(3.238.7.202) 您好!臺灣時間:2021/03/04 03:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳晢維
研究生(外文):Chih-Wei Chen
論文名稱:In2O3單晶奈米線形貌對於NO2氣體感測特性影響之研究
論文名稱(外文):Morphology of In2O3 Single-Crystalline Nanowires on NO2 Gas-Sensing Properties
指導教授:曾文甲
指導教授(外文):Wen-Jea Tseng
口試委員:段維新向性一
口試委員(外文):Wei-Hsing TuanHsing-I Hsiang
口試日期:2017-07-07
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:53
中文關鍵詞:氧化銦形貌尺寸氣體感測器
外文關鍵詞:In2O3morphologysizegas sensor
相關次數:
  • 被引用被引用:4
  • 點閱點閱:140
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本研究藉由氣相傳輸法製備出結晶成長方向皆為[100]之針狀與塔狀的單晶In2O3奈米線,並探討結晶形貌(包含奈米線形狀與尺寸)對NO2氣體感測特性的影響。針狀In2O3奈米線的平均底部線徑與長度分別落在540~1480 nm與3.1~23.8 μm之間,而塔狀In2O3奈米線的平均底部寬度與長度則分別落在340~1000 nm與1.6~10.6 μm。將上述不同尺寸的針狀與塔狀In2O3奈米線於最佳工作溫度100 oC進行10~30 ppm的NO2氣體感測,針狀In2O3奈米線之長徑比為11.5時,於30 ppm NO2的靈敏度有最大值為61.6,其反應及回復時間分別為115、257秒;而塔狀In2O3奈米線之長徑比為10.4時,同樣於30 ppm NO2的靈敏度有最大值為67.5,反應及回復時間分別為123、220秒。適當的長徑比除了在接觸氧化性NO2氣體時,可以使位於奈米線表層之電流載子的空乏層有較大幅度的擴張之外,也能減少氣體感測元件電極之間奈米線跨接的數量而降低空氣氣氛時的電阻值,讓電子的傳輸更有效率,因此可有效的提升氣體感測特性。
In this study, single-crystalline In2O3 nanoneedles and nanotowers with [100] growth direction were fabricated via vapor transport method. We investigated the effect of morphology (including shape and size of the nanostructure) on NO2 gas-sensing properties over an optimal working temperature 100 oC and an NO2 concentration range from 10 to 30 ppm. The widths at the bottom of In2O¬3 nanoneedles and nanotowers were found in a range between 540~1480 nm and 340~1000 nm, while the total lengths were ranged between 3.1~23.8 μm and 1.6~10.6 μm, respectively. The sensitivity of In2O3 nanoneedles with an aspect ratio of 11.5 was 61.6 for 30 ppm NO2, then the response time and recovery time were 115 s and 257 s, respectively. Moreover, the sensitivity of In2O3 nanotowers with an aspect ratio 10.4 was 67.5, then the response time and recovery time were 123 s and 220 s, respectively. An appropriate aspect ratio was favorable to expand the charge depletion layer on the surface layer of nanowires when was brought in contact with the oxidative NO2 gas. In addition, an appropriate aspect ratio could also reduce the number of nanowire junctions between the electrodes of sensing device so that it decreased the electrical resistance in air so that electrons can transport more efficiently. Therefore, the aspect ratio of nanostructures is critically important to the gas-sensing property of semiconducting nanowires gas sensors.
第一章 緒論 1
第二章 文獻回顧 2
2-1 氣體感測器 2
2-1-1 介紹氣體感測器 2
2-1-2 半導體式氣體感測機制 5
2-1-3 形貌對於半導體式氣體感測特性的影響 8
2-2 一維結構之氧化銦 10
2-2-1 介紹氧化銦 10
2-2-2 一維氧化銦的製備方法 14
2-3 研究動機 16
第三章 實驗方法與儀器設備 17
3-1 實驗藥品與製程設備 17
3-1-1 實驗藥品 17
3-1-2 製程設備 17
3-2 製備一維氧化銦奈米線 17
3-3 分析儀器 19
3-4 氣體感測元件的製作與量測 19
第四章 結果 21
4-1 針狀(1)與小塔狀In2O3奈米線之材料分析 21
4-1-1 針狀(1)與小塔狀In2O3奈米線之FE-SEM分析 21
4-1-2 針狀(1)與小塔狀In2O3奈米線之XRD與XPS分析 22
4-1-3 針狀(1)與小塔狀In2O3奈米線之TEM分析 24
4-2 針狀與塔狀In2O3奈米線的成長機制 25
4-3 針狀(1)與小塔狀In2O3奈米線之NO2氣體感測特性 28
4-4 改變尺寸之針狀與塔狀In2O3奈米線 33
4-4-1 改變尺寸之針狀與塔狀In2O3奈米線之形貌分析 33
4-4-2 改變尺寸之針狀與塔狀In2O3奈米線之NO2氣體感測特性 35
第五章 討論 37
5-1 針狀(1)與小塔狀In2O3奈米線之NO2氣體感測分析 37
5-2 改變尺寸之針狀與塔狀In2O3奈米線之NO2氣體感測分析 40
第六章 結論 43
參考文獻 44
[1]化學品全球調和制度(GHS),"物質安全資料表(NO2)",勞動部職業安全衛生署。
[2]L. Wang, M. H. Yoon, G. Lu, Y. Yang, A. Facchetti and T. J. Marks, "High-Performance Transparent Inorganic-Organic Hybrid Thin-Film n-Type Transistors", Nature Materials (2006), 5, 11, pp. 893-900.
[3]Y. G. Yan and L. X. Zhou, "Competitive Growth of In2O3 Nanorods with Rectangular Cross Sections", Applied Physics A-Materials Science & Processing (2008), 92, 2, pp. 401-405.
[4]Agency for Toxic Substances and Disease Registry (ATSDR), "ToxFAQsTM for Nitrogen Oxides", Division of Toxicology ToxFAQsTM (2002).
[5]周瑞福,"氣體感測器原理與應用",http://www.sanlien.com。
[6]李勝利,"各類型偵測感應器簡介",勞工安全衛生簡訊第76期。
[7]Tashika Japan, "Operating Principle of Gas Sensors", http://www.tashika.co.jp/products/environmental/gas_sensors/operating_principle.html.
[8]CO2 Meter, "How Does an NDIR CO2 Sensor Work?", https://www.co2meter.com/blogs/news/6010192-how-does-an-ndir-co2-sensor-work.
[9]N. Barsan, M. Huebner and U. Weimar, "Conduction Mechanism in Semiconducting Metal Oxide Sensing Films: Impact on Transduction", In Semiconductor Gas Sensors (2013), 1st ed.; R. Jaaniso and O. K. Tan, Eds.; Woodhead Publishing: Cambridge, UK, Chapter 2, pp. 35-63.
[10]E. Oh, H. Y. Choi, S. H. Jung, S. Cho, J. C. Kim, K. H. Lee, S. W. Kang, J. Kim, J. Y. Yun and S. H. Jeong, "High-Performance NO2 Gas Sensor Based on ZnO Nanorod Grown by Ultrasonic Irradiation", Sensors and Actuators B-Chemical (2009), 141, 1, pp. 239-243.
[11]A. Bielanski, J. Deren and J. Haber, "Electric Conductivity and Catalytic Activity of Semiconducting Oxide Catalysts", Nature (1957), 179, 4561, pp. 668-669.
[12]T. Seiyama, A. Kato, K. Fujiishi and M. Nagatani, "A New Detector for Gaseous Components Using Semiconductive Thin Films", Analytical Chemistry (1962), 34, 11, pp. 1502-1503.
[13]K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont and S. Phanichphant, "Semiconducting Metal Oxides as Sensors for Environmentally Hazardous Gases", Sensors and Actuators B-Chemical (2011), 160, 1, pp. 580-591.
[14]Z. Zhang and J. T. Yates, "Band Bending in Semiconductors: Chemical and Physical Consequences at Surfaces and Interfaces", Chemical Reviews (2012), 112, 10, pp. 5520-5551.
[15]C. X. Wang, L. W. Yin, L. Y. Zhang, D. Xiang and R. Gao, "Metal Oxide Gas Sensors: Sensitivity and Influencing Factors", Sensors (2010), 10, 3, pp. 2088-2106.
[16]D. R. Miller, S. A. Akbar and P. A. Morris, "Nanoscale Metal Oxide-Based Heterojunctions for Gas Sensing: A Review", Sensors and Actuators B-Chemical (2014), 204, pp. 250-272.
[17]G. Korotcenkov, "The Role of Morphology and Crystallographic Structure of Metal Oxides in Response of Conductometric-Type Gas Sensors", Materials Science & Engineering R-Reports (2008), 61, 1-6, pp. 1-39.
[18]A. Qurashi, E. M. El-Maghraby, T. Yamazaki and T. Kikuta, "Catalyst Supported Growth of In2O3 Nanostructures and Their Hydrogen Gas Sensing Properties", Sensors and Actuators B-Chemical (2010), 147, 1, pp. 48-54.
[19]L. Xu, B. Dong, Y. Wang, X. Bai, Q. Liu and H. W. Song, "Electrospinning Preparation and Room Temperature Gas Sensing Properties of Porous In2O3 Nanotubes and Nanowires", Sensors and Actuators B-Chemical (2010), 147, 2, pp. 531-538.
[20]E. H. Morales, Y. He, M. Vinnichenko, B. Delley and U. Diebold, "Surface Structure of Sn-Doped In2O3 (111) Thin Films by STM", New Journal of Physics (2008), 10, 125030.
[21]C. Janowitz, V. Scherer, M. Mohamed, A. Krapf, H. Dwelk, R. Manzke, Z. Galazka, R. Uecker, K. Irmscher, R. Fornari, M. Michling, D. Schmeiber, J. R. Weber, J. B. Varley and C. G. V. de Walle, "Experimental Electronic Structure of In2O3 and Ga2O3", New Journal of Physics (2011), 13, 085014.
[22]M. Mizuhashi, "Electrical Properties of Vacuum-Deposited Indium Oxide and Indium Tin Oxide Films", Thin Solid Films (1980), 70, 1, pp. 91-100.
[23]C. Li, D. H. Zhang, X. L. Liu, S. Han, T. Tang, J. Han and C. W. Zhou, "In2O3 Nanowires as Chemical Sensors", Applied Physics Letters (2003), 82, 10, pp. 1613-1615.
[24]J. Q. Xu, X. H. Wang and J. N. Shen, "Hydrothermal Synthesis of In2O3 for Detecting H2S in Air", Sensors and Actuators B (2006), 115, 2, pp. 642-646.
[25]J. Tamaki, C. Naruo, Y. Yamamoto and M. Matsuoka, "Sensing Properties to Dilute Chlorine Gas of Indium Oxide Based Thin Film Sensors Prepared by Electron Beam Evaporation", Sensors and Actuators B-Chemical (2002), 83, 1-3, pp. 190-194.

[26]G. Korotcenkov, A. Cerneavschi, V. Brinzari, A. Vasiliev, M. Ivanov, A. Cornet, J. Morante, A. Cabot and J. Arbiol, "In2O3 Films Deposited by Spray Pyrolysis as a Material for Ozone Gas Sensors", Sensors and Actuators B-Chemical (2004), 99, 2-3, pp. 297-303.
[27]G. Korotcenkov, V. Brinzari, A. Cerneavschi, A. Cornet, J. Morante, A. Cabot and J. Arbiol, "Crystallographic Characterization of In2O3 Films Deposited by Spray Pyrolysis", Sensors and Actuators B-Chemical (2002), 84, 1, pp. 37-42.
[28]D. H. Zhang, Z. Q. Liu, C. Li, T. Tang, X. L Liu, S. Han, B. Lei and C. W. Zhou, "Detection of NO2 down to ppb Levels Using Individual and Multiple In2O3 Nanowire Devices", Nano Letters (2004), 4, 10, pp. 1919-1924.
[29]J. Yang, C. K. Lin Z. L. Wang and J. Lin, "In(OH)3 and In2O3 Nanorod Bundles and Spheres: Microemulsion-Mediated Hydrothermal Synthesis and Luminescence Properties", Inorganic Chemistry (2006), 45, 22, pp. 8973-8979.
[30]X. Y. Lai, D. Wang, N. Han, J. Du, J. Li, C. J. Xing, Y. F. Chen and X. T. Li, "Ordered Arrays of Bead-Chain-like In2O3 Nanorods and Their Enhanced Sensing Performance for Formaldehyde", Chemistry of Materials (2010), 22, 10, pp. 3033-3042.
[31]Z. W. Pan, Z. R. Dai and Z. L. Wang, "Nanobelts of Semiconducting Oxides", Science (2001), 291, 5510, pp. 1947-1949.
[32]J. S. Jeong, J. Y. Lee, C. J. Lee, S. J. An and G. C. Yi, "Synthesis and Characterization of High-quality of In2O3 Nanobelts via Catalyst-free Growth Using a Simple Physical Vapor Deposition at Low Temperature", Chemical Physics Letters (2004), 384, 4-6, pp. 246-250.
[33]B. Cheng, E. T. Samulski, "Fabrication and Characterization of Nanotubular Semiconductor Oxides In2O3 and Ga2O3", Journal of Materials Chemistry (2001), 11, 12, pp. 2901-2902.
[34]X. P. Shen, H. J. Liu, X. Fan, Y. Jiang, J. M. Hong and Z. Xu, "Construction and Photoluminescence of In2O3 Nanotube Array by CVD-Template Method", Journal of Crystal Growth (2005), 276, 3-4, pp. 471-477.
[35]W. Zheng, X. F. Lu, W. Wang, Z. Y. Li, H. N. Zhang, Y. Wang, Z. J. Wang and C. Wang, "A Highly Sensitive and Fast-Responding Sensor Based on Electrospun In2O3 Nanofibers", Sensors and Actuators B-Chemical (2009), 142, 1, pp. 61-65.
[36]M. Kaur, N. Jain, K. Sharma, S. Bhattacharya, M. Roy, A. K. Tyagi, S. K. Gupta and J. V. Yakhmi, "Room-Temperature H2S Gas Sensing at ppb Level by Single Crystal In2O3 Whiskers", Sensors and Actuators B-Chemical (2008), 133, 2, pp. 456-461.

[37]Z. Q. Zheng, L. F. Zhu and B. Wang, "In2O3 Nanotower Hydrogen Gas Sensors Based on Both Schottky Junction and Thermoelectronic Emission", Nanoscale Research Letters (2015), 10, 293.
[38]X. P. Chen, C. K. Y. Wong, C. A. Yuan and G. Q. Zhang, "Nanowire-Based Gas Sensors", Sensors and Actuators B-Chemical (2013), 177, pp. 178-195.
[39]M. M. Arafat, B. Dinan, S. A. Akbar and A. S. M. A. Haseeb, "Gas Sensors Based on One Dimensional Nanostructured Metal-Oxides: A Review", Sensors (2012), 12, 6, pp. 7207-7258.
[40]C. Li, D. H. Zhang, S. Han, X. L. Liu, T. Tang and C. W. Zhou, "Diameter-Controlled Growth of Single-Crystalline In2O3 Nanowires and Their Electronic Properties", Advanced Materials (2003), 15, 2, pp. 143-146.
[41]Y. F. Zhang, J. Y. Li, Q. Li, L. Zhu, X. D. Liu, X. H. Zhong, J. Meng and X. Q. Cao, "Preparation of In2O3 Ceramic Nanofibers by Electrospinning and Their Optical Properties", Scripta Materialia (2007), 56, 5, pp. 409-412.
[42]T. T. Tseng and W. J. Tseng, "Effect of Polyvinylpyrrolidone on Morphology and Structure of In2O3 Nanorods by Hydrothermal Synthesis", Ceramics International (2009), 35, 7, pp. 2837-2844.
[43]B. Wang, Z. Q. Zheng, H. Y. Wu and L. F. Zhu, "Field Emission Properties and Growth Mechanism of In2O3 Nanostructures", Nanoscale Research Letters (2014), 9, 111.
[44]李翱翔,"珍珠狀氧化鎳奈米顆粒鑲嵌於氧化銦奈米冰柱應用於高濕度室溫氣體感測器",中興大學材料科學與工程學系碩士論文(2015)。
[45]J. Y. Gan, X. H. Lu, J. H. Wu, S. L. Xie, T. Zhai, M. H. Yu, Z. H. Zhang, Y. C. Mao, S. C. L. Wang, Y. Shen and Y. X. Tong, “Oxygen Vacancies Promoting Photoelectrochemical Performance of In2O3 Nanocubes”, Scientific Reports (2013), 3, 1021.
[46]S. T. Jean and Y. C. Her, "Growth Mechanism and Photoluminescence Properties of In2O3 Nanotowers", Crystal Growth & Design (2010), 10, 5, pp. 2104-2110.
[47]C. A. Pan and T. P. Ma, "Evaporation of High Quality In2O3 Films from In2O3/In Source-Evaporation Chemistry and Thermodynamics", Journal of the Electrochemical Society, 128, 9, pp. 1953-1957.
[48]Y. G. Yan, Y. Zhang, H. B. Zeng and L. D. Zhang, "In2O3 Nanotowers: Controlled Synthesis and Mechanism Analysis", Crystal Growth & Design (2007), 7, 5, pp. 940-943.
[49]N. Yamazoe and N. Miura, "Some Basic Aspects of Semiconductor Gas Sensors", In Chemical Sensor Technology (1992), 1st ed.; S. Yamauchi, Eds.; Kodansha Ltd, Tokyo, pp. 19-41.

[50]S. W. Choi, A. Katoch, J. H. Kim and S. S. Kim, "Prominent Reducing Gas-Sensing Performances of n-SnO2 Nanowires by Local Creation of p-n Heterojunctions by Functionalization with p-Cr2O3 Nanoparticles", ACS Applied Materials & Interfaces (2014), 6, 20, pp. 17723-17729.
[51]E. Prabhu, K. I. Gnanasekar, T. R. Ravindran, V. Jayaraman and T. Gnanasekaran, "Changes in Carrier Concentration and Debye Length: Experimental Evidence from van der Pauw Hall Measurements on NOx Sensing of In2O3", Journal of The Electrochemical Society (2014), 161, 9, B176-B182.
[52]Z. M. Liao, K. J. Liu, J. M. Zhang, J. Xu and D. P. Yu, "Effect of Surface States on Electron Transport in Individual ZnO Nanowires", Physics Letters A (2007), 367, 3, pp. 207-210.
[53]C. H. Ho, C. H. Chan, L. C. Tien, and Y. S. Huang, "Direct Optical Observation of Band-Edge Excitons, Band Gap, and Fermi Level in Degenerate Semiconducting Oxide Nanowires In2O3", Journal of Physical Chemistry C (2011), 115, 50, pp. 25088-25096.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔