[1]Tanaka, N. (2010). World energy outlook 2010. International Energy Agency. Paris: IEA.
[2]Banos, R., Manzano-Agugliaro, F., Montoya, F. G., Gil, C., Alcayde, A., & Gómez, J. (2011). Optimization methods applied to renewable and sustainable energy: A review. Renewable and Sustainable Energy Reviews, 15(4), 1753-1766.
[3]Wang, T., Zhang, Y., Peng, Z., & Shu, G. (2011). A review of researches on thermal exhaust heat recovery with Rankine cycle. Renewable and Sustainable Energy Reviews, 15(6), 2862-2871.
[4]Seebeck, T. J. (1822). Magnetic polarization of metals and minerals. Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin, 265, 1823.
[5]Peltier, J. C. (1834). Nouvelles expériences sur la caloricité des courants électrique. In Annales de Chimie et de Physique (Vol. 56, No. 371, pp. 371-386).
[6]Bulusu, A., & Walker, D. G. (2008). Review of electronic transport models for thermoelectric materials. Superlattices and Microstructures, 44(1), 1-36.
[7]Snyder, G. J., & Toberer, E. S. (2008). Complex thermoelectric materials. Nature materials, 7(2), 105-114.
[8]Giazotto, F., Heikkilä, T. T., Luukanen, A., Savin, A. M., & Pekola, J. P. (2006). Opportunities for mesoscopics in thermometry and refrigeration: Physics and applications. Reviews of Modern Physics, 78(1), 217.
[9]Rowe, D. M. (Ed.). (1995). CRC handbook of thermoelectrics. CRC press.
[10]楊松暉. (2012). P 型 BaGaSn 熱電材料之製程開發與特性分析. 中興大學材料科學與工程學系所學位論文, 1-95.
[11]Tritt, T. M., & Subramanian, M. A. (2006). Thermoelectric materials, phenomena, and applications: a bird''s eye view. MRS bulletin, 31(03), 188-198.
[12]Sales, B. C., Mandrus, D., & Williams, R. K. (1996). Filled skutterudite antimonides: a new class of thermoelectric materials. Science, 272(5266), 1325.
[13]Harman, T. C., Walsh, M. P., Laforge, B. E., & Turner, G. W. (2005). Nanostructured thermoelectric materials. Journal of electronic materials, 34(5), L19-L22.
[14]Gao, P., Berkun, I., Schmidt, R. D., Luzenski, M. F., Lu, X., Sarac, P. B.,Case,E.D. & Hogan, T. P. (2014). Transport and Mechanical Properties of High-ZT Mg^ sub 2.08^ Si^ sub 0.4-x^ Sn^ sub 0.6^ Sb^ sub x^ Thermoelectric Materials. Journal of Electronic Materials, 43(6), 1790.
[15]Zhu, P. W., Jia, X., Chen, H. Y., Guo, W. L., Chen, L. X., Li, D. M., ... & Zou, G. T. (2002). A new method of synthesis for thermoelectric materials: HPHT. Solid state communications, 123(1), 43-47.
[16]Yang, J., & Stabler, F. R. (2009). Automotive applications of thermoelectric materials. Journal of Electronic Materials, 38(7), 1245-1251.
[17]楊智詠, & 吳新明. (2008). 半赫斯勒結構鈦鈷錫與鈦鎳錫熱電材料之開發研究. 大同大學材料工程研究所學位論文, 1-97.
[18]Zhang, Q., Yin, H., Zhao, X. B., He, J., Ji, X. H., Zhu, T. J., & Tritt, T. M. (2008). Thermoelectric properties of n‐type Mg2Si0. 6–ySby Sn0. 4 compounds. physica status solidi (a), 205(7), 1657-1661.
[19]Zhang, X., Liu, H., Lu, Q., Zhang, J., & Zhang, F. (2013). Enhanced thermoelectric performance of Mg2Si0. 4Sn0. 6 solid solutions by in nanostructures and minute Bi-doping. Applied Physics Letters, 103(6), 063901.
[20]Zhang, L. M., Leng, Y. G., Jiang, H. Y., Chen, L. D., & Hirai, T. (2001). Synthesis of Mg 2 Si 1− x Ge x thermoelectric compound by solid phase reaction. Materials Science and Engineering: B, 86(3), 195-199.
[21]Liu, W., Tang, X., Li, H., Sharp, J., Zhou, X., & Uher, C. (2011). Optimized Thermoelectric Properties of Sb-Doped Mg2 (1+ z) Si0. 5–y Sn0. 5Sb y through Adjustment of the Mg Content. Chemistry of Materials, 23(23), 5256-5263.
[22]Suryanarayana, C. (2001). Mechanical alloying and milling. Progress in materials science, 46(1), 1-184.
[23]汪建民. (1994). 粉末冶金技術手冊. 中華民國產業科技發展協進會, 中華民國粉末冶金協會.
[24]周雅文. (2010). ‘火花電漿燒結技術於熱電材料開發之應用.工業材料雜誌287期.[25]Jung, J. Y., & Kim, I. H. (2010). Synthesis and thermoelectric properties of n-Type Mg2Si. Electronic Materials Letters, 6(4), 187-191.
[26]Zaitsev, V. K., Fedorov, M. I., Gurieva, E. A., Eremin, I. S., Konstantinov, P. P., Samunin, A. Y., & Vedernikov, M. V. (2006). Highly effective Mg 2 Si 1− x Sn x thermoelectrics. Physical Review B, 74(4), 045207.
[27]Hayatsu, Y., Iida, T., Sakamoto, T., Kurosaki, S., Nishio, K., Kogo, Y., & Takanashi, Y. (2012). Fabrication of large sintered pellets of Sb-doped n-type Mg 2 Si using a plasma activated sintering method. Journal of Solid State Chemistry, 193, 161-165.
[28]Tani, J. I., & Kido, H. (2007). Thermoelectric properties of Sb-doped Mg 2 Si semiconductors. Intermetallics, 15(9), 1202-1207.
[29]Sakamoto, T., Iida, T., Kurosaki, S., Yano, K., Taguchi, H., Nishio, K., & Takanashi, Y. (2011). Thermoelectric behavior of Sb-and Al-doped n-type Mg 2 Si device under large temperature differences. Journal of electronic materials, 40(5), 629-634.
[30]Sakamoto, T., Iida, T., Matsumoto, A., Honda, Y., Nemoto, T., Sato, J., ... & Takanashi, Y. (2010). Thermoelectric characteristics of a commercialized Mg2Si source doped with Al, Bi, Ag, and Cu. Journal of electronic materials, 39(9), 1708-1713.
[31]LaBotz, R. J., Mason, D. R., & O''Kane, D. F. (1963). The Thermoelectric Properties of Mixed Crystals of Mg2Ge x Si1− x. Journal of The Electrochemical Society, 110(2), 127-134.
[32]Mao, J., Kim, H. S., Shuai, J., Liu, Z., He, R., Saparamadu, U., ... & Ren, Z. (2016). Thermoelectric properties of materials near the band crossing line in Mg 2 Sn–Mg 2 Ge–Mg 2 Si system. Acta Materialia, 103, 633-642.
[33]Liu, W., Yin, K., Zhang, Q., Uher, C., & Tang, X. (2017). Eco-friendly high-performance silicide thermoelectric materials. National Science Review, nwx011.
[34]Tan, X. J., Liu, W., Liu, H. J., Shi, J., Tang, X. F., & Uher, C. (2012). Multiscale calculations of thermoelectric properties of n-type Mg 2 Si 1− x Sn x solid solutions. Physical Review B, 85(20), 205212.
[35]Liu, W., Tang, X., Li, H., Yin, K., Sharp, J., Zhou, X., & Uher, C. (2012). Enhanced thermoelectric properties of n-type Mg 2.16 (Si 0.4 Sn 0.6) 1− y Sb y due to nano-sized Sn-rich precipitates and an optimized electron concentration. Journal of Materials Chemistry, 22(27), 13653-13661.
[36]Zhang, Q., He, J., Zhu, T. J., Zhang, S. N., Zhao, X. B., & Tritt, T. M. (2008). High figures of merit and natural nanostructures in Mg 2 Si 0.4 Sn 0.6 based thermoelectric materials. Applied Physics Letters, 93(10), 102109.
[37]ZEM-3[Apparatus].(2014).Japan: ULVAC-RIKO.
[38]Kozlov, A., Gröbner, J., & Schmid-Fetzer, R. (2011). Phase formation in Mg–Sn–Si and Mg–Sn–Si–Ca alloys. Journal of Alloys and Compounds, 509(7), 3326-3337.
[39]Zhang, L., Xiao, P., Shi, L., Henkelman, G., Goodenough, J. B., & Zhou, J. (2016). Localized Mg-vacancy states in the thermoelectric material Mg2− δ Si0. 4Sn0. 6. Journal of Applied Physics, 119(8), 085104.
[40]Liu, W., Tang, X., Li, H., Yin, K., Sharp, J., Zhou, X., & Uher, C. (2012). Enhanced thermoelectric properties of n-type Mg 2.16 (Si 0.4 Sn 0.6) 1− y Sb y due to nano-sized Sn-rich precipitates and an optimized electron concentration. Journal of Materials Chemistry, 22(27), 13653-13661.
[41]Nayeb-Hashemi, A. A., & Clark, J. B. (1984). The Mg− Sn (Magnesium-Tin) system. Journal of Phase Equilibria, 5(5), 466-476.
[42]Zhu, T. J., Cao, Y. Q., Zhang, Q., & Zhao, X. B. (2010). Bulk nanostructured thermoelectric materials: preparation, structure and properties. Journal of electronic materials, 39(9), 1990-1995.