(44.192.112.123) 您好!臺灣時間:2021/03/08 14:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊侑穎
研究生(外文):You-Ying Yang
論文名稱:N型Mg2(1+y)Sn0.6Si0.4-XSbX熱電材料之合金熔煉製程開發與特性分析
論文名稱(外文):Melting and Casting Process and Characterization of n-type Mg2(1+y)Sn0.6Si0.4-XSbX Thermoelectric Material
指導教授:汪俊延
口試委員:王建義林宏茂葉建弦
口試日期:2017-07-24
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:69
中文關鍵詞:熱電材料Mg2Sn0.6Si0.4熔煉鑄造法火花電漿燒結熱電優值
外文關鍵詞:Thermoelectric materialMg2Sn0.6Si0.4Melting and Casting Processspark plasma sinteringThermoelectric figure of merit
相關次數:
  • 被引用被引用:0
  • 點閱點閱:77
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Mg2(Sn, Si, Sb) solid solution have attracted considerable attention for use in thermoelectric generators due to low cost, eco-friendly and light weight properties. In this research, Mg2(Sn, Si, Sb) thermoelectric materials were prepared by casting, ball milling and spark plasma sintering. These manufacturing processes are expected to mass production of Mg2(Sn, Si, Sb) alloy thermoelectric materials and reduce the cost. In order to stabilize the quality of the samples, we try to improve the melting and sintering process. Due to change the melting technique, Sb residual fraction increased from 29.7% to 95% or more and avoid the appearance of pure tin phase in the as-cast samples. The liquid phase formed by the powder during the spark plasma sintering process is extruded. According to the Mg-Sn-Si ternary phase diagram, the temperature of liquid phase generated is 562.9 ℃, so change the sintering process at 500 ℃ holding temperature can effectively improve the extrusion situation. Mg2(Sn, Si, Sb) thermoelectric alloy has the high ZT value of 1.52 at 665K because the power factor of Mg2(Sn, Si, Sb) increased by adjusting the alloy composition.
摘要 i
ABSTRACT ii
目錄 iii
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1. 前言 1
1.2. 熱電材料歷史 1
1.3. 研究動機及目的 2
第二章 基礎與文獻回顧 7
2.1. 熱電特性簡介 7
2.1.1. Seebeck係數 7
2.1.2. 電導率 7
2.1.3 功率因子 8
2.1.4. 熱導率 8
2.1.5. 熱電優值 9
2.2. 熱電塊材製備方法 10
2.2.1. 熔煉法 10
2.2.2. 固相反應法 11
2.2.3. 機械合金製程 11
2.2.4. 熱壓燒結與火花電漿燒結 11
2.3. 矽化鎂基熱電材料之相關背景 12
2.3.1 Mg2SnXSi1-X化合物簡介 12
第三章 實驗步驟與方法 17
3.1. 實驗原料 17
3.2. 實驗流程 17
3.2.1. 以熔煉製成Mg-Sn-Si-Sb合金 17
3.2.2. 球磨細化粉末 17
3.2.3. 火花電漿燒結(spark plasma sintering, SPS) 18
3.2.4. 結構分析 18
3.2.5. 顯微結構分析 18
3.2.6. 成分分析 18
3.3. 熱電特性分析 19
3.3.1. 電導率與Seebeck係數量測 19
3.3.2. 熱導率量測 19
3.3.2.1. 熱擴散係數量測 19
3.3.2.2. 密度量測 20
3.3.2.3. 比熱量測 20
第四章 結果與討論 27
4.1. 鑄態試片分析 27
4.1.1. 鑄態試片顯微組織分析 27
4.1.2. 鑄態試片結晶結構分析 28
4.1.3. 鑄態試片Sb含量分析 28
4.2. 火花電漿燒結試片分析 29
4.2.1. 火花電漿燒結試片顯微組織分析 29
4.2.2. 火花電漿燒結試片結晶結構分析 29
4.3. Mg2(1+y)Sn0.6Si0.4-xSbx合金之熱電性能 29
4.3.1. Mg2(1+y)Sn0.6Si0.4-xSbx合金之電導率 30
4.3.2. Mg2(1+y)Sn0.6Si0.4-xSbx合金之Seebeck係數 30
4.3.3. Mg2(1+y)Sn0.6Si0.4-xSbx合金之功率因子 31
4.3.4. Mg2(1+y)Sn0.6Si0.4-xSbx合金之熱導率 31
4.3.5. Mg2(1+y)Sn0.6Si0.4-xSbx合金之熱電優值 32
4.4. 製程缺陷與改善 32
4.4.1. 去除鑄胚內部爐渣 32
4.4.2. 鑄胚內純錫相生成與防止 32
4.4.3. SPS燒結過程擠出原因與改善 33
4.4.3.1. SPS燒結製程改善分析 34
第五章 結論 65
第六章 參考文獻 66
[1]Tanaka, N. (2010). World energy outlook 2010. International Energy Agency. Paris: IEA.
[2]Banos, R., Manzano-Agugliaro, F., Montoya, F. G., Gil, C., Alcayde, A., & Gómez, J. (2011). Optimization methods applied to renewable and sustainable energy: A review. Renewable and Sustainable Energy Reviews, 15(4), 1753-1766.
[3]Wang, T., Zhang, Y., Peng, Z., & Shu, G. (2011). A review of researches on thermal exhaust heat recovery with Rankine cycle. Renewable and Sustainable Energy Reviews, 15(6), 2862-2871.
[4]Seebeck, T. J. (1822). Magnetic polarization of metals and minerals. Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin, 265, 1823.
[5]Peltier, J. C. (1834). Nouvelles expériences sur la caloricité des courants électrique. In Annales de Chimie et de Physique (Vol. 56, No. 371, pp. 371-386).
[6]Bulusu, A., & Walker, D. G. (2008). Review of electronic transport models for thermoelectric materials. Superlattices and Microstructures, 44(1), 1-36.
[7]Snyder, G. J., & Toberer, E. S. (2008). Complex thermoelectric materials. Nature materials, 7(2), 105-114.
[8]Giazotto, F., Heikkilä, T. T., Luukanen, A., Savin, A. M., & Pekola, J. P. (2006). Opportunities for mesoscopics in thermometry and refrigeration: Physics and applications. Reviews of Modern Physics, 78(1), 217.
[9]Rowe, D. M. (Ed.). (1995). CRC handbook of thermoelectrics. CRC press.
[10]楊松暉. (2012). P 型 BaGaSn 熱電材料之製程開發與特性分析. 中興大學材料科學與工程學系所學位論文, 1-95.
[11]Tritt, T. M., & Subramanian, M. A. (2006). Thermoelectric materials, phenomena, and applications: a bird''s eye view. MRS bulletin, 31(03), 188-198.
[12]Sales, B. C., Mandrus, D., & Williams, R. K. (1996). Filled skutterudite antimonides: a new class of thermoelectric materials. Science, 272(5266), 1325.
[13]Harman, T. C., Walsh, M. P., Laforge, B. E., & Turner, G. W. (2005). Nanostructured thermoelectric materials. Journal of electronic materials, 34(5), L19-L22.
[14]Gao, P., Berkun, I., Schmidt, R. D., Luzenski, M. F., Lu, X., Sarac, P. B.,Case,E.D. & Hogan, T. P. (2014). Transport and Mechanical Properties of High-ZT Mg^ sub 2.08^ Si^ sub 0.4-x^ Sn^ sub 0.6^ Sb^ sub x^ Thermoelectric Materials. Journal of Electronic Materials, 43(6), 1790.
[15]Zhu, P. W., Jia, X., Chen, H. Y., Guo, W. L., Chen, L. X., Li, D. M., ... & Zou, G. T. (2002). A new method of synthesis for thermoelectric materials: HPHT. Solid state communications, 123(1), 43-47.
[16]Yang, J., & Stabler, F. R. (2009). Automotive applications of thermoelectric materials. Journal of Electronic Materials, 38(7), 1245-1251.
[17]楊智詠, & 吳新明. (2008). 半赫斯勒結構鈦鈷錫與鈦鎳錫熱電材料之開發研究. 大同大學材料工程研究所學位論文, 1-97.
[18]Zhang, Q., Yin, H., Zhao, X. B., He, J., Ji, X. H., Zhu, T. J., & Tritt, T. M. (2008). Thermoelectric properties of n‐type Mg2Si0. 6–ySby Sn0. 4 compounds. physica status solidi (a), 205(7), 1657-1661.
[19]Zhang, X., Liu, H., Lu, Q., Zhang, J., & Zhang, F. (2013). Enhanced thermoelectric performance of Mg2Si0. 4Sn0. 6 solid solutions by in nanostructures and minute Bi-doping. Applied Physics Letters, 103(6), 063901.
[20]Zhang, L. M., Leng, Y. G., Jiang, H. Y., Chen, L. D., & Hirai, T. (2001). Synthesis of Mg 2 Si 1− x Ge x thermoelectric compound by solid phase reaction. Materials Science and Engineering: B, 86(3), 195-199.
[21]Liu, W., Tang, X., Li, H., Sharp, J., Zhou, X., & Uher, C. (2011). Optimized Thermoelectric Properties of Sb-Doped Mg2 (1+ z) Si0. 5–y Sn0. 5Sb y through Adjustment of the Mg Content. Chemistry of Materials, 23(23), 5256-5263.
[22]Suryanarayana, C. (2001). Mechanical alloying and milling. Progress in materials science, 46(1), 1-184.
[23]汪建民. (1994). 粉末冶金技術手冊. 中華民國產業科技發展協進會, 中華民國粉末冶金協會.
[24]周雅文. (2010). ‘火花電漿燒結技術於熱電材料開發之應用.工業材料雜誌287期.
[25]Jung, J. Y., & Kim, I. H. (2010). Synthesis and thermoelectric properties of n-Type Mg2Si. Electronic Materials Letters, 6(4), 187-191.
[26]Zaitsev, V. K., Fedorov, M. I., Gurieva, E. A., Eremin, I. S., Konstantinov, P. P., Samunin, A. Y., & Vedernikov, M. V. (2006). Highly effective Mg 2 Si 1− x Sn x thermoelectrics. Physical Review B, 74(4), 045207.
[27]Hayatsu, Y., Iida, T., Sakamoto, T., Kurosaki, S., Nishio, K., Kogo, Y., & Takanashi, Y. (2012). Fabrication of large sintered pellets of Sb-doped n-type Mg 2 Si using a plasma activated sintering method. Journal of Solid State Chemistry, 193, 161-165.
[28]Tani, J. I., & Kido, H. (2007). Thermoelectric properties of Sb-doped Mg 2 Si semiconductors. Intermetallics, 15(9), 1202-1207.
[29]Sakamoto, T., Iida, T., Kurosaki, S., Yano, K., Taguchi, H., Nishio, K., & Takanashi, Y. (2011). Thermoelectric behavior of Sb-and Al-doped n-type Mg 2 Si device under large temperature differences. Journal of electronic materials, 40(5), 629-634.
[30]Sakamoto, T., Iida, T., Matsumoto, A., Honda, Y., Nemoto, T., Sato, J., ... & Takanashi, Y. (2010). Thermoelectric characteristics of a commercialized Mg2Si source doped with Al, Bi, Ag, and Cu. Journal of electronic materials, 39(9), 1708-1713.
[31]LaBotz, R. J., Mason, D. R., & O''Kane, D. F. (1963). The Thermoelectric Properties of Mixed Crystals of Mg2Ge x Si1− x. Journal of The Electrochemical Society, 110(2), 127-134.
[32]Mao, J., Kim, H. S., Shuai, J., Liu, Z., He, R., Saparamadu, U., ... & Ren, Z. (2016). Thermoelectric properties of materials near the band crossing line in Mg 2 Sn–Mg 2 Ge–Mg 2 Si system. Acta Materialia, 103, 633-642.
[33]Liu, W., Yin, K., Zhang, Q., Uher, C., & Tang, X. (2017). Eco-friendly high-performance silicide thermoelectric materials. National Science Review, nwx011.
[34]Tan, X. J., Liu, W., Liu, H. J., Shi, J., Tang, X. F., & Uher, C. (2012). Multiscale calculations of thermoelectric properties of n-type Mg 2 Si 1− x Sn x solid solutions. Physical Review B, 85(20), 205212.
[35]Liu, W., Tang, X., Li, H., Yin, K., Sharp, J., Zhou, X., & Uher, C. (2012). Enhanced thermoelectric properties of n-type Mg 2.16 (Si 0.4 Sn 0.6) 1− y Sb y due to nano-sized Sn-rich precipitates and an optimized electron concentration. Journal of Materials Chemistry, 22(27), 13653-13661.
[36]Zhang, Q., He, J., Zhu, T. J., Zhang, S. N., Zhao, X. B., & Tritt, T. M. (2008). High figures of merit and natural nanostructures in Mg 2 Si 0.4 Sn 0.6 based thermoelectric materials. Applied Physics Letters, 93(10), 102109.
[37]ZEM-3[Apparatus].(2014).Japan: ULVAC-RIKO.
[38]Kozlov, A., Gröbner, J., & Schmid-Fetzer, R. (2011). Phase formation in Mg–Sn–Si and Mg–Sn–Si–Ca alloys. Journal of Alloys and Compounds, 509(7), 3326-3337.
[39]Zhang, L., Xiao, P., Shi, L., Henkelman, G., Goodenough, J. B., & Zhou, J. (2016). Localized Mg-vacancy states in the thermoelectric material Mg2− δ Si0. 4Sn0. 6. Journal of Applied Physics, 119(8), 085104.
[40]Liu, W., Tang, X., Li, H., Yin, K., Sharp, J., Zhou, X., & Uher, C. (2012). Enhanced thermoelectric properties of n-type Mg 2.16 (Si 0.4 Sn 0.6) 1− y Sb y due to nano-sized Sn-rich precipitates and an optimized electron concentration. Journal of Materials Chemistry, 22(27), 13653-13661.
[41]Nayeb-Hashemi, A. A., & Clark, J. B. (1984). The Mg− Sn (Magnesium-Tin) system. Journal of Phase Equilibria, 5(5), 466-476.
[42]Zhu, T. J., Cao, Y. Q., Zhang, Q., & Zhao, X. B. (2010). Bulk nanostructured thermoelectric materials: preparation, structure and properties. Journal of electronic materials, 39(9), 1990-1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔