跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/07 18:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林君緯
研究生(外文):Chun-Wei Lin
論文名稱:核殼複合氧化鐵@銀@氮摻雜二氧化鈦之染料吸附、可見光催化、磁回收與銀釋放之研究
論文名稱(外文):Fe3O4@Ag@TiO2-xNx Composite Particles for Dye Adsorption, Visible-Light Photocatalysis, Magnetic Recycle, and Ag Discharge
指導教授:曾文甲
指導教授(外文):Wen-Jea Tseng
口試委員:段維新向性一
口試委員(外文):Wei-Hsin TuanHsing-I Hsiang
口試日期:2017-07-07
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:73
中文關鍵詞:核殼結構氮摻雜吸附特性可見光催化
外文關鍵詞:Core-shellNitrogen-dopingAdsorptionVisible-light photocatalytic
相關次數:
  • 被引用被引用:3
  • 點閱點閱:417
  • 評分評分:
  • 下載下載:81
  • 收藏至我的研究室書目清單書目收藏:0
本研究將Fe@Ag核殼粒子加入二氧化鈦前驅物(Titanium(IV) Butoxide, TBOT)與不同氮來源(包括: Methylamine (MA)、Diethylamine (DEA)、Ethylenediamine (EDA)、Urea (U)、Ammonia (A)等)組成的混合溶液中,以溶劑熱法製備氧化鐵@銀@氮摻雜二氧化鈦(Fe3O4@Ag@TiO2-xNx)的核殼複合粉體,除具備磁性可回收、抗菌等功能外,本研究探討其吸附有機染料與可見光催化特性。由XRD晶相分析發現,摻雜氮會抑制晶粒成長及降低結晶性導致特徵峰值變寬;以XPS表面化學組成分析,發現氮能成功摻雜至二氧化鈦晶格,且為插入型氮摻雜(Interstitial nitrogen);以BET比表面積分析得知摻雜不同氮來源之粉體具有251.3~431.9 m2/g之高比表面積,且藉由BJH孔徑分析得知其平均孔徑皆在10 nm以下,屬於IUPAC定義之中孔範圍;再以SQUID進行磁性量測得知粉體飽和磁化量為Ms~ 0.02 emu/g,且可藉由外加磁場進行粉體回收;再利用UV-vis量測及Tauc plot計算得知其能隙值範圍於2.4-2.8 eV,代表此核殼粉體於可見光波長範圍具有光催化效果。在不同pH值環境下,核殼複合粉體對於Methylene blue(MB)及Methyl orange(MO)染料的暗吸附行為明顯不同,間接影響其可見光光催化特性,染料分子首先必須吸附在核殼複合粉體上,才能在可見光照射時進行光降解。在所調查的氮摻雜核殼複合粉體中,摻雜MA的複合粉體在pH=2的酸性環境中對MB具有高達90%的吸附量,遠勝過其可見光催化效應;對MO則具有30%的吸附量,且於光照2h後有20%的可見光光催化特性;在pH=9的鹼性環境中對MB具有良好的吸附效果達100%,但對MO卻沒有太好的吸附效應。此外,摻雜Urea在酸性pH=2對MB具有~40%吸附量,且照光後有~30%可見光光催化效果;在pH=9時對MB之吸附則與摻雜MA時相同,但無論在酸性或鹼性環境下對MO的吸附及光催化行為都沒有作用。藉由調整亞甲基藍之初始濃度,探討其對摻雜 MA粉體吸附行為之影響,發現當濃度小於2.5x10-5M之濃度,於暗吸附時發現染料幾乎都被核殼粉體所吸附,推測核殼粉體表面屬於多層吸附。最後對摻雜MA粉體進行五次磁性回收再測試,經五次使用後發現仍具有將近95%之降解率,顯示核殼複合粉體具重複利用性。針對核殼複合粉體進行Ag釋放濃度測試,發現於釋放時間48小時後,Ag離子仍可藉由中孔通道進行釋放,代表其可達到長效性之使用。
Nitrogen-doped Fe3O4@Ag@TiO2-xNx composite particles have been successfully synthesized by solvothermal method using different kinds of dopant including methylamine (MA), diethylamine (DEA), ethyleneamine (EDA), urea (U), and ammonia (A). X-ray diffraction revealed that diffraction peaks pronouncedly broaden and their intensity reduce with the N-doping, indicating that reduced crystallinity and smaller crystalline size resulted. Based on XPS analysis, interstitial nitrogen-doping was found in the titanium dioxide layer of the composite particles. The Fe3O4@Ag@TiO2-xNx composite particles exhibited a high BET surface area of 251.3~431.9 m2/g and a BJH average pore diameter below 10 nm. By SQUID measurement at room temperature, the saturation magnetization (Ms) of the particles was 0.02 emu/g. From UV-vis spectroscopy and Tauc plot, the band gap was determined in the range of 2.4-2.8 eV for the Fe3O4@Ag@TiO2-xNx composite particles. We have also investigated dye degradation of organic dyes in water by dark adsorption and visible light irradiation. Among the nitrogen sources examined, the as-prepared powders show different adsorption ability to methylene blue (MB) and methyl orange (MO) as the solution pH was altered. The dye molecules must be adsorbed on the powder surface, before being photodegraded under the light irradiation. The methylamine-doped particles were found to have ~90% adsorption for the MB dye at pH=2, and ~30% adsorption followed then by ~20% photocatalytic activity for the MO dye. At pH=9, the methylamine-doped ones showed ~100% adsorption for the MB dye but there was no adsorption for the MO dye. The urea-doped ones showed ~40% adsorption followed then by ~30% after visible light irradiation at pH=2, but there was no significant effect for the MO degradation. In addition, the initial dye concentration was varied, and the methylamine-doped composite particles appeared to exhibit a multilayer adsorption behavior when the dye concentration was below 2.5x10-5 M. The methylamine-doped powders were recycled by an external magnetic field and were re-used for the dye removal. The particles showed a degradation rate nearly 95% after up to five times of use. Finally, Ag could be slowly released from the composite particles through the mesoporous shell structure. The release of Ag was found after immersion in water for 48 h, indicating long-lasting bactericidal ability.
目錄
第一章 緒論 1
1-1 前言 1
1-2 研究動機 1
第二章 文獻回顧 3
2-1 二氧化鈦之特性與光催化機制 3
2-1-1二氧化鈦之晶體結構 3
2-1-2二氧化鈦之光催化機制 3
2-2中孔二氧化鈦及其複合材料之文獻整理 5
2-2-1中孔二氧化鈦之合成 5
2-2-2磁性粒子@中孔二氧化鈦核殼複合材料之文獻整理 8
2-2-3磁性粒子@銀@中孔二氧化鈦核殼複合粉體之文獻整理 11
2-2-4 摻雜改質中孔二氧化鈦核殼複合粉體之文獻整理 14
第三章 實驗流程與分析儀器介紹 19
3-1實驗藥品及製程設備 19
3-1-1實驗藥品 19
3-1-2 實驗設備 20
3-1-3 分析儀器與樣品製備 21
3-2實驗流程 24
3-2-1合成Fe@Ag核殼粉體 24
3-2-2 Fe@Ag核殼粉體表面改質 25
3-2-3合成Fe3O4@Ag@TiO2-xNx核殼粉體 26
3-2-4 光催化之實驗流程 27
3-2-5披覆高分子薄膜於玻璃基板上之可見光光催化實驗 31
第四章 結果 32
4-1氧化鐵@銀@氮摻雜二氧化鈦(Fe3O4@Ag@TiO2-xNx)核殼複合粉體之合成 32
4-1-1氧化鐵@銀@氮摻雜二氧化鈦核殼複合粉體之結構分析 32
4-1-2氧化鐵@銀@氮摻雜二氧化鈦核殼複合粉體之FE-SEM表面形貌分析 33
4-1-3氧化鐵@銀@氮摻雜二氧化鈦核殼複合粉體之HR-TEM表面形貌分析 34
4-1-4氧化鐵@銀@氮摻雜二氧化鈦核殼複合粉體之XPS分析 36
4-1-5氧化鐵@銀@氮摻雜二氧化鈦核殼複合粉體之Raman Spectra分析 41
4-1-6 氧化鐵@銀@氮摻雜二氧化鈦核殼複合粉體之比表面積分析 42
4-1-7氧化鐵@銀@氮摻雜二氧化鈦核殼複合粉體之SQUID磁性量測 43
4-2氧化鐵@銀@氮摻雜二氧化鈦核殼複合粉體之光催化特性分析 44
4-2-1有機染料(MB,MO)之檢量線 44
4-2-2 氧化鐵@銀@氮摻雜二氧化鈦核殼粉體之量測吸收波長及Band Gap 45
4-2-3 溶液pH值對可見光催化降解率之影響 46
4-2-4染料(MB+MO)選擇性吸附 49
4-2-5染料(MB)初始濃度對核殼複合粉體吸附行為之影響 50
4-2-6 氧化鐵@銀@氮摻雜二氧化鈦複合粉體之重複利用性 51
4-3 Ag釋放濃度 52
4-4高分子硬膜之可見光催化降解染料的應用 52
第五章 討論 55
5-1 氧化鐵@銀@氮摻雜二氧化鈦核殼粉體之暗吸附與光催化機制 55
5-1-1 pH值對複合粉體於暗吸附之影響 55
5-1-2 pH值對複合粉體於可見光光催化之影響 58
5-1-3暗吸附及可見光催化特性之結論 61
第六章 結論 62
第七章 參考文獻 63









圖目錄
圖1-1:Fe3O4@Ag@TiO2-xNx之理想結構。 2
圖2-1:二氧化鈦金紅石相(Rutile)與銳鈦礦相(Anatase)之晶體結構。 3
圖2-2:氮摻雜二氧化鈦光催化機制示意圖。 5
圖2-3: Antonelli及Ying合成之中孔二氧化鈦之(a)BET,(b)孔隙分布圖,(c)SAXRD,(d)TEM。 6
圖2-4:Kumaresan等人合成(a) EtOH/H2O、(b) IPA/H2O、(c) BuOH/H2O之中孔二氧化鈦之SAXRD分析圖(d)、(e)為BET分析圖。 7
圖2-5:Chen 等人合成之中孔二氧化鈦之SEM、HRTEM及SAXRD之分析圖。 7
圖2-6:Zhou等人所合成出的中孔二氧化鈦之分析圖。 8
圖2-7:Li等人(a)合成Fe3O4@m-TiO2之實驗流程圖、(b) Fe3O4@m-TiO2之TEM、(c)BET及BJH孔徑分布圖。 9
圖2-8:Ye等人合成Fe3O4@SiO2@TiO2核殼複合材料之(a)HRTEM、(b)磁鐵回收影像圖、(c)光催化及(d)重複利用光催化後之分析圖。 10
圖2-9:Zhang等人合成Fe3O4@C@TiO2核殼複合粉體之(a)實驗步驟、(b)HRTEM、(c)磁化曲線及粉體回收之影像、(d)MB進行光催化反應、(e)光催化循環使用測試實驗。 11
圖2-10:Wang等人合成Fe3O4@TiO2-Ag核殼複合材料。(a)為HRTEM、(b)為粉體回收之影像、(c)太陽光光催化循環使用測試實驗、(d)對RhB在UV光、可見光、太陽光進行光催化反應。 12
圖2-11:Chi等人合成Fe3O4@SiO2@TiO2-Ag核殼複合粉體。(a)、(b)為HRTEM及Mapping之分析圖,(c)粉體回收之影像,對有機染料RhB進行(d)光催化實驗(e)循環使用測試之分析圖。 13
圖2-12:Chen等人所合成之Fe3O4@Ag@TiO2核殼粉體(a)HRTEM影像,(b)粉體回收之影像,(c)抗菌實驗,(d)及(e)光催化實驗,(f)循環使用測試實驗。 14
圖2-13:Asahi等人所合成TiO2-xNx。(a)能階密度(Densities of State)之分析圖、(b)為TiO2和TiO2-xNx的光吸收圖譜、(c)為XPS分析圖。 15
圖2-14:Bao等人所合成不同氮來源之TiO2-xNx材料。(a)為光學漫反射光譜、(b)為吸收邊界及計算能隙值、(c)XPS的N 1s之能譜圖、(d)為可見光光催化實驗。 16
圖2-15:Ananpattarachai等人所合成之TiO2-xNx材料。(a)為HRTEM觀察其微結構、(b)為氮摻雜二氧化鈦之能隙值、(c)為UV-vis吸收圖譜、(d)及(e)分別為吸附測試及吸附完進行可見光光催化實驗(不包含吸附率)。 17

圖2-16:Yang等人所合成之TiO2-xNx材料。(a)為UV-vis吸收圖譜、(b)為XPS之N 1s能譜圖、(c)及(d)分別為MB及MO之可見光光催化實驗、(e)循環使用測試實驗。 17
圖3-1:合成Fe@Ag核殼粉體之實驗流程。 24
圖3-2:改質Fe@Ag核殼粉體之流程圖。 25
圖3-3:合成Fe3O4@Ag@TiO2-xNx核殼粉體之實驗流程圖。 26
圖3-4:檢量線製作之流程圖。 27
圖3-5:不同酸鹼值環境之可見光光催化實驗流程圖。 28
圖3-6:不同初始濃度有機染料之可見光光催化實驗圖。 29
圖3-7:可見光光催化之重複利用性實驗圖。 30
圖3-8:製作高分子薄膜示意圖。 31
圖3-9:製作高分子薄膜之可見光光催化實驗圖。 31
圖4-1:Fe3O4@Ag@TiO2及摻雜不同氮來源複合粉體之XRD晶相繞射分析圖。 32
圖4-2:摻雜不同氮來源複合粉體之FE-SEM影像(A) Doped Methylamine (B)Doped Diethylamine (C) Doped Ethyleneamine (D) Doped Urea (E) Doped Ammonia (F)Doped Methylamine之EDS元素分析圖。 33
圖4-3:Doped Methylamine核殼複合粉體之HRTEM影像。 34
圖4-4:Doped Methylamine核殼粉體之EDS元素分析。 34
圖4-5:Doped Methylamine核殼粉體之Mapping之元素分布分析。 35
圖4-6:Fe3O4@Ag@TiO2-xNx核殼複合粉體之表面元素分析之全能譜圖。 37
圖4-7:Fe3O4@Ag@TiO2-xNx核殼複合粉體之表面元素分析之Ti2p 軌域之單元素分析能譜圖。(A) Doped Methylamine (B)Doped Diethylamine (C) Doped Ethyleneamine (D) Doped Urea (E) Doped Ammonia (F) Fe3O4@Ag@TiO2。 38
圖4-8:Fe3O4@Ag@TiO2-xNx核殼複合粉體之表面元素分析之O1s 軌域之單元素分析能譜圖。(A) Doped Methylamine (B)Doped Diethylamine (C) Doped Ethyleneamine (D) Doped Urea (E) Doped Ammonia (F) Fe3O4@Ag@TiO2。 39
圖4-9:Fe3O4@Ag@TiO2-xNx核殼複合粉體之表面元素分析之 N1s軌域之單元素分析能譜圖。(A) Doped Methylamine (B)Doped Diethylamine (C) Doped Ethyleneamine (D) Doped Urea (E) Doped Ammonia (F) Fe3O4@Ag@TiO2。 40
圖4-10:Fe3O4@Ag@TiO2及摻雜不同氮來源核殼複合粉體之Raman分析。 41
圖4-11:Fe3O4@Ag@TiO2及摻雜不同氮來源複合粉體之比表面積分析圖,內嵌圖為孔隙分布圖。(A)Doped Methylamine、(B)Doped Diethylamine、(C)Doped Ethyleneamine、(D)Doped Urea、(E)Doped Ammonia及(F)Fe3O4@Ag@TiO2。 42
圖4-12:Doped Methylamine複合核殼粉體之SQUID磁性測量圖譜。T=298K,掃瞄範圍-10000~10000 Oe。內嵌圖為利用磁鐵回收摻雜不同氮來源之複合粉體。 43
圖4-13:波長464 nm量測MO之(a)全波段掃描及(b)檢量線;波長664 nm量測MB之(c)全波段掃描及(d)檢量線。 44
圖4-14:可見光燈源校正(a)未加掛濾光片、(b)加掛濾光片。 45
圖4-15:摻雜不同氮來源之核殼複合粉體之吸收波長。 45
圖4-16:摻雜不同氮來源之核殼複合粉體之Tauc plot。 46
圖4-17:摻雜不同氮來源之複合粉體對MB染料於pH=2環境之暗吸附及可見光光催化實驗。染料初始濃度: 10-5M、粉體固含量: 0.25 g/L、溫度25 oC。 47
圖4-18:摻雜不同氮來源之複合粉體對MB染料於pH=9環境之暗吸附及可見光光催化實驗。染料初始濃度: 10-5M、粉體固含量: 0.25 g/L、溫度25 oC。 47
圖4-19:摻雜不同氮來源之複合粉體對染料MO於pH=2環境之暗吸附及可見光光催化實驗。染料初始濃度: 10-5M、粉體固含量: 0.25 g/L、溫度25 oC。 48
圖4-20:摻雜不同氮來源之複合粉體對染料MO於pH=9環境之暗吸附及可見光光催化實驗。染料初始濃度: 10-5M、粉體固含量: 0.25 g/L、溫度25 oC。 48
圖4-21: Doped MA及Urea之核殼複合粉體對染料(MB+MO)之選擇性吸附及可見光光催化實驗。染料初始濃度: 10-5M、粉體固含量: 0.25 g/L、溫度25 oC。 49
圖4-22:改變MB染料初始濃度之可見光催化實驗。Doped Methylamine之核殼粉體、pH=2、粉體故含量:0.25 g/L、溫度: 25 oC。 50
圖4-23:氧化鐵@銀@氮摻雜二氧化鈦複合粉體之光催化染料MB之重複利用性測試。 51
圖4-24: Ag離子濃度釋放。 52
圖4-25:高分子硬膜之可見光催化降解染料MB實驗圖。染料初始濃度: 10-5M、不調整pH值、粉體固含量: 0.25 g/L、溫度25 oC。 53
圖4-26: (a)於玻璃基板上之高分子硬膜示意圖(b)高分子硬膜之OM圖。 54
圖5-1:摻雜不同氮來源之複合粉體對MB染料於pH=2環境之暗吸附實驗。染料初始濃度: 10-5M、粉體固含量: 0.25 g/L、溫度25 oC。 56
圖5-2:摻雜不同氮來源之複合粉體對MB染料於pH=9環境之暗吸附實驗。染料初始濃度: 10-5M、粉體固含量: 0.25 g/L、溫度25 oC。 56
圖5-3:摻雜不同氮來源之複合粉體對MO染料於pH=2環境之暗吸附實驗。染料初始濃度: 10-5M、粉體固含量: 0.25 g/L、溫度25 oC。 57
圖5-4:摻雜不同氮來源之複合粉體對MO染料於pH=9環境之暗吸附實驗。染料初始濃度: 10-5M、粉體固含量: 0.25 g/L、溫度25 oC。 57
圖5-5:摻雜不同氮來源之複合粉體之Zeta potential曲線圖。 58
圖5-6:摻雜不同氮來源之複合粉體對MB染料於pH=2環境之可見光光催化實驗。染料初始濃度: 10-5M、粉體固含量: 0.25 g/L、溫度25 oC。 59
圖5-7:摻雜不同氮來源之複合粉體對MB染料於pH=9環境之可見光光催化實驗。染料初始濃度: 10-5M、粉體固含量: 0.25 g/L、溫度25 oC。 59
圖5-8:摻雜不同氮來源之複合粉體對MO染料於pH=2環境之可見光光催化實驗。染料初始濃度: 10-5M、粉體固含量: 0.25 g/L、溫度25 oC。 60
圖5-9:摻雜不同氮來源之複合粉體對MO染料於pH=9環境之可見光光催化實驗。染料初始濃度: 10-5M、粉體固含量: 0.25 g/L、溫度25 oC。 60




























表目錄
表3-1 :不同氮來源種類及化學式 26
表4-1 :Ti-O及OH-之比例 37
表4-2:重複利用性測試之粉體流失率。 51
表4-3:高分子硬膜厚 53
表4-4:高分子硬膜重 53
[1]K. T. Meilert, D. Laub, and J. Kiwi, “Photoccatalytic self-cleaning if modified cotton texiles by TiO2 clusters attached by cemical spacers”, Journal of Moleculars Catalysis A: Cemical, 237, 101-108 (2005).
[2]H. A. Foster, I. B. Ditta, and S. Varghese, “Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity”, Applied Microbiology and Biotechnology, 90, 1847-1868 (2011).
[3]J. Yu, L. Qi, and M. Jaroniec, “Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets”, Journal of Physical Chemistry C, 114, 13118-13125 (2010).
[4]J. M. Herrmann, “Heterogeneous photocatalysis: fundamental and applications to the removal of various types of aqueous pollutants, Catalysis Today, 53, 115-129 (1999).
[5]D. Chen, F. Huang, Y. B. Cheng, and R. A. Caruso, “Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: a superior candidate for high-performance dye-sensitized solar cells”, Advanced Materials, 21, 2206-2210 (2009).
[6]J. Zhang, Y. Wu, M. Xing, and S. A. K. Legari, and S. Sajjad, “Development of modified N doped TiO2 photocatalyst with metals nonmetals and metal oxides”, Energy & Environmental Science, 3, 715-726 (2010).
[7]莊宜臻,多功能氧化鐵@銀@二氧化鈦核殼粉體之合成與性質分析,國立中興大學材料科學與工程學系碩士論文 (2015)。
[8]A. L. Linsebigler, G. Lu, and J. T. Yates, Jr. “Photocatalysis on TiO2 Surfaces: principles, mechanisms, and selected results”, Chemical Reviews, 95, 735-758 (1995).
[9]M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, “Environmental applications of semiconductor photocatalysis”, Chemical Reviews, 95, 69-96 (1995).
[10]Y. Wang, Y. Hung, W. Ho, L. Zhang, Z. Zou, and S. Lee, “ Biomolecule-controlled hydrothermal synthesis of C-N-S-tridoped TiO2 nanocrystalline photocatalysts for NO removal under simulated solar light irradiation”, Journal of Hazardous Materials, 169, 77-87 (2009).
[11]C. Su, C. M. Tseng, L. F. Chen, B. H. You, B. C. Hsu, and S. S. Chen, “Sol-hydrothermal preparation and photocatalysis of titanium dioxide”, Thin Solid Films, 498, 259-265 (2006).
[12]H. Li, Z. Bian, J. Zhu, D. Zhang, G. Li, Y. Hou, H. Li, and Y. Lu, “ Mesoporous titania spheres with tunable chamber structure and enhanced photocatalytic activity”, Journal of the American Chemical Society, 129, 8406-8407 (2007).
[13]D. Chen, L. Cao, F. Huang, P. Imperia, Y. B. Cheng, and R. A. Caruso, “Synthesis of monodisperse mesoporous titania beads with controllable Diameter, high surface areas, and variable pore diameters(14-23 nm)”, Journal of the American Chemical Society, 132, 4438-4444 (2010).
[14]L. Li, and C. Y. Liu, “Mesoporous titania (A) nanoparticles prepared by a solvothermally treated orangic small molecule system: formation mechanism and behavior in photocatalysis and dye-sensitized solar cells”, The Journal of Physical Chemistry C, 114, 1444-1450 (2010).
[15]B. J. Yu, Y. Su, and B. Cheng. “Template-free fabrication and enhanced photocatalytic activity of hierarchical macro-/mesoporous titania”, Advanced Functional Materials, 17, 1984-1990 (2007).
[16]D. Behar, and J. Rabani, “Kinetics of hydrogen production upon reduction of aqueous TiO2 nanoparticles catalyzed by Pd0, Pt0, Au0 coatings and unusual hydrogen abstraction: steady state and pulse radiolysis study”, The Journal of Physical Chemistry B, 110, 8750-8755 (2006).
[17]Z. Yi, W. Wei, S. Lee, and G. Jianhua, “Photocatalytic performance of plasma sprayed Pt-modified TiO2 coatings under visible light irradiation”, Catalysis Communications, 8, 906-912 (2007).
[18]W. Wang, J. Zhang, F. Chen, D. He, and M. Anpo, “Preparation and photocatalytic properties of Fe3+-doped Ag@TiO2 core-shell nanoparticles”, Journal of Colloid and Interface Science, 323, 182-186 (2008).
[19]J. Georgieva, E Valova, S. Armyanov, D. Tatchev, S. Sotiropoulos, I. Avramova, N. Dimitrova, A. Hubin, and O. Streenhaut, “A simple preparation method and characterized of B and N co-doped TiO2 nanotube arrays with enhanced photoelectrochemical performance”, Applied Surface Science, 413, 284-291 (2017).
[20]J. Shao, W. Sheng, M. Wang, S. Li, J. Chen, Y. Zhang, and S. Cao, “In situ synthesis of carbon-doped TiO2 single-crystal nanorods with a remarkably photocaralytic efficiency”, Applied Catalysis B: Environmental, 209, 311-319 (2017).
[21]Y. Xiong, D. He, R. Jaber, P. J. Cameron, and K. J. Edler, “Sulfur-doped cubic mesostructured titania films for use as a solar photocatalyst”, The Journal of Physical Chemistry C, 121, 9927-9937 (2017).
[22]W. Choi, A. Termin, and M. R. Hoffmann, “ The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics”, The Journal of Physical Chemistry, 98, 13669-13679 (1994).
[23]S. A. Ansari, M. M. Khan, M. O. Ansari, and M. H. Cho, “Nitrogen-doped titanium dioxide (N-doped TiO2)for visible light photocatalysis”, The Royal Society of Chemistry, 00, 1-3 (2013).
[24]K. Nakata, and A. Fujishima, “TiO2 photocatalysis: Design and applications”, Journal of photochemistry and photobiology C: photochemistry reviews, 13, 169-189 (2012).
[25]D. M. Antonellim and J. Y. Ying, “Synthesis of Hexagonally Packed Mesoporous TiO2 by a Modified Sol-Gel Method”, Angewandte Chemie International Edition, 34, 2014-2017 (1995)
[26]C. J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Gratzel, “Nanocrystalline Titanim Oxide Electrodes for Photovoltatic Applications”, Journal of the American Ceramic Society, 80, 3157-3171 (1997).
[27]J. Yu, G. Wang, B. Cheng, and M. Zhou, “Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders”, Applied Catalysis B: Enviromental, 69, 171-180 (2007).
[28]L. Kumaresan, A. Prabhu, M. Palanichamy, and V. Murugesan, “Synthesis of mesoporous TiO2 in aqueous alcoholic medium and evaluation of its photocatalytic activity”, Materials Chemistry and Physics, 126, 445-452 (2011).
[29]D. H. Chen, L. Cao, F. Z. Hung, P. Imperia, Y. B. Cheng, and R. A. Caruso, “Synthesis of monodisperse mesoporous titania beads with controllable diameter, high surface areas, and variable pore diameters (14-23 nm)” Journal of the American Chemical Society, 132, 4438-4444 (2010).
[30]W. Zhou, F. Sun, K. Pan, G. Tian, B. Jiang, Z. Ren, C. Tian, and H. Fu, “Well-ordered large-pore mesoporous anatase TiO2 with remarkably high thermal stability and improved crystallinity: preparation, characterization, and photocatalytic performance”, Advanced Functional Materials, 21, 1992-1930 (2011).
[31]C. Li, R. Younesi, Y. Cai, Y. Zhu, M. Ma, and J. Zhu, “Photocatalytic and antibacterial properties of Au-decorated Fe3O4@mTiO2 core-shell microspheres”, Applied Catalysis B: Environmental, 156-157, 314-322 (2014).
[32]M. Ye, Q. Zhang, Y. Hu, J. Ge, Z. Lu, Z. Chen, and Y. Yin, “Magnetically recoverable core-shell nanocomposites with enhanced photocatalytic activity, Chemistry-A European Journal, 16, 6243-6250 (2010).
[33]Q. Zhang, G. Meng, J. Wu, D. Li, and Z. Liu, “Study on enhanced photocatalytic activity of magnetically recoverable Fe3O4@C@TiO2 nanocomposites with core-shell nanostructure”, Optical Materials, 46, 52-58 (2015).
[34]L. Sun, J. Li, C. Wang, S. Li, Y. Lai, H. Chen, and C, Lin, “Ultrasound aided photochemical synthesis of Ag loaded TiO2 nanotube arrays to enhance photocatalytic activity”, Journal of Hazardous Materials, 171, 1045-1050 (2009).
[35]R. Kaur, and B. Pal, “Size and shape dependent attachments of Au nanostructures to TiO2 for optimum reactivity of Au-TiO2 photocatalysis”, Journal of Molecular Catalysis A: Chemical, 355, 39-43 (2012).
[36]W. J. Tseng, C. C. Cheng, and J. H. Hsieh, “Rattle-Structured Ag/TiO2 Nanocomposite Capsules with Bactericide and Photocatalysis Activities”, Journal of the American Ceramic Society, 97, 407-412 (2014).
[37]Y. Wang, F. Pan, W. Dong, L. Xu, K. Wu, G. Xu, and W. Chen, “Recyclable silver-decorated magnetic titania nanocomposite with enhanced visible-light photocatalytic activity”, Applied Catalysis B: Environmental, 189, 192-198 (2016).
[38]Y. Chi, Q. Yuan, Y. Li, L. Zhao, N. Li, X. Li, and W. Yan, “Magnetically separable Fe3O4@SiO2@TiO2-Ag microspheres with well-designed nanostructure and enhanced photocatalytic activity”, Journal of Hazardous Materials, 262, 404-411 (2013).
[39]陳宥安,多功能氧化鐵@銀@二氧化鈦核殼複合粉體之光催化與抗菌性質研究,國立中興大學材料科學與工程學系碩士論文 (2016)。
[40]D. Dvoranova, V. Brezova, M. Mazur, and M. A. Malati, “Investigations of metal-doped titanium dioxide photocatalysts”, Applied Catalysis B: Environmental, 37, 91-105 (2002).
[41]T. Umebayashi, T. Yamaki, H. Itoh, and K. Asai, “Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations”, Journal of Physics and Chemistry of Solids, 63, 1909-1920 (2002).
[42]W. Choi, A. Termin, and M. R. Hoffmann, “The role of metal ion in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics”, The Journal of Physical Chemistry, 98, 13669-13679 (1994).
[43]M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O’Shea, M. H. Entezari, and D. Dionysiou”, Applied Catalysis B: Environmental, 125, 331-349 (2012).
[44]S. Z. Chu, S. Inoue, K. Wada, D. Li, and J. Suzuki, “Fabration and photocatalytic characterizations of ordered nanoporous X-doped (X=N, C, S, Ru, Te and Si) TiO2/Al2O3 Films on ITO/Glass”, American Chemical Society, 21, 8035-8041 (2005).
[45]Q. Zhang, D. Q. Lima, I. Lee, F. Zaera, M. Chi, and Y. Yin, “A highly active titanium dioxide based visible-light photocatalyst with nonmetal doping and plasmonic metal decoration”, Angewandte Chemie International Edition, 50, 7088-7092 (2011).
[46]R. Asahi, T. Morikawam, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides”, Science, 293, 269-271 (2001).
[47]N. Bao, J. J. Niu, Y. Li, G. L. Wu, and X. H. Yu, “Low-temperature hydrothermal synthesis of N-doped TiO2 from small-molecule amine systems and their photocatalytic activity”, Environmental Technology, 34, 2939-2949 (2013).
[48]J. Anapattarachai, P. Kajitvichyanukul, and S. Seraphin, “Visible light absorption ability and photocatalytuc oxidation activity of various interstitial N-doped TiO2 prepared from different from different nitrogen dopants”, Journal of Hazardous Materials, 168, 253-261 (2009).
[49]K. J. Carroll, D. M. Hudgins, S. Spurgeon, K. M. Kemner, B. Mishra, M. I. Boyanov, L. W. BrownⅢ, M. L. Taheri, and E. Carpenter, “One-pot aqueous synthesis of Fe and Ag core/shell nanoparticles, Chemistry of Materials, 22, 6291-6296 (2010).
[50]K. Kalantari, M. Kalbasi, M. Sohrabi, and S. J. Royaee, “Synthesis and characterization of N-doped TiO2 nanoparticles and their application in photocatalytic oxidation of dibenzothiophene under visible light”, Ceramics International, 42, 14834-14842 (2016).
[51]X. Chen, D. H. Kuo, D. Lu, “N-doped mesoporous TiO2 nanoparticles synthesized by using biological renewable nanocrystalline cellulose as template for the degradation of pollutants under visible and sun light”, Chemical Engineering Journal, 295, 192-200 (2016).
[52]Q. Wang, X. Yang, X. Wang, M. Hung, and J. Hou, “Synthesis of N-doped TiO2 mesosponage by solvothermal transformation of anodic TiO2 nanotubes and enhanced photoelectrochemical performance”, Electrochimica Acta, 62, 158-162 (2012).
[53]H. Zhang, K. Tan, H. Zheng, Y. Gu, and W. F. Zhang, “Preparation, characterization and photocatalytic activity of TiO2 codoped with yttrium and nitrogen”, Materials Chemistry and Physics, 125, 156-160 (2011).
[54]F. B. Li, X. Z. Li, M. F. Hou, K. W. Cheah, W. C. H. Choy, “Enhanced photocatalytic activity of Ce3+-TiO2 for 2-mercaptobenzothiazole degradation in aqueous suspension for odour control”, Applied Catalysis A: General, 285, 181-189 (2005).
[55]D. Mitoraj, and H. Kisch, “The nature of nitrogen-modified titanium dioxide photocatalysts active in visible light”, Angewandte Chemie International Edition, 47, 9975-9978 (2008).
[56]A. B. Murphy, “Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting”, Solar Energy Materials & Solar Cells, 91, 1326-1337 (2007).
[57]L. Xiong, Y. Yang, J. Mai, W. Sun, C. Zhang, D. Wei, Q. Chen, and J. Ni, “Adsorption behavior of methylene blue onto titanate nanotubes”, Chemical Engineering Journal, 156, 313-320 (2010).
[58]F. L. Toma, G. Bertrand, S. Begin, C. Meunier, O. Barres, D. Klein, and C. Coddet, “Microsstructure and environmental functionalities of TiO2-supported photocatalysts obtained by suspension plasma spraying”, Applied Catalysis B: Environmental, 68, 74-84 (2006).
[59]B. Erdem, R. A. Hunsicker, G. W. Simmons, E. D. Sudol, V. L. Dimonie, and M. S. El-Aadsser, “XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation”, Langmuir, 17, 2664-2669 (2001).
[60]R. Gong, J. Ye, W. Dai, X. Yan, J. Hu, X. Hu, S. Li, and H. Huang, ”Adsorptive removal of methyl orange and methylene blue from aqueous solution with finger-citron-residue-based activated carbon”, American Chemical Society, 52, 14297-14303 (2013).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊