跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/15 00:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:高維鴻
研究生(外文):Wuei-Hung Kao
論文名稱:以乳膠法製備氫氧基磷灰石/鈦巨孔複合材料
論文名稱(外文):Macroporous Hydroxyapatite/Titanium Foams by Pickering Emulsion
指導教授:曾文甲
口試委員:張立信蔣東堯
口試日期:2017-06-29
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:56
中文關鍵詞:乳膠法氫氧基磷灰石多孔體導電率
外文關鍵詞:Pickering emulsionHydroxyapatiteTitaniumPorousConductivity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
本研究以乳膠法製備氫氧基磷灰石/鈦巨孔複合材料。首先以有機介面活性劑分子的選擇吸附,使粒子表面具有部分疏水性,能穩定於氣泡的氣-液介面,阻止鄰近氣泡互相合併及破裂,最後經乾燥、燒結即可得到複合多孔體。
選取數種介面活性劑對氫氧基磷灰石進行表面改質,由接觸角量測可得知十六胺(Hexadecylamine,HDA)的改質效果最為卓越,氫氧基磷灰石對水的接觸角可提升至90°。調整HDA濃度,接觸角隨濃度上升提高,可發現HDA濃度為4wt%時有最適當的疏水性,接觸角約75°。再將改質後的氫氧基磷灰石配置成不同固含量(3.16、4、5、6、10、15vol%)之懸浮液,利用機械攪拌法使懸浮液產生氣泡,再於1000°C進行燒結,由微結構觀測發現,隨固含量增加,複合多孔體之壁厚有增加的趨勢,並選用固含量10vol%,有較佳的強度與孔隙。
後續加入鈦粉於氫氧基磷灰石漿料中,固定HDA濃度為氫氧基磷灰石之4wt%,與固含量為10vol%,進而調整不同鈦粉比例發泡,並在700、1000、1200°C以還原氣氛進行燒結,觀察複合多孔體之微結構變化,再量測其多孔體機械性質及導電性,發現隨添加鈦比例增加有較高的機械強度,以及在1000°C燒結後複合多孔體導電性隨添加鈦比率增加而增加。
This research prepared macroporous hydroxyapatite/titanium composite foams via Pickering emulsion method. Selective adsorption of surfactant was used to make particles hydrophobic from initially hydrophilic surface. The hydrophobic particles tended to reside at the air-water interface so that bubbles were protected from coalescence, drainage and disproportionation to occur between the neighboring bubbles. Composite foams were then prepared after drying and sintering.
First, different surfactants were used to modify the surface of hydroxyapatite in water. HDA showed the best result, in which the contact angle between hydroxyapatite and water could be increase to 90°. By adjusting HDA concentration, an appropriate hydrophobicity with contact angle of 75° was obtained at 4 wt% HDA concentration. The modified hydroxyapatite was then dispensed in aqueous suspensions of different solid content (3.16, 4, 5, 6, 10, 15 vol%). After simple mechanical frothing and sintering at 1000°C, 10 vol% suspension was selected for its better strength and porosity.
Titanium powder was then added into the hydroxyapatite suspension with 4 wt% of HDA and 10 vol% of solid concentration. Microstructure, mechanical properties, and conductivity of composite foams were examined with different proportion of titanium powder at different sintering temperature (700°C、1000°C、1200°C). The mechanical strength increased with the titanium fraction, and the electrical conductivity of the composite foams sintered at 1000 °C also increased with the titanium fraction.
摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vii
第一章 緒論 1
1-1 前言 1
1-2 研究動機 1
第二章 文獻回顧 2
2-1 氫氧基磷灰石結合鈦金屬於生醫之發展 2
2-2 乳膠泡沫 9
2-2-1 介面因重力產生流失(Drainage) 9
2-2-2 合併(Coalescence) 10
2-2-3 奧斯瓦爾德熟化(Ostwald Ripening) 10
2-2-4 粒子吸附 11
2-3 製備多孔陶瓷方式 12
2-3-1 複製法 12
2-3-2 犧牲模版法 13
2-3-3 直接成形法 13
2-3-4 製備氫氧基磷灰石多孔體參考文獻 15
第三章 實驗流程與分析儀器介紹 21
3-1 實驗藥品及製程設備 21
3-1-1 實驗藥品 21
3-1-2 製程儀器 22
3-2 製備氫氧基磷灰石多孔體 23
3-2-1 挑選改質氫氧基磷灰石粒子之介面活性劑 23
3-2-2 調整介面活性劑濃度 24
3-2-3 調整氫氧基磷灰石固含量製備氫氧基磷灰石多孔體 24
3-3 製備氫氧基磷灰石-鈦複合多孔體 25
3-4 多孔體機械強度量測 26
3-5 分析儀器 26
第四章 實驗結果與討論 28
4-1 氫氧機磷灰石之結構分析 28
4-1-1 氫氧機磷灰石之SEM與DLS分析 28
4-1-2 氫氧基磷灰石之XRD與EDS分析 29
4-1-3 氫氧基磷灰石之接觸角 30
4-2 奈米金屬鈦粉之結構分析 30
4-2-1 奈米金屬鈦粉之SEM與DLS分析 30
4-2-2 奈米金屬鈦粉之XRD與EDS分析 31
4-2-3 奈米金屬鈦粉之接觸角 32
4-3 氫氧基磷灰石製備多孔材料 33
4-3-1 選擇改質氫氧基磷灰石之介面活性劑 33
4-3-2 改變介面活性劑濃度對氫氧基磷灰石及鈦接觸角之影響 33
4-3-3 利用機械攪拌與燒結製備氫氧基磷灰石多孔材料 35
4-4 氫氧基磷灰石/鈦複合多孔材料 38
4-4-1 調整氫氧基磷灰石與鈦固含量比例製備複合多孔材料之SEM及EDS分析38
4-4-2 氫氧基磷灰石/鈦複合多孔材料的XRD分析 42
4-4-3 調整氫氧基磷灰石與鈦固含量比例之複合多孔材料的水銀孔隙分析 43
4-4-4 調整氫氧基磷灰石與鈦固含量比例之複合多孔材料的三點抗折分析 45
4-4-5 調整氫氧基磷灰石與鈦固含量比例之複合多孔材料的電阻測試 46
第五章 結論 47
參考文獻 48
1.S. Nishiguchi, T. Nakamura, M. Kobayashi, H.M. Kim, F. Miyaji, T. Kokubo, “The effect of heat treatment on bone-bonding ability of alkali-treated titanium,” Biomaterials, 20,5,491-500 (1999)
2.L. Jonasova, F.A. Muller, A. Helebrant, J. Strnad, P Greil, “Biomimetic apatite formation on chemically treated titanium,” Biomaterials, 25 ,7, 1187–1194(2004).
3.J. Jin, Z. Miao, “Transplantation of human placenta-derived mesenchymal stem cells in a silk fibroin/hydroxyapatite scaffold improves bone repair in rabbits,” Journal of Bioscience and Bioengineering, 118 ,5, 593-598(2014).
4.Karin A. Hing, Serena M. Best, “Mediation of bone ingrowth in porous hydroxyapatite bone graft substitutes,” Journal of biomedical materials research, 68A,11,187-200(2004).
5.L. Stipniece, E. Jakobsons, I. Cakstina, J. Ozolins, ”Electrically active and 3D porous TiO2-X ceramic scaffolds for bone tissue regeneration,” J. European Ceramic Society, 37,2, 833–840(2017).
6.S.U. Pickering, “Emulsions,” Journal of the Chemical Society, 91 2001-2021. (1907).
7.T. Ohji and M. Fukushima, “Macro-porous ceramics: processing and properties,” International Materials Reviews, 57, 2, 115(2012).
8.K. Lu, “Porous and high surface area silicon oxycarbide-based materials-A review,” Materials Science and Engineering, 97, 23-49(2015).
9.K. Okada, T. Isobe, K.I. Katsumata, Y.S.K. Kameshima, A. Nakajima and K.J.D MacKenzie, “Porous ceramics mimicking nature-preparation and properties of microstructures with unidirectionally oriented pores,” Science and Technology of Advanced Materials, 12, 11, 064701(2011)
10.G. Giavaresia, M. Fini and R. Giardino, ” Mechanical and histomorphometric evaluations of titanium implants with different surface treatment,” Biomaterials, 24, 1583-1594 (2003).
11.C. H. Cheng, W. F. Ho, and S. C. Wu, “Apatite Formation on a Nano-Porous Titanium Alloy Surface Treated with Aqueous NaOH,” Journal of Science and Engineering Technology, 6, 1, 1-7(2010).
12.H. W. Kim, Y. H. Koh and H. E. Kim, “Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol–gel method,” Biomaterials, 25, 2533–2538(2004).
13.Y. P. Lu, M. S. Li and R. F. Zhu, “Plasma-sprayed hydroxyapatite+titania composite bond coat for hydroxyapatite coatingon titanium substrate,” Biomaterials, 25, 4393–4403(2004).
14.Z. Geng, R. Wang and X. Yang, ” Incorporation of silver and strontium in hydroxyapatite coating on titanium surface for enhanced antibacterial and biological properties,” Materials Science and Engineering, 71, 852–861 (2017).
15.S.H. Chen and W.C. Say, ”Influence of Applied Voltages on Mechanical Properties and In-Vitro Performances of Electroplated Hydroxyapatite Coatings on Pure Titanium,” Journal of The Electrochemical Society, 163, 7, 305-308(2016).
16.Y. Huang, S. Han and Y. Yan, ”Electrodeposition of porous hydroxyapatite/calcium silicate composite coating on titanium for biomedical applications,” Applied Surface Science, 271, 299–302(2013).
17.A. Bhakta and E. Ruckenstein, “Decay of standing foams: drainage, coalescence and collapse,” Advances in Colloid and Interface Science, 70 1-124 (1997) .
18.U.T. Gonzenbach, A.R. Studart, E, Tervoort, and LJ. Gauckler,”Ultrastable particle-stabilized foams,” Angewandte Chemie-International Edition, 45, 21,3526-3530 (2006).
19.P. Taylor, ”Ostwald ripening in emulsions, ” Advances in Colloid and Interface Science, 75,2, 107-163(1998).
20.B.P. Binks. ”Particles as surfactants - similarities and differences,” Current Opinion in Colloid & Interface Science, 7, 1-2, 21-41 (2002).
21.TN. Hunter, R J. Pugh, G.V Franks, and G.J. Jameson, ”The role of particles in stabilising foams and emulsions, ” Advances in Colloid and Interface Science, 137, 2, 57-81 (2008).
22.A.R. Studart, U.T. Gonzenbach, E. Tervoort, and LJ. Gauckler, ”Processing routes to macroporous ceramics A review, ” Journal of the Mmerican Ceramic Society, 89. 6, 1771-1789 (2006).
23.J. Hu, J.J. Russell, B. Ben-Nissan, and R. Vago, “Production and analysis of hydroxyapatite from Australian corals via hydrothermal process,” Journal of Materials Science Letters, 20, 1, 85-87 (2001).
24.C.R. Rambo and H. Sieber, “Novel synthetic route to biomorphic Al2O3 ceramics," Advanced Materials, 17, 8, 1088-1091 (2005).
25.A.G. Dong, Y.J. Wang, Y. Tang, N. Ren, Y.H. Zhang, J.H. Yue, and Z. Gao, “Zeolitic tissue through wood cell templating,” Advanced Materials, 14, 12, 926-929 (2002).
26.J. Luyten, S. Mullens, J. Cooymans, A.M. De Wilde, I. Thijs, and R. Kemps, “Different methods to synthesize ceramic foams,” Journal of the European Ceramic Society, 29, 5, 829-832 (2009).
27.H.W. Kim, S.Y. Lee, C.J. Bae, Y.J. Noh, H.E. Kim, H.M. Kim, and J.S. Ko, “Porous ZrO2 bone scaffold coated with hydroxyapatite with fluorapatite intermediate layer,” Biomaterials, 24, 19, 3277-3284 (2003).
28.M.C. Kimling and R.A. Caruso “Sol-gel synthesis of hierarchically porous TiO2 beads using calcium alginate beads as sacrificial templates,” Journal of Materials Chemistry, 22, 9, 4073-4082 (2012).
29.A. Imhof and D.J. Pine, “Ordered macroporous materials by emulsion templating,” Nature, 389, 6654, 948-951 (1997).
30.B.T Holland, C.F Blanford, and A. Stein, “Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids,” Science,281,5376,538-540 (1998).
31.P. Jiang, K.S. Hwang, D.M. Mittleman, J,F Berton, and V.L. Colvin,”Template-directed preparation of macroporous polymars with oriented and crystalline arrays of void,” Journal of the American Chemical Society, 121,50,11630-11637(1999).
32.S.Y. Zhang, D.J. Sun, X.Q. Dong, C. F. Li, and J. Xu, “Aqueous foams stabilized with particles and nonionic surfactants,” Colloids and Surfaces a-Physicochemical and Engineering Aspects, 324, 1-3, 1-8 (2008).
33.R. Pichot, F. Spyropoulos, and I.T. Norton, “Competitive adsorption of surfactants and hydrophilic silica particles at the oil-water interface: Interfacial tension and contact angle studies,” Journal of Colloid and Interface Science, 377,396-405 (2012).
34.J.C.H. Wong, E. Tervoort, S. Busato, P. Ermanni, and L.J. Gauckler, “Engineering macroporous composite materials using competitive adsorption in particle-stabilized foams,” Journal of Colloid and Interface Science, 383, 1-12 (2012).
35.U.T. Gonzenbach, A.R. Studart, E. Tervoort, and L.J. Gauckler, “Macroporous ceramics from particle-stabilized wet foams,” Journal of the American Ceramic Society, 90, 1, 16-22 (2007).
36.J.C.H. Wong, E. Tervoort, S. Busato, U.T. Gonzenbach, A.R. Studart, P. Ermanni, and L.J. Gauckler, “Macroporous polymers from particle-stabilized foams,”Journal of Materials Chemistry, 19 ,29,5129-5133 (2009).
37.J. Zhou L.J. Wang. X.Y. Qiao, B.P. Binks, and K. Sun, “Pickering emulsions stabilized by surface-modified Fe3O4, nanoparticles,” Journal of Colloid and Interface Science, 367.213-224 (2012).
38.I. Akartuna, A.R. Studart, E. Tervoort, and L.J. Gauckler, “Macroporous ceramics from particle-stabilized emulsions,” Advanced Materials, 20, 24 ,4714-4718 (2008).
39.H.R. Ramay, and M. Zhang, “Preparation of porous hydroxyapatite scaffolds by combination of the gel-casting and polymer sponge methods,” Biomaterials, 24, 3293-3302(2003).
40.S. Woottichaiwat S. Puajindanetr and S. M. Best, “Fabrication of Porous Hydroxyapatite through Combination of Sacrificial Template and Direct Foaming Techniques,” Engineering journal, 15, 2, 1-16(2011).
41.B. Kundu, A. Lemos and D. Basu, “Development of porous HAp and β-TCP scaffolds by starch consolidation with foaming method and drug-chitosan bilayered scaffold based drug delivery system,” Journal of Materials Science,” 21,2955-2969(2010).
42.N. O. Engin and A. Cuneyt Tas, “Manufacture of Macroporous Calcium Hydroxyapatite Bioceramics,” Journal of the European Ceramic Society, 19 , 2569-2572(1999).
43.U.H.M. Thies and H.H. Paradies, “Light scattering and small-angle X-ray scattering on micellar benzethonium chloride (bromide) solutions III : Micellar structure of BZCl at different solvent electron densities, ”Colloids and Surfactants A : Physicochemical and Engineering Aspects, 101, 261-277(1995).
44.M.J. Blandamer, P.M. Cullis, L.G. Soldi, K.C. Rao and M.C.S. Subha, “Effects of added DOTAB on the cmc and enthalpy formation at 298.2 K for CTAB(aq),” Journal of Thermal Analysis, 46, 6, 1583-1588(1996).
45.B.V.A.R. Chandrashekara, R. Haramagatti and S. Sampath, “Surfactant solubility and micellization in ternary eutectic melt(acetamide+urea+ammonium nitrate),” Colloids and Surfaces A : Physicochemical and Engineering Aspects, 403, 110-113(2012).
46.M.S. Bakshi, S. Sachar, N. Mahajan, I. Kaur, G. Kaur, N. Singh, P. Sehgal and H. Doe, “Mixed-micelle formation by strongly interacting surfactant binary mixtures : effect of head-group modification,” Colloid and Polymer Science, 280 ,11, 990-1000 (2002).
47.X. Xin, G. Y. Xu, D. Wu, H.J. Gong, H.X. Zhang, and Y. J. Wang, “Effects of sodium halide on the interaction between polyvinylpyrrolidone and sodium oleate: Surface tension and oscillating barrier studies,” Colloids and Surfaces a-Physicochemical and Engineering Aspects, 322 [1-3]54-60 (2008).
48.P.A. Ioannis, S. Chronakis, “Rheological properties of oppositely charged polyelectrolyte-surfactant mixtures : effect of polymer molecular weight and surfactant architecture,” Macromolecules, 34, 5005-5018(2001).
49.A. Arifin, and A.B. Sulong, “Material processing of hydroxyapatite and titanium alloy (HA/Ti)composite as implant materials using powder metallurgy: A review” Materials and Design, 55, 165-175(2014)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊