跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2025/01/18 01:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:俞彥任
研究生(外文):Yan-Ren Yu
論文名稱:鈷基硬面合金在不同頻率下振動銲覆之顯微組織及磨耗行為研究
論文名稱(外文):Microstructures and Wear Behaviors during various vibration frequencies welding of Cobalt Hardfacing alloy
指導教授:吳威德吳威德引用關係
口試委員:李義剛謝之駿
口試日期:2017-05-31
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:67
中文關鍵詞:鈷基硬面合金顯微結構磨損磨耗振動銲接
外文關鍵詞:Cobalt Hardfacing alloyMicrostructuresWear Behaviorsvibration welding
相關次數:
  • 被引用被引用:1
  • 點閱點閱:133
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗研究鈷基硬面合金在不同高頻波下振動銲覆之顯微組織及磨耗行為,選定高頻波頻率分別為 0Hz(無振動)、419 Hz、744 Hz、750 Hz、1257 Hz、1499 Hz與1593 Hz,將Stellite 1加強型粉末利用轉移式電漿電弧銲接(PTA)銲覆於基材SS400低碳鋼。藉由WDS成份分析、X-ray繞射分析與金相顯微結構觀察來鑑定銲覆層之結構,並利用殘留應力分析、硬度試驗與環對盤黏著磨耗試驗,來評估銲覆層之機械性質,再利用掃描式電子顯微鏡(SEM)觀察磨耗表面,藉此了解磨耗行為。由WDS成份分析與X-ray繞射分析結果顯示,不同振動參數下經PTA銲後,其顯微結構主要由M7C3、M12C與α-Co所構成。透過金相顯微組織觀察發現,其組織隨著頻率增加由長條M7C3碳化物(Longitudinal Carbide)轉變為短化M7C3碳化物(Transverse Carbide)和三角狀共晶( triangular eutectic )。殘留應力結果顯示,隨著頻率上升而殘留應力呈現下降趨勢,其中以1499 Hz消除率殘留應力效果最佳。
硬度量測方面,因同步振動銲覆使組織細化,提升銲道整體硬度,其中以頻率1593 Hz的銲道硬度最高(872 HV1)。黏著磨耗試驗結果顯示,試片的抗磨耗率與硬度值大小成正比,其中頻率744Hz硬度值最低(718 HV1),有最佳的抗黏著磨耗能力(3.3×10-3 mg/m)。磨耗面觀察顯示得知,當銲覆層組織為三角狀共晶與短化M7C3碳化物,相對組織韌性較差,且磨耗機構以磨料磨耗為主,故其抗磨耗能較差;當銲覆層組織為三角狀共晶與長條M7C3碳化,相對組織韌性佳,且磨耗機構以氧化物為主,故其抗磨耗能較佳。
In this experiment, the study of microstructures and wear behaviors on Cobalt Hardfacing alloys was designed by various vibration frequencies welding. The frequencies were chosen 0Hz (no vibration), 419 Hz, 744 Hz, 750 Hz, 1257 Hz, 1499 Hz and 1593 Hz, then the Stellite 1 powder was deposited on a substrate of SS400 low carbon steel by transfer plasma arc welding (PTA). The structure of the cladding layer was identified by WDS analysis, X-ray diffraction and microstructural analysis. The mechanical properties of the cladding layer were evaluated by residual stress analysis, hardness test and ring-on-disk wear test. The wear surface was observed by scanning electron microscopy (SEM) to understand the abrasion behavior. The results of WDS analysis and X-ray diffraction showed that the microstructures of M7C3, M12C and α-Co after PTA welding. It was found that the morphology of the longitudinal M7C3 carbides was changed to the transverse M7C3 carbide and special eutectic-phase with the increase of the frequency. The results of X-ray diffraction showed that the residual stress decreases with the increase of frequency, and the frequency 1499 Hz was the best elimination rate of residual stress. The hardness measurement results caused by Microstructure refinement, and the result showed that synchronous vibration welding will enhance the overall hardness of the weld, which the frequency of 1593 Hz weld the hardness of the best performance (872HV1). Adhesive wear test results show that the anti-wear rate is proportional to the hardness value, where the lowest frequency 744Hz hardness (718HV1), the best anti-adhesion wear rate(3.3×10-3mg/m). The wear surface observation indicated that the cladding layer was special eutectic-phase and shortened M7C3 carbide, the wear mechanism was controlled by the abrasive wear, therefore the wear resistance of specimen became worse. When the coating structure was special eutectic-phase structure and the longitudinal M7C3 carbides, the wear mechanism was controlled by the oxidative layers, therefore the wear resistance of specimen became better.
誌謝……………………………………………………………………………..…..... i
摘要 ii
Abstract iii
總目錄 iv
圖目錄 vi
表目錄 viii
第一章 前言 1
第二章 文獻回顧 4
2-1 硬面銲覆之介紹……………………………………………………………… 4
2-1-1 硬面銲覆技術…………………………………………………………….. 4
2-1-2 硬面銲覆之方法…………………………………………………………... 5
2-1-3 硬面銲覆合金分類………………………………………………………… 6
2-2 鈷基合金介紹……………………………………………………………… 8
2-3 合金元素對鈷基合金影響………………………………………………… 9
2-3-1 合金元素機械性質之影響……………………………………………… 9
2-3-2 合金元素之麻田散鐵轉變……………………………………………… 11
2-4 硬面銲覆之顯微結構……………………………………………………… 12
2-4-1 M7C3碳化物組織型態…………………………………………….……… 13
2-5 黏著磨耗機制………………………………………………………………… 15
2-6 振動消除應力技術………………………………………………………….. 16
2-6-1 Meta-Lax理論……………………………………………………………. 16
2-6-2 振幅與頻率對應力之影響……………………………………………… 18
2-6-3 應力消除理論…………………………………………………………… 18
2-6-4 振動應力消除之總結…………………………………………………… 19
2-6-5 振動應力消除之波形…………………………………………………… 19
2-6-6 同步振動銲接組織特性………………………………………………… 20
第三章 實驗步驟與方法 23
3-1 實驗流程……………………………………………………………………… 23
3-2 試片準備……………………………………………………………………… 24
3-3 系統高頻波偵測分析………………………………………………………… 25
3-4 同步振動銲覆………………………………………………………………… 29
3-5 波長散佈光譜儀(WDS)分析………………………………………………… 31
3-6 X光繞射分析………………………………………………………………. 31
3-7 殘留應力量測………………………………………………………………… 32
3-8 光學顯微鏡觀察……………………………………………………………… 34
3-9 硬度試驗……………………………………………………………………… 34
3-10 掃描式電子顯微鏡觀察……………………………………………………. 35
3-11 黏著磨耗試驗……………………………………………………………….. 36
第四章 結果與討論 39
4-1 銲道殘留應力、微觀裂紋統計分析………………………………………… 39
4-1-1 殘留應力分析…………………………………………………………….. 39
4-1-2 銲道裂紋分析…………………………………………………………….. 40
4-2 銲道成份、晶體結構分析及相分析………………………………………… 42
4-2-1 銲道成分分析…………………………………………………………….. 42
4-2-2 銲道晶體結構分析………………………………………………………... 43
4-3 銲道顯微結構分析……………………………………………………………. 44
4-3-1 分析表層結構…………………………………………………………….. 44
4-3-2 分析截面結構……………………………………………………………... 50
4-4 硬度分析………………………………………………………………………. 53
4-5 黏著磨耗試驗………………………………………………………………… 54
4-5-1 磨耗率分析………………………………………………………………... 54
4-5-2 磨耗面觀察………………………………………………………………... 55
第五章 結論 62
參考文獻 63
[1]M. Ashby, Y. Brechet, D. Cebon, and L. Salvo, “Selection strategies for materials and processes,” Materials and Design, Vol. 25, pp. 51–67, 2004.
[2]M. Dumovic, “Repair and maintenance procedures for heavy machinery components,” Welding Innovation, Vol. XX, No. 1, pp.1-5, 2003.
[3]J. R. Davis, Nickel Cobalt and Their Alloys, 1st Ed., ASM International, America, pp. 350-351, 2000.
[4]S. Takeda and N. Yukawa, Review of Recent Progress in Superalloys, 1st Ed., Nippon Kinzoku Gallai-ho, Japan, pp. 784-802, 1967.
[5]Z. H. Wang, Q. B. Wang, L. Cui, A. D. Yang, and D. Y. He, “Influence of cooling rate and composition on orientation of primary carbides of Fe-Cr-C hardfacing alloys,” Science and Technology of Welding and Joining, Vol. 13, pp. 656-662, 2008.
[6]N. A. Dheir, M. Khraisheh, K. Saito, and A. Male, “Silicon morphology modification in the eutectic Al-Si alloy using mechanical mold vibration,” Materials Science and Engineering, Vol. 393, No. 1-2, pp. 109-117, 2005.
[7]廖信智,“不同振盪頻率對殘留應力消除之研究”,國立中興大學精密工程研究所碩士學位論文,2006年。
[8]http://www.semboo.com/en/tech/thesis.htm
[9]趙長喜,“振動消除應力技術應用研究”,航天製造技術,第3期,第44-47頁, 2008年。
[10]林震宇、劉慶華、黃官平、王梅、郭紹華,“大型鋁合金機翼整體壁板加工變形控制技術”,航天製造技術,第421卷,第1/2期,第146-149頁,2013年。
[11]R. A. Claxton, “Vibratory Stress Relieving an Effective Alternative to Thermal Treatment for Component Stabilisation,” Heat Treatment of Metals, Vol. 2, pp. 53-59, 1991.
[12]M. C. Sun, “The Vibratory Stress Relief of A Marine Shafting of 35# Bar Steel,” Materials Letters, Vol. 58, No. 3, pp. 299-303, 2004.
[13]E. Pagounis, M. Talvite, and V. K. Lindroos, “Influence of the Metal/Ceramic Interface on the Microstructure and Mechanical Properties of HIPed Iron-Based Composites,” Composites Science and Technology, Vol. 56, No. 11, pp. 1329-1337, 1996.
[14]www.stellite.com
[15]R. Menon, “New Developments in Hardfacing Alloys,” Welding Journal, Vol. 75, No. 2, pp. 43-46, 1996.
[16]C. A. Mayer, “How to Select Hardsurfacing Materials,” Welding Design & Fabrication, Vol. 82, pp. 61-67,1982.
[17]E. N. Gregory and M. Bartle, “Materials for hardfacing,” The welding institute, pp.11-21, 1980.
[18]F. R. Morral, L. Habraken, D. Coutsouradis, . M. Drapier, and M. Urbain, Metals Engineering Quarterly, 1st Ed., ASM International, America, pp. 16, 1969.
[19]C. P. Sullivan, M. J. Donachie ,and F. R. Morral, Cobalt-Base superalloys, 1st Ed., Cobalt Information Center, Brussels Belgium, pp. 72, 1970.
[20]K. C. Antony, “Wear-resistant cobalt-based alloys,” Journal of Metals, Vol. 35, pp. 52-60, 1983.
[21]C. T. Sims, “Contemporary view of cobalt-base alloys,” Journal of Metals, Vol. 21, No. 12, pp. 27-42, 1969.
[22]U. O. B. D. Oliveira, Ph. D. thesis: “Laser treatment of alloys: processing, microstructure and structural properties,” Department of Faculty of Science and Engineering, University of Groningen, 2007.
[23]M. Pellan, Ph. D. thesis: “Development of grain boundaries and phase boundaries in WCCo cemented carbides,” Department of Science and Engineering of Materials and Processes, University Grenoble Alpes, 2015.
[24]M. Riddihough, “Stellite as a wear-resistant material,” Tribology, Vol. 3,pp. 211-215, 1970.
[25]G. L. F. POWELL and R. A. CARLSON, “The morphology and microtexture of M7C3 carbides in Fe-Cr-C and Fe-Cr-C-Si alloys of near eutectic composition,” Journal of Materials Science, Vol. 29, pp. 4889-4896, 1994.
[26]H. Yu, R. Ahmed, and H. D. V. Lovelock, “A Comparison of the Tribo-Mechanical Properties of a Wear Resistant Cobalt-Based Alloy Produced by Different Manufacturing Processes,” Journal of Tribology, Vol. 129, pp. 586-594, 2007.
[27]http://nptel.ac.in/courses/112102015/12
[28]W. Hirst and J. K. Lancaster, “Surface Film Formation and Metallic Wear,” Journal of Applied Physics, Vol.27, pp.1057-1065, 1956.
[29]J. Jiang, F. H. Stott, and M. M. Stack, “A Mathematical Model for Sliding Wear of Metals at Elevated Temperatures,” Wear, Vol.181-183, pp.20-31, 1995.
[30]http://www.meta-lax.com/Home/Benefits/benefits.html
[31]A. G. Hebel, “Subresonant Vibrations Relieve Residual Stress,” Metal Progress, Vol. 128, pp. 51-55, 1985.
[32]郭哲瑋,“同步震動銲接之特性與機構研究”,國立中興大學材料科學與工程學系博士學位論文, 2008年。
[33]R. Dawson and D. G. Moffat, “Vibratory Stress Relief: A Fundamental Study of It Is Effectiveness,” Journal of Engineering Materials and Technology, Vol. 102, No. 1, pp. 169-176, 1980.
[34]E. Klotzbucher and H. Kraft, Residual Stresses in Science and Technology,1st Ed., DGM Metallurgy Information, USA, pp. 959,1987.
[35]G. P. Wonzney and G. R. Crawmer, “An Investigation of Vibrational Stress Relief in Steel,” Welding Journal, Vol. 47,No. 9, pp. 411-419, 1968.
[36]C. A. Walker, A. J. Waddell, and D. J. Johnston, “Vibratory Stress Relief an investigation of the underlying process,” Proc. Inst. Mechanical Engineers, Vol. 209, pp. 51-58, 1995.
[37]G. Gnirss, “Vibration and stress relief - historical development, theory and practical application,” Indian Welding Journal, Vol. 22, pp. 11-16, 1990.
[38]D. R. Dreger, “Good Vibes Reduce Stresses in Metal Parts,” Machine Design, Vol. 50, No. 13, pp. 100-103, 1978.
[39]W. Q. Zou, Z. G. Zhang, H. Yang, and W. Li, “Effect of vibration frequency on microstructure and performance of high chromium cast iron prepared by lost foam casting, ” Research & Development, Vol. 13, pp. 248-255, 2016.
[40]S. P. Tewari, “Effect of Longitudinal vibration oscillation on tensile properties of medium carbon steel welds of different thickness,” International Journal of Science and Technology, Vol. 14, No. 4, pp. 17-27, 2007.
[41]S. Aoki, T. Nishimura, and T. Hiroi, “Reduction method for residual stress of welded joint using random vibration,” Nuclear Engineering and Design, Vol. 235, No. 1,pp. 1441-1445, 2005.
[42]吳宗翰,“Mar-M-004鎳基超合金在不同頻率下振動銲接之龜裂性研究”,國立中興大學材料科學與工程學系碩士學位論文,2015年。
[43]R. Hill, E. Robert, and R. Abbaschian, Physical metallurgy principles, 4thEd., Cengage Learning, American, pp. 693-696, 2008.
[44]K. J. Bhansali, “Adhesive wear of nickel and cobalt-base alloys,” Wear, Vol. 60, No. 1, pp. 95-110, 1980.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top