. Jia, D. Wang, P. Li, and Z. Deng, “Effect of Phosphorus Grain Boundaries Segregation and Precipitations on Mechanical Properties for Ti-IF Steel after Recrystallization Annealing,” Journal of Materials Science and Technology, Vol. 26, No. 9, pp. 793-797, 2010.
[16]J. Perhacova, A. Vyrostkova, P. Sevc, J. Janovec, and H. J. Grabke, “ Phosphorus segregation in CrMoV low-alloy steels,” Surface Science, Vol. 454, pp. 642-646, 2000.
[17] Y. Waseda and J. M. Toguri, The Structure and Properties of Oxide Melts: Application of Basic Science to Metallurgical Processing, World Scientific, pp. 133, 1998.
[18] K. Wu and Z. Liang, “Industrial Experiment of Desulfurization in LF Refining Process at Baotou Iron and Steel Co., Ltd,” Iron and Steel, Vol. 36, No. 8, pp. 16-18, 2001.
[19] Y. N. Wang, W. C. Song, and H, Li, “Vanadium extraction and dephosphorization from V-bearing hot metal with fluxes containing CaO,” Journal of Central South University, Vol. 22, No. 8, pp. 2887-2893, 2015.
[20] L.C. Oertel and A. C. E. Silva, “Application of Thermodynamic Modeling to Slag-Metal Equilibria in Stell Making,” Calphad, Vol. 23, No. 3, pp. 379-391, 1999.
[21] Y. Wang and K. Morita, “Measurement of CaO-SiO2-SaCl2 slag density by an improved Archimedean method,” Journal of Mining and Metallurgy, Vol. 51, pp. 113-116, 2015.
[22] J. Bažan and J. Kret, “Iron and Steelmaking,” VŠB - Technical University of Ostrava, pp. 35, Ostrava, 2015.
[23] S. Basu, A. K. Lahiri, and S. Seetharaman, “Phosphorus Partition between Liquid Steel and CaO-SiO2-P2O5-MgO Slag Containing Low FeO,” Metallurgical and Materials Transactions B, Vol. 38, No. 3, pp. 357-366, 2007.
[24] S. Basu, A. K. Lahiri, and S. Seetharaman, “Phosphorus Partition between Liquid Steel and CaO-SiO2-P2O5-MgO Slag Containing 15 to 25 pct FeO,” Metallurgical and Materials Transactions B, Vol. 38, No.4, pp. 623-670, 2007.
[25] R. Saadieh, Master thesis: “Slag Refining of Iron with Respect to Phosphorus,” Department of Materials Science and Engineering, Norwegian University of Science and Technology, 2014.
[26] A. Ghosh and A. Chatterjee, Ironmaking and Steelmaking: Theory and Practice, PHI Learning Pvt. Ltd, pp. 271, 2008.
[27] D. Vieiraa, R. A. M. Almeidaa, W. V. Bielefeldta, A. C. F. Vilelaa, “Slag Evaluation to Reduce Energy Consumption and EAF Electrical Instability,” Materials Research, Vol. 19, No.5, pp. 1127-1131, 2016.
[28] 張雷,李竹,王海川,廖直友,李杰,“50tUHP電弧爐泡沫渣技術的應用”,特殊鋼,第4期,第41-42頁,西元2000年
[29] A. E. A. Nogueira, M. B. Mourão, C. Takano, and D. M. Santos, “Effect of slag composition on iron nuggets formation from carbon composite pellets,” Materials Research, Vol. 13, No.2, pp. 191-195, 2010.
[30] D. S. Viswanath, T. Ghosh, D. H. L. Prasad, N. V. K. Dutt, and K. Y. Rani, Viscosity of Liquids: Theory, Estimation, Experiment, and Data, Springer Science & Business Media, pp. 11, 2007.
[31] L. Wu, M. Ek. M. Song, and D. Sichen, “The Effect of Solid Particles on Liquid Viscosity,” steel research , Vol. 82, No.4, pp. 388-498, 2011.
[32] S.A.C. Stadler, J.J. Eksteen, and C. Aldrich, “An experimental investigation of foaming in acidic, high FexO slags,” Minerals Engineering, Vol. 20, No.12, pp. 1121-1128, 2007.
[33] M. Takemoto, J. Lee, T. Tanaka, “A Model for Estimation of Viscosity of Molten Silicate Slag,” ISIJ International, Vol. 45, No. 5, pp. 651-656, 2005.
[34] G. H. Zhang, K. C. Chou, Q. G. Xu, K. C. Mills, “ Modeling Viscosities of CaO-MgO-FeO-MnO-SiO2 Molten Slags,” Metallurgical and Materials Transaction B, Vol. 43, No. 1, pp. 64-72, 2012.
[35] A. Fluegel, “Glass viscosity calculation based on a global statistical modelling approach,” Glass Technol :Eur. J. Glass Sci. Technol. , Vol.48, No. 1, pp. 13-30, 2007.
[36] T. Xulong, Z. Zuotai, G. Min, Z. Mei, and W. Xidong, “Viscosities Behavior of CaO-SiO2-MgO-A12O3 Slag with Low Mass Ratio of CaO to SiO2, and Wide Range of Al2O3 Content,” Journal of Iron and Steel Research, Vol. 18, No. 2, pp. 1-16, 2011.
[37] S. H. Seok, S. M. Jung, Y. Seok, and D. J. Min, “Viscosity of Highly Basic Slags,” ISIJ International, Vol. 47, No. 8, pp. 1090-1096, 2007.
[38] L. Struble and G. K. Sun, “Viscosity of Portland Cement Paste as a Function of Concentration,” Advanced Cement Based Materials, Vol. 2, No. 2, pp. 62-69, 1995.
[39] A. Kitanovski and A. Poredos, “Concentration distribution and viscosity of ice- slurry in heterogeneous flow,” International Journal of Refrigeration, Vol. 25, No. 6, pp. 827-835, 2002.
[40] 林佑俞,“轉爐煉鋼爐渣黏度與成分及固態相關性之研究”,台灣大學材料科學與工程研究所碩士論文,西元2009年。[41] E. Pretorius and H. Oltmann, “Simulation of the EAF Refining Stage Fundamentals of the EAF Process,” AISE Steel Technology, Vol. 80, No. 3, pp. 25-33, 2003.
[42] 李慶良, “不同氧化鎂與氧化鋁比例對氧化渣之黏度與發泡性的影響” ,國立中興大學材料科學與工程研究所碩士論文,西元2016年。[43] H. C. Chuang, W. S. Hwang, and S. H. Liu, “ Effects of Basicity and FeO Content on the Softening and Melting Temperatures of the CaO-SiO2-MgO-Al2O3 Slag System,” Materials Transactions, Vol. 50, No. 6, pp. 1448 -1456, 2009.
[44] S. BasuEmail, A. K. Lahiri, and S. Seetharaman, “Activity of Iron Oxide in Steelmaking Slag,” Metallurgical and Materials Transactions B, Vol. 39, No. 3, pp. 447-456, 2008.
[45] 江嘉斌,鋼鐵冶金學,中國礦冶工程協會,第135-138頁,西元1986年。
[46] 宋文林,電弧爐煉鋼,冶金工業出版社,第95頁,西元1995年。
[47]G. W. Healy, “New Look at Phophorus Distribution,” Journal of Iron and Steel Research, Vol. 208, No. 7, pp. 664-668, 1970.
[48]H. Suito and R. Inoue, “Phophorus Distribution between MgO-Saturated CaO-FexO-SiO2-P2O5-MnO Slags and Liquid Iron,” ISIJ International, Vol. 24, No. 1, pp. 40-46, 1984.
[49]H, Suito, R. Inoue, and M. Takada, “Phophorus Distribution between Liquid Iron and MgO Saturates Slag of the System CaO-MgO-FexO-SiO2,” ISIJ International, Vol. 21, No. 4, pp. 250-259, 1981.
[50]I. D. Sommerbille, X. F. Zhang, and J. M. Toguri, “Equation for the Equilibrium Distribution of Phophorus between Basic Slags and Steel,” Transactions of Iron and Steel Society of AIME, Vol. 6, pp. 29-35, 1985.
[51]C. Chen, L. Zhang, and Jean Lehmann, “Thermodynamic Modelling of Phosphorus in Steelmaking Slags,” High Temperature Materials and Processes, Vol. 32, No. 3, pp. 237-246, 2013.
[52]N. Maruoka, S. Ono, H. Shibata, and S. Kitamura, “Equilibrium Distribution Ratio of Phosphorus between Solid Iron and Magnesiowustite-Saturated Al2O3-CaO-FetO-MgO-SiO2 Slag at 1623 K,” ISIJ International, Vol. 53, No. 10, pp. 1709-1714, 2013.
[53]張鑑,爐外精煉的理論與實踐,北京冶金工業出版社,第150-159頁,西元1993年。
[54]H. S. Kim, D. J. Min,and J. H. Park, “Foaming Behavior of CaO-SiO2-FeO-MgO-X ( =Al2O3, MnO, P2O5,and CaF2) Slags at High Temperatures,” ISIJ International, Vol. 41, No. 4, pp. 317-324, 2001.
[55]李文忠,李绪寶,“50tUHP電弧爐泡沫渣技術的應用”,特殊鋼,第4期,第41-42頁,西元2000年。
[56]L. Pilon and R. Viskanta, “Minimum Superficial Gas Velocity for onset of Foaming,” Chemical Engineering and Processing, Vol. 43, No. 2, pp. 149-160, 2004.
[57]L. Pilon, A. G. Fedorov, and R. Viskanta, “Steady-State Thickness of Liquid–Gas Foams,” Journal of Colloid and Interface Science, Vol. 242, No. 2, pp. 425-436, 2001.
[58] K. Ito and R. Fruehan, “Study on the Foaming of CaO-SiO2-FeO Slags: Part I. Foaming Parameters and Experimental Results,” Metallurgical Transactions B, Vol. 20, No. 4, pp. 509-14, 1989.
[59] K. Ito and R. Fruehan, “Study on the Foaming of CaO-SiO2-FeO Slags: Part II. Dimensional Analysis and Foaming in Iron and Steelmaking Processes,” Metallurgical Transactions B, Vol. 20, No. 4, pp. 515-521, 1989.
[60] R. Jiang and R. Fruehan, “Slag Foaming in Bath Smelting,” Metallurgical transactions B, Vol. 22, No. 4, pp. 481-489, 1991.
[61] R. Fruehan and J. Kerr, “Additions to Generate Foam in Stainless Steelmaking,” Metallurgical and Materials Transactions B, Vol. 35, No. 4, pp. 643-650, 2004.
[62] S. M. Jung and R. J. Fruehan, “Foaming Characteristics of BOF Slags,” ISIJ international, Vol. 40, No. 4, pp. 348-355, 2000.
[63] A. Kapilashrami, M. Görnerup, S. Seetharaman, and A. Lahiri, “Foaming of Slags under Dynamic Conditions,” Metallurgical and Materials Transactions B, Vol. 37, No. 1, pp. 109-117, 2006.
[64] Y. S. Lee, D. J. Min, S. M. Jung, and S. H. Yi, “Influence of Basicity and FeO Content on Viscosity of Blast Furnace Type Slags Containing FeO,” ISIJ International, Vol. 44, No. 8, pp. 1283–1290, 2004.