(3.231.29.122) 您好!臺灣時間:2021/02/26 01:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳重銘
研究生(外文):Chung-Ming Chen
論文名稱:磁控濺鍍法製備銀基三層膜透明導電薄膜之結構與光電性質研究
論文名稱(外文):Structure and optoelectronic properties of Ag-based sandwich structure transparent conductive films prepared by magnetron sputtering
指導教授:薛富盛薛富盛引用關係
口試委員:陳建仲張奇龍
口試日期:2017-07-27
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:81
中文關鍵詞:銀基三層膜結構透明導電膜磁控濺鍍
外文關鍵詞:Ag-based sandwich structuretransparent conductive filmsmagnetron sputtering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:112
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
非晶型離子氧化物半導體ITZO在常溫下製程有良好之光電性質,被廣泛應用於元件中之透明電極,而Ag為良好之電導體,也是導電率最低之金屬,在ITZO薄膜中穿插一層Ag可有效降低透明導電膜之電阻率,可以製做成極薄之透明導電薄膜(厚度小於100 nm),因此具備更良好之可撓性,為了避免Ag層受高溫高濕而光電性質衰退,添加鉍與銅可增加其環境穩定性(簡稱為ABC合金)。本研究分為兩大方向,第一部分為改變薄膜厚度來探討光電性質,第二部分為改變基板溫度觀察薄膜性質變化。
實驗第一階段,固定ITZO/Ag/ITZO與ITZO/ABC/ITZO之上下層ITZO厚度為40 nm,觀察中間層金屬厚度對薄膜性質影響,發現皆出現Ag的FCC結構與ITZO之短程有序結構,隨厚度增加電阻率會降低,在厚度為8 nm時有最好之品質因子,此時可見光穿透率與電阻率分別約為83 %與7×10-5 Ω-cm。接著固定中間層厚度為10 nm,上下層ITZO薄膜厚度皆為40 nm時有最高之穿透率,此時可見光平均穿透率約為80 %。使用ABC合金取代Ag層會導致品質因子略微下降,但是能有效減少Ag團聚現象,降低薄膜表面粗糙度。
實驗第二階段,以ITZO/Ag/ITZO、ITZO/ABC/ITZO、ITO/Ag/ITO、ITO/ABC/ITO進行濺鍍並改變基板溫度觀察薄膜性質變化,以Ag作為中間層時,隨基板溫度增加,團聚現象越趨明顯,大於300°C時,薄膜光電性質劣化,薄膜顏色呈現藍色;以ABC作為中間層時,由於Bi和Cu可抑制團聚發生,其光電性質劣化溫度提高至400°C以上,有效改善薄膜熱穩定性。若以ITO作為上下TCO層,其光電性質皆較ITZO薄膜差,且表面粗糙度提升。考量傑出的光電性質與高熱穩定性,ITZO/ABC/ITZO膜被認為是有極高的潛力應用於耐高溫透明電極上。
ITZO, ionic amorphous oxide semiconductor has outstanding optoelectronic properties at the room temperature. It has widely been used as transparent electrodes. Furthermore, Ag which has the lowest electrical resistivity can be embedded into the ITZO film. It can be made thin enough (thinner than 100 nm) to provide sufficient transmittance and electrical resistivity. Therefore, it performs a high flexibility in mechanical properties. To prevent severe degradation in a high temperature or high humid environment, we dope Bi and Cu elements into Ag (Hereinafter referred to briefly as ABC) to increase environment stability. This study is divided into two parts:One is change the film thickness, the other is change the film substrate temperature.
In the first stage of experiment, ITZO/Ag/ITZO and ITZO/ABC/ITZO are deposited by magnetron sputtering. Each sandwich structures exhibits FCC structure of Ag and amorphous ITZO. The thickness of top and bottom layers ITZO are fixed to be 40 nm and the thickness of intermediate layer thickness is changed from 0 nm to 20 nm. The electrical resistivity decreases with the thickness of intermediate layer increases. It has the highest figure of merit of 5×10-2 Ω-1 when the thickness of intermediate layer is 8 nm. A high transmittance of 83 % in the visible wavelength region and a low electrical resistivity of 7×10-5 Ω-cm are achieved. And then, the thickness of intermediate layer thickness are fixed to be 10 nm and the thickness of top and bottom layers ITZO is changed from 0 nm to 100 nm. The film has the highest transmittance of 80 % in the visible wavelength region when the thickness of top and bottom ITZO films is 40 nm. Meanwhile, it has the highest figure of merit. The use of an ABC layer instead of a pure Ag layer will decrease the figure of merit, but the added metallic elements in Ag alloy can suppress the surface diffusion of Ag atoms.
In the second stage of experiment, ITZO/Ag/ITZO、ITZO/ABC/ITZO、ITO/Ag/ITO、ITO/ABC/ITO are prepared by sputtering to investigate properties of sandwich film at varying substrate temperature. First, Ag layer is embedded as the intermediate layer. When the temperature is greater than 300°C, the optoelectronic properties of the film deteriorates and the film color converts into blue. Second, ABC layer is used as the intermediate layer. Because adding Bi and Cu can increase the onset temperature and activation energy for agglomeration, the onset temperature will increase to 400°C. Obviously, doping Bi and Cu can improve the thermal stability of the film. If we use ITO film for top and bottom layer of sandwich structure, the optoelectronic properties are lower than ITZO film. Also, it will increase surface roughness. We will demonstrate that by the use of metal based semitransparent electrodes not only a replacement for established transparent conductors can be achieved but also thermal stability can be improved.
摘要 i
Abstract ii
目錄 iv
圖目錄 vii
表目錄 xi
第一章:緒論 1
1.1 前言 1
1.2 研究動機 2
第二章:文獻回顧 2
2.1 透明導電薄膜之理論 3
2.1.1 發展 3
2.1.2 薄膜結構 3
2.1.3 透明導電膜之基本原理 4
2.1.4 ITZO非晶薄膜特性 5
2.2 多層膜結構與光電性質 7
2.2.1 光電性質之評估 7
2.2.2 金屬薄膜之光電性質 9
2.2.3 抗反射膜之光電性質 12
2.2.4 多層膜設計原理 13
2.3 Ag層與Ag合金層環境穩定性 16
2.4 Ag膜團聚之原理 18
2.4.1 孔洞的成核與成長機制 (void nucleation and growth) 18
2.4.2 晶界分離機制 (grain boundary grooving process) 19
第三章:研究方法及步驟 20
3.1 實驗規劃與流程 20
3.2 薄膜濺鍍系統簡介 22
3.3 研究薄膜分析儀器 24
第四章:結果與討論 26
4.1 ITZO/Ag/ITZO與ITZO/ABC/ITZO多層膜之中間層厚度對薄膜性質研究 26
4.1.1 薄膜成份分析 27
4.1.2 晶體繞射結構分析 28
4.1.3 表面形貌分析 30
4.1.4 微結構分析(TEM) 32
4.1.5 薄膜光學性質 33
4.1.6 薄膜電學性質 37
4.1.7 薄膜之品質因子 39
4.2 ITZO/Ag/ITZO多層膜之上下層ITZO厚度對薄膜性質研究 41
4.2.1 晶體繞射結構分析 41
4.2.2 表面形貌分析 42
4.2.3 薄膜光學性質 43
4.2.4 薄膜電學性質 48
4.2.5 薄膜之品質因子 51
4.3 ITZO/Ag/ITZO與ITZO/ABC/ITZO多層膜之基板溫度對薄膜性質研究 52
4.3.1 晶體繞射結構分析 52
4.3.2 表面形貌分析 53
4.3.3 薄膜光學性質 55
4.3.4 薄膜電學性質 59
4.3.5 薄膜之品質因子 61
4.4 ITO/Ag/ITO與ITO/ABC/ITO多層膜之基板溫度對薄膜性質研究 63
4.4.1 晶體繞射結構分析 63
4.4.2 表面形貌分析 65
4.4.3 薄膜光學性質 66
4.4.4 薄膜電學性質 70
4.4.5 薄膜之品質因子 72
第五章:結論 74
參考文獻 76
[1] K. Baedeker, Annalen der Physik (Leipzig), 327 (1907).
[2] G. Rupprecht, Untersuchungen der elektrischen und lichtelektrischen Leitfähigkeit dünner Indiumoxydschichten, Zeitschrift für Physik, 139 (1954) 504-517.
[3] H.J.J.v.B.a.R. Groth, Philips Tech. Rev, 29 (1968).
[4] J.A. Thornton, Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings, Journal of Vacuum Science and Technology, 11 (1974) 666-670.
[5] H. Kim, C.M. Gilmore, A. Piqué, J.S. Horwitz, H. Mattoussi, H. Murata, Z.H. Kafafi, D.B. Chrisey, Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices, Journal of Applied Physics, 86 (1999) 6451-6461.
[6] 楊明輝, 金屬氧化物透明導電材料的基本原理, 工業材料, 2001, p. 134.
[7] D.h. Lee, S.h. Shim, J.s. Choi, K.b. Yoon, The effect of electro-annealing on the electrical properties of ITO film on colorless polyimide substrate, Applied Surface Science, 254 (2008) 4650-4654.
[8] N. Ito, Y. Sato, P.K. Song, A. Kaijio, K. Inoue, Y. Shigesato, Electrical and optical properties of amorphous indium zinc oxide films, Thin Solid Films, 496 (2006) 99-103.
[9] H.D.C. D.B. Fraser, Highly Conductive, Transparent Films of Sputtered In2-xSnxO3-y, The Electrochemical Society, 119 (1972) 1368.
[10] G. Haacke, New figure of merit for transparent conductors, Journal of Applied Physics, 47 (1976) 4086-4089.
[11] S.A. Knickerbocker, A.K. Kulkarni, Calculation of the figure of merit for indium tin oxide films based on basic theory, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 13 (1995) 1048-1052.
[12] R.G. Gordon, Criteria for Choosing Transparent Conductors, MRS Bulletin, 25 (2011) 52-57.
[13] C. Guillén, J. Herrero, TCO/metal/TCO structures for energy and flexible electronics, Thin Solid Films, 520 (2011) 1-17.
[14] S. Yu, W. Zhang, L. Li, D. Xu, H. Dong, Y. Jin, Optimization of SnO2/Ag/SnO2 tri-layer films as transparent composite electrode with high figure of merit, Thin Solid Films, 552 (2014) 150-154.
[15] W.S. Liu, Y.H. Liu, W.K. Chen, K.P. Hsueh, Transparent conductive Ga-doped MgZnO/Ag/Ga-doped MgZnO sandwich structure with improved conductivity and transmittance, Journal of Alloys and Compounds, 564 (2013) 105-113.
[16] Y. Mouchaal, G. Louarn, A. Khelil, M. Morsli, N. Stephant, A. Bou, T. Abachi, L. Cattin, M. Makha, P. Torchio, J.C. Bernède, Broadening of the transmission range of dielectric/metal multilayer structures by using different metals, Vacuum, 111 (2015) 32-41.
[17] T. Dimopoulos, M. Bauch, R.A. Wibowo, N. Bansal, R. Hamid, M. Auer, M. Jäger, E.J.W. List-Kratochvil, Properties of transparent and conductive Al:ZnO/Au/Al:ZnO multilayers on flexible PET substrates, Materials Science and Engineering: B, 200 (2015) 84-92.
[18] H.K. Park, J.W. Kang, S.I. Na, D.Y. Kim, H.K. Kim, Characteristics of indium-free GZO/Ag/GZO and AZO/Ag/AZO multilayer electrode grown by dual target DC sputtering at room temperature for low-cost organic photovoltaics, Solar Energy Materials and Solar Cells, 93 (2009) 1994-2002.
[19] H.J. Lee, J.W. Kang, S.H. Hong, S.H. Song, S.J. Park, MgxZn1-xO/Ag/MgxZn1-xO Multilayers As High-Performance Transparent Conductive Electrodes, ACS Appl Mater Interfaces, 8 (2016) 1565-1570.
[20] X. Liu, X. Cai, J. Mao, C. Jin, ZnS/Ag/ZnS nano-multilayer films for transparent electrodes in flat display application, Applied Surface Science, 183 (2001) 103-110.
[21] D. Kim, Low temperature deposition of transparent conducting ITO/Au/ITO films by reactive magnetron sputtering, Applied Surface Science, 256 (2010) 1774-1777.
[22] G. Zhao, S.M. Kim, S.G. Lee, T.S. Bae, C. Mun, S. Lee, H. Yu, G.H. Lee, H.S. Lee, M. Song, J. Yun, Bendable Solar Cells from Stable, Flexible, and Transparent Conducting Electrodes Fabricated Using a Nitrogen-Doped Ultrathin Copper Film, Advanced Functional Materials, 26 (2016) 4180-4191.
[23] M.M.D. Kumar, S. Mi Baek, J. Kim, The influence of Ni layer and thickness of AZO layers on the optoelectronic properties of AZO/Ni/AZO tri-layer deposited at room temperature, Materials Letters, 137 (2014) 132-135.
[24] Y.S. Jung, W.J. Kim, H.W. Choi, K.H. Kim, Properties of GAZO/Ag/GAZO multilayer films prepared by FTS system, Microelectronic Engineering, 89 (2012) 124-128.
[25] Y. Chen, L. Shen, W. Yu, Y. Long, W. Guo, W. Chen, S. Ruan, Highly efficient ITO-free polymer solar cells based on metal resonant microcavity using WO3/Au/WO3 as transparent electrodes, Organic Electronics, 15 (2014) 1545-1551.
[26] J.I. Choi, J.Y. Lee, J.H. Park, J.H. Chae, H.J. Park, D. Kim, Fabrication and characterization of Pt intermediate transparent and conducting ITO/Pt/ITO multilayer films, Journal of Physics and Chemistry of Solids, 70 (2009) 272-275.
[27] J. Cheng, G. Cao, H. Zong, C. Kang, E. Jia, B. Zhang, M. Li, Highly transparent conductive AZO/Zr50Cu50/AZO films in wide range of visible and near infrared wavelength grown by pulsed laser deposition, Results in Physics, 7 (2017) 910-913.
[28] M.M.D. Kumar, H. Kim, Y.C. Park, J. Kim, Enhanced optical and electrical properties of Ni inserted ITO/Ni/AZO tri-layer structure for photoelectric applications, Materials Science and Engineering: B, 195 (2015) 84-89.
[29] H. Hu, C. Jasper, A Revisit of Theoretic Model of Store Image Formation and its Application in Chinese Consumers, in: H.E. Spotts (Ed.) Revolution in Marketing: Market Driving Changes: Proceedings of the 2006 Academy of Marketing Science (AMS) Annual Conference, Springer International Publishing, Cham, 2015, pp. 125-125.
[30] Y.S. Lin, W.C. Tseng, Effect of Al Nanoparticles on the Microstructure, Electrical,and Optical Properties of AZO/Al/AZO Trilayer Thin Film, Journal of Electronic Materials, 41 (2012) 437-441.
[31] H. Wu, C. Ji, Q. Wang, X. Liu, J. Zhao, J. Feng, Manila clam Venerupis philippinarum as a biomonitor to metal pollution, Chinese Journal of Oceanology and Limnology, 31 (2013) 65-74.
[32] Z. Zhao, A.E. Khorasani, N.D. Theodore, A. Dhar, T.L. Alford, Prediction of transmittance spectra for transparent composite electrodes with ultra-thin metal layers, Journal of Applied Physics, 118 (2015) 205304.
[33] K. Nagase, M. Kumazaki, H. Kanazawa, J. Kobayashi, A. Kikuchi, Y. Akiyama, M. Annaka, T. Okano, Thermoresponsive polymer brush surfaces with hydrophobic groups for all-aqueous chromatography, ACS Appl Mater Interfaces, 2 (2010) 1247-1253.
[34] W. Wang, M. Song, T.S. Bae, Y.H. Park, Y.C. Kang, S.G. Lee, S.Y. Kim, D.H. Kim, S. Lee, G. Min, G.H. Lee, J.W. Kang, J. Yun, Transparent Ultrathin Oxygen-Doped Silver Electrodes for Flexible Organic Solar Cells, Advanced Functional Materials, 24 (2014) 1551-1561.
[35] G. Zhao, W. Wang, T.S. Bae, S.G. Lee, C. Mun, S. Lee, H. Yu, G.H. Lee, M. Song, J. Yun, Stable ultrathin partially oxidized copper film electrode for highly efficient flexible solar cells, Nature Communications, 6 (2015) 8830.
[36]https://eng.libretexts.org/Core/Materials_Science/Optical_Properties/Metallic_Reflection.
[37] 李正中, 薄膜光學與鍍膜技術, 藝軒圖書出版社, 2012.
[38] G. Leftheriotis, P. Yianoulis, D. Patrikios, Deposition and optical properties of optimised ZnS/Ag/ZnS thin films for energy saving applications, Thin Solid Films, 306 (1997) 92-99.
[39] J.H. Kim, D.S. Kim, S.K. Kim, Y.Z. Yoo, J. Hwan Lee, S.W. Kim, T.Y. Seong, Highly flexible Al-doped ZnO/Ag/Al-doped ZnO multilayer films deposited on PET substrates at room temperature, Ceramics International, 42 (2016) 3473-3478.
[40] K. Zilberberg, T. Riedl, Metal-nanostructures – a modern and powerful platform to create transparent electrodes for thin-film photovoltaics, J. Mater. Chem. A, 4 (2016) 14481-14508.
[41] H.C. Kim, T.L. Alford, D.R. Allee, Thickness dependence on the thermal stability of silver thin films, Applied Physics Letters, 81 (2002) 4287-4289.
[42] R. Hee Sook, K. Geun Hong, L. Won Jong, Effects of Added Metallic Elements in Ag-Alloys on Properties of Indium–Tin-Oxide/Ag-Alloy/Indium–Tin-Oxide Transparent Conductive Multilayer System, Japanese Journal of Applied Physics, 47 (2008) 6337.
[43] S.W. Chen, C.H. Koo, H.E. Huang, C.H. Chen, Ag–Ti Alloy Used in ITO–Metal–ITO Transparency Conductive Thin Film with Good Durability against Moisture, MATERIALS TRANSACTIONS, 46 (2005) 2536-2540.
[44] W.C. Shih, K.S. Kao, D.L. Cheng, C.J. Chung, P.T. Hsieh, S.L. Ou, Characteristics of transparent conductive Al-doped ZnO and Ag–Ti tri-layer thin films prepared by multi-target magnetron sputtering, Surface and Coatings Technology, 219 (2013) 139-143.
[45] H.J. Kim, K.W. Seo, H.K. Kim, Y.J. Noh, S.I. Na, Ag-Pd-Cu alloy inserted transparent indium tin oxide electrodes for organic solar cells, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 32 (2014) 051507.
[46] T.E. Graedel, J.P. Franey, G.J. Gualtieri, G.W. Kammlott, D.L. Malm, On the mechanism of silver and copper sulfidation by atmospheric H2S and OCS, Corrosion Science, 25 (1985) 1163-1180.
[47] C. Sun Hee, L. Won Jong, Effect of Added Metallic Elements in Ag Alloys on the Durability against Heat and Humidity of Indium Zinc Oxide/Ag Alloy/Indium Zinc Oxide Transparent Conductive Multilayer System, Japanese Journal of Applied Physics, 49 (2010) 111102.
[48] M. Doriot-Werlé, O. Banakh, P.A. Gay, J. Matthey, P.A. Steinmann, Tarnishing resistance of silver–palladium thin films, Surface and Coatings Technology, 200 (2006) 6696-6701.
[49] D.P.a.C. Leygraf, Initial Interaction of Sulfur Dioxide with Water Covered Metal Surfaces: An In Situ IRAS Study, Electrochem. Soc, 142 (1995).
[50] Y. Bai, L. Yan, J. Wang, Z. Yin, N. Chen, F. Wang, Z.a. Tan, Tailoring film agglomeration for preparation of silver nanoparticles with controlled morphology, Materials & Design, 103 (2016) 315-320.
[51] I. Crupi, S. Boscarino, V. Strano, S. Mirabella, F. Simone, A. Terrasi, Optimization of ZnO:Al/Ag/ZnO:Al structures for ultra-thin high-performance transparent conductive electrodes, Thin Solid Films, 520 (2012) 4432-4435.
[52] Y.C. Kim, S.J. Lee, I.K. Oh, S. Seo, H. Kim, J.M. Myoung, Bending stability of flexible amorphous IGZO thin film transistors with transparent IZO/Ag/IZO oxide–metal–oxide electrodes, Journal of Alloys and Compounds, 688 (2016) 1108-1114.
[53] H.S. Roh, S.H. Cho, W.J. Lee, Study on the durability against heat in ITO/Ag-alloy/ITO transparent conductive multilayer system, physica status solidi (a), 207 (2010) 1558-1562.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔