[1]K. T. Meilert, D. Laub, and J. Kiwi, “Photoccatalytic self-cleaning if modified cotton texiles by TiO2 clusters attached by cemical spacers”, Journal of Moleculars Catalysis A: Cemical, 237, 101-108 (2005).
[2]H. A. Foster, I. B. Ditta, and S. Varghese, “Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity”, Applied Microbiology and Biotechnology, 90, 1847-1868 (2011).
[3]J. Yu, L. Qi, and M. Jaroniec, “Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets”, Journal of Physical Chemistry C, 114, 13118-13125 (2010).
[4]J. M. Herrmann, “Heterogeneous photocatalysis: fundamental and applications to the removal of various types of aqueous pollutants, Catalysis Today, 53, 115-129 (1999).
[5]D. Chen, F. Huang, Y. B. Cheng, and R. A. Caruso, “Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: a superior candidate for high-performance dye-sensitized solar cells”, Advanced Materials, 21, 2206-2210 (2009).
[6]J. Zhang, Y. Wu, M. Xing, and S. A. K. Legari, and S. Sajjad, “Development of modified N doped TiO2 photocatalyst with metals nonmetals and metal oxides”, Energy & Environmental Science, 3, 715-726 (2010).
[7]莊宜臻,多功能氧化鐵@銀@二氧化鈦核殼粉體之合成與性質分析,國立中興大學材料科學與工程學系碩士論文 (2015)。
[8]A. L. Linsebigler, G. Lu, and J. T. Yates, Jr. “Photocatalysis on TiO2 Surfaces: principles, mechanisms, and selected results”, Chemical Reviews, 95, 735-758 (1995).
[9]M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, “Environmental applications of semiconductor photocatalysis”, Chemical Reviews, 95, 69-96 (1995).
[10]Y. Wang, Y. Hung, W. Ho, L. Zhang, Z. Zou, and S. Lee, “ Biomolecule-controlled hydrothermal synthesis of C-N-S-tridoped TiO2 nanocrystalline photocatalysts for NO removal under simulated solar light irradiation”, Journal of Hazardous Materials, 169, 77-87 (2009).
[11]C. Su, C. M. Tseng, L. F. Chen, B. H. You, B. C. Hsu, and S. S. Chen, “Sol-hydrothermal preparation and photocatalysis of titanium dioxide”, Thin Solid Films, 498, 259-265 (2006).
[12]H. Li, Z. Bian, J. Zhu, D. Zhang, G. Li, Y. Hou, H. Li, and Y. Lu, “ Mesoporous titania spheres with tunable chamber structure and enhanced photocatalytic activity”, Journal of the American Chemical Society, 129, 8406-8407 (2007).
[13]D. Chen, L. Cao, F. Huang, P. Imperia, Y. B. Cheng, and R. A. Caruso, “Synthesis of monodisperse mesoporous titania beads with controllable Diameter, high surface areas, and variable pore diameters(14-23 nm)”, Journal of the American Chemical Society, 132, 4438-4444 (2010).
[14]L. Li, and C. Y. Liu, “Mesoporous titania (A) nanoparticles prepared by a solvothermally treated orangic small molecule system: formation mechanism and behavior in photocatalysis and dye-sensitized solar cells”, The Journal of Physical Chemistry C, 114, 1444-1450 (2010).
[15]B. J. Yu, Y. Su, and B. Cheng. “Template-free fabrication and enhanced photocatalytic activity of hierarchical macro-/mesoporous titania”, Advanced Functional Materials, 17, 1984-1990 (2007).
[16]D. Behar, and J. Rabani, “Kinetics of hydrogen production upon reduction of aqueous TiO2 nanoparticles catalyzed by Pd0, Pt0, Au0 coatings and unusual hydrogen abstraction: steady state and pulse radiolysis study”, The Journal of Physical Chemistry B, 110, 8750-8755 (2006).
[17]Z. Yi, W. Wei, S. Lee, and G. Jianhua, “Photocatalytic performance of plasma sprayed Pt-modified TiO2 coatings under visible light irradiation”, Catalysis Communications, 8, 906-912 (2007).
[18]W. Wang, J. Zhang, F. Chen, D. He, and M. Anpo, “Preparation and photocatalytic properties of Fe3+-doped Ag@TiO2 core-shell nanoparticles”, Journal of Colloid and Interface Science, 323, 182-186 (2008).
[19]J. Georgieva, E Valova, S. Armyanov, D. Tatchev, S. Sotiropoulos, I. Avramova, N. Dimitrova, A. Hubin, and O. Streenhaut, “A simple preparation method and characterized of B and N co-doped TiO2 nanotube arrays with enhanced photoelectrochemical performance”, Applied Surface Science, 413, 284-291 (2017).
[20]J. Shao, W. Sheng, M. Wang, S. Li, J. Chen, Y. Zhang, and S. Cao, “In situ synthesis of carbon-doped TiO2 single-crystal nanorods with a remarkably photocaralytic efficiency”, Applied Catalysis B: Environmental, 209, 311-319 (2017).
[21]Y. Xiong, D. He, R. Jaber, P. J. Cameron, and K. J. Edler, “Sulfur-doped cubic mesostructured titania films for use as a solar photocatalyst”, The Journal of Physical Chemistry C, 121, 9927-9937 (2017).
[22]W. Choi, A. Termin, and M. R. Hoffmann, “ The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics”, The Journal of Physical Chemistry, 98, 13669-13679 (1994).
[23]S. A. Ansari, M. M. Khan, M. O. Ansari, and M. H. Cho, “Nitrogen-doped titanium dioxide (N-doped TiO2)for visible light photocatalysis”, The Royal Society of Chemistry, 00, 1-3 (2013).
[24]K. Nakata, and A. Fujishima, “TiO2 photocatalysis: Design and applications”, Journal of photochemistry and photobiology C: photochemistry reviews, 13, 169-189 (2012).
[25]D. M. Antonellim and J. Y. Ying, “Synthesis of Hexagonally Packed Mesoporous TiO2 by a Modified Sol-Gel Method”, Angewandte Chemie International Edition, 34, 2014-2017 (1995)
[26]C. J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Gratzel, “Nanocrystalline Titanim Oxide Electrodes for Photovoltatic Applications”, Journal of the American Ceramic Society, 80, 3157-3171 (1997).
[27]J. Yu, G. Wang, B. Cheng, and M. Zhou, “Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders”, Applied Catalysis B: Enviromental, 69, 171-180 (2007).
[28]L. Kumaresan, A. Prabhu, M. Palanichamy, and V. Murugesan, “Synthesis of mesoporous TiO2 in aqueous alcoholic medium and evaluation of its photocatalytic activity”, Materials Chemistry and Physics, 126, 445-452 (2011).
[29]D. H. Chen, L. Cao, F. Z. Hung, P. Imperia, Y. B. Cheng, and R. A. Caruso, “Synthesis of monodisperse mesoporous titania beads with controllable diameter, high surface areas, and variable pore diameters (14-23 nm)” Journal of the American Chemical Society, 132, 4438-4444 (2010).
[30]W. Zhou, F. Sun, K. Pan, G. Tian, B. Jiang, Z. Ren, C. Tian, and H. Fu, “Well-ordered large-pore mesoporous anatase TiO2 with remarkably high thermal stability and improved crystallinity: preparation, characterization, and photocatalytic performance”, Advanced Functional Materials, 21, 1992-1930 (2011).
[31]C. Li, R. Younesi, Y. Cai, Y. Zhu, M. Ma, and J. Zhu, “Photocatalytic and antibacterial properties of Au-decorated Fe3O4@mTiO2 core-shell microspheres”, Applied Catalysis B: Environmental, 156-157, 314-322 (2014).
[32]M. Ye, Q. Zhang, Y. Hu, J. Ge, Z. Lu, Z. Chen, and Y. Yin, “Magnetically recoverable core-shell nanocomposites with enhanced photocatalytic activity, Chemistry-A European Journal, 16, 6243-6250 (2010).
[33]Q. Zhang, G. Meng, J. Wu, D. Li, and Z. Liu, “Study on enhanced photocatalytic activity of magnetically recoverable Fe3O4@C@TiO2 nanocomposites with core-shell nanostructure”, Optical Materials, 46, 52-58 (2015).
[34]L. Sun, J. Li, C. Wang, S. Li, Y. Lai, H. Chen, and C, Lin, “Ultrasound aided photochemical synthesis of Ag loaded TiO2 nanotube arrays to enhance photocatalytic activity”, Journal of Hazardous Materials, 171, 1045-1050 (2009).
[35]R. Kaur, and B. Pal, “Size and shape dependent attachments of Au nanostructures to TiO2 for optimum reactivity of Au-TiO2 photocatalysis”, Journal of Molecular Catalysis A: Chemical, 355, 39-43 (2012).
[36]W. J. Tseng, C. C. Cheng, and J. H. Hsieh, “Rattle-Structured Ag/TiO2 Nanocomposite Capsules with Bactericide and Photocatalysis Activities”, Journal of the American Ceramic Society, 97, 407-412 (2014).
[37]Y. Wang, F. Pan, W. Dong, L. Xu, K. Wu, G. Xu, and W. Chen, “Recyclable silver-decorated magnetic titania nanocomposite with enhanced visible-light photocatalytic activity”, Applied Catalysis B: Environmental, 189, 192-198 (2016).
[38]Y. Chi, Q. Yuan, Y. Li, L. Zhao, N. Li, X. Li, and W. Yan, “Magnetically separable Fe3O4@SiO2@TiO2-Ag microspheres with well-designed nanostructure and enhanced photocatalytic activity”, Journal of Hazardous Materials, 262, 404-411 (2013).
[39]陳宥安,多功能氧化鐵@銀@二氧化鈦核殼複合粉體之光催化與抗菌性質研究,國立中興大學材料科學與工程學系碩士論文 (2016)。[40]D. Dvoranova, V. Brezova, M. Mazur, and M. A. Malati, “Investigations of metal-doped titanium dioxide photocatalysts”, Applied Catalysis B: Environmental, 37, 91-105 (2002).
[41]T. Umebayashi, T. Yamaki, H. Itoh, and K. Asai, “Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations”, Journal of Physics and Chemistry of Solids, 63, 1909-1920 (2002).
[42]W. Choi, A. Termin, and M. R. Hoffmann, “The role of metal ion in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics”, The Journal of Physical Chemistry, 98, 13669-13679 (1994).
[43]M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O’Shea, M. H. Entezari, and D. Dionysiou”, Applied Catalysis B: Environmental, 125, 331-349 (2012).
[44]S. Z. Chu, S. Inoue, K. Wada, D. Li, and J. Suzuki, “Fabration and photocatalytic characterizations of ordered nanoporous X-doped (X=N, C, S, Ru, Te and Si) TiO2/Al2O3 Films on ITO/Glass”, American Chemical Society, 21, 8035-8041 (2005).
[45]Q. Zhang, D. Q. Lima, I. Lee, F. Zaera, M. Chi, and Y. Yin, “A highly active titanium dioxide based visible-light photocatalyst with nonmetal doping and plasmonic metal decoration”, Angewandte Chemie International Edition, 50, 7088-7092 (2011).
[46]R. Asahi, T. Morikawam, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides”, Science, 293, 269-271 (2001).
[47]N. Bao, J. J. Niu, Y. Li, G. L. Wu, and X. H. Yu, “Low-temperature hydrothermal synthesis of N-doped TiO2 from small-molecule amine systems and their photocatalytic activity”, Environmental Technology, 34, 2939-2949 (2013).
[48]J. Anapattarachai, P. Kajitvichyanukul, and S. Seraphin, “Visible light absorption ability and photocatalytuc oxidation activity of various interstitial N-doped TiO2 prepared from different from different nitrogen dopants”, Journal of Hazardous Materials, 168, 253-261 (2009).
[49]K. J. Carroll, D. M. Hudgins, S. Spurgeon, K. M. Kemner, B. Mishra, M. I. Boyanov, L. W. BrownⅢ, M. L. Taheri, and E. Carpenter, “One-pot aqueous synthesis of Fe and Ag core/shell nanoparticles, Chemistry of Materials, 22, 6291-6296 (2010).
[50]K. Kalantari, M. Kalbasi, M. Sohrabi, and S. J. Royaee, “Synthesis and characterization of N-doped TiO2 nanoparticles and their application in photocatalytic oxidation of dibenzothiophene under visible light”, Ceramics International, 42, 14834-14842 (2016).
[51]X. Chen, D. H. Kuo, D. Lu, “N-doped mesoporous TiO2 nanoparticles synthesized by using biological renewable nanocrystalline cellulose as template for the degradation of pollutants under visible and sun light”, Chemical Engineering Journal, 295, 192-200 (2016).
[52]Q. Wang, X. Yang, X. Wang, M. Hung, and J. Hou, “Synthesis of N-doped TiO2 mesosponage by solvothermal transformation of anodic TiO2 nanotubes and enhanced photoelectrochemical performance”, Electrochimica Acta, 62, 158-162 (2012).
[53]H. Zhang, K. Tan, H. Zheng, Y. Gu, and W. F. Zhang, “Preparation, characterization and photocatalytic activity of TiO2 codoped with yttrium and nitrogen”, Materials Chemistry and Physics, 125, 156-160 (2011).
[54]F. B. Li, X. Z. Li, M. F. Hou, K. W. Cheah, W. C. H. Choy, “Enhanced photocatalytic activity of Ce3+-TiO2 for 2-mercaptobenzothiazole degradation in aqueous suspension for odour control”, Applied Catalysis A: General, 285, 181-189 (2005).
[55]D. Mitoraj, and H. Kisch, “The nature of nitrogen-modified titanium dioxide photocatalysts active in visible light”, Angewandte Chemie International Edition, 47, 9975-9978 (2008).
[56]A. B. Murphy, “Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting”, Solar Energy Materials & Solar Cells, 91, 1326-1337 (2007).
[57]L. Xiong, Y. Yang, J. Mai, W. Sun, C. Zhang, D. Wei, Q. Chen, and J. Ni, “Adsorption behavior of methylene blue onto titanate nanotubes”, Chemical Engineering Journal, 156, 313-320 (2010).
[58]F. L. Toma, G. Bertrand, S. Begin, C. Meunier, O. Barres, D. Klein, and C. Coddet, “Microsstructure and environmental functionalities of TiO2-supported photocatalysts obtained by suspension plasma spraying”, Applied Catalysis B: Environmental, 68, 74-84 (2006).
[59]B. Erdem, R. A. Hunsicker, G. W. Simmons, E. D. Sudol, V. L. Dimonie, and M. S. El-Aadsser, “XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation”, Langmuir, 17, 2664-2669 (2001).
[60]R. Gong, J. Ye, W. Dai, X. Yan, J. Hu, X. Hu, S. Li, and H. Huang, ”Adsorptive removal of methyl orange and methylene blue from aqueous solution with finger-citron-residue-based activated carbon”, American Chemical Society, 52, 14297-14303 (2013).