[2-1]Chen, Y., Bagnall, D., Koh, H., Park, K., Hiraga, K., Zhu, Z. and Yao, T. (1998). Plasma assisted molecular beam epitaxy of ZnO on c -plane sapphire: Growth and characterization. Journal of Applied Physics, 84(7), pp.3912-3918.
[2-2]Lao, C., Liu, J., Gao, P., Zhang, L., Davidovic, D., Tummala, R. and Wang, Z. (2006). ZnO Nanobelt/Nanowire Schottky Diodes Formed by Dielectrophoresis Alignment across Au Electrodes. Nano Letters, 6(2), pp.263-266.
[2-3]Pyshkin, S. and Ballato, J. (2013). Optoelectronics - Advanced Materials and Devices.
[2-4]Hsu, C., Chen, K., Tsai, T. and Hsueh, T. (2013). Fabrication of gas sensor based on p-type ZnO nanoparticles and n-type ZnO nanowires. Sensors and Actuators B: Chemical, 182, pp.190-196.
[2-5]Zadeh, K., Trinchi, A., Wlodarski, W. and Holland, A. (2002). A novel Love-mode device based on a ZnO/ST-cut quartz crystal structure for sensing applications. Sensors and Actuators A: Physical, 100(2-3), pp.135-143.
[2-6]Callister, W. (2009). Materials science and engineering. 8th ed.
[2-7]Zeng, H., Duan, G., Li, Y., Yang, S., Xu, X. and Cai, W. (2010). Blue Luminescence of ZnO Nanoparticles Based on Non-Equilibrium Processes: Defect Origins and Emission Controls. Advanced Functional Materials, 20(4), pp.561-572.
[2-8]Schmidt-Mende, L. and MacManus-Driscoll, J. (2007). ZnO – nanostructures, defects, and devices. Materials Today, 10(5), pp.40-48.
[2-9]Hagemark, K. (1976). Defect structure of Zn-doped ZnO. Journal of Solid State Chemistry, 16(3-4), pp.293-299.
[2-10]Liu, D., Lv, Y., Zhang, M., Liu, Y., Zhu, Y., Zong, R. and Zhu, Y. (2014). Defect-related photoluminescence and photocatalytic properties of porous ZnO nanosheets. Journal of Materials Chemistry A, 2(37), p.15377.
[2-11]Kumar, V., Swart, H., Ntwaeaborwa, O., Kroon, R., Terblans, J., Shaat, S., Yousif, A. and Duvenhage, M. (2013). Origin of the red emission in zinc oxide nanophosphors. Materials Letters, 101, pp.57-60.
[2-12]Djurišić, A., Leung, Y., Tam, K., Ding, L., Ge, W., Chen, H. and Gwo, S. (2006). Green, yellow, and orange defect emission from ZnO nanostructures: Influence of excitation wavelength. Applied Physics Letters, 88(10), p.103107.
[2-13]Pawar, B., Jadkar, S. and Takwale, M. (2005). Deposition and characterization of transparent and conductive sprayed ZnO:B thin films. Journal of Physics and Chemistry of Solids, 66(10), pp.1779-1782.
[2-14]Tseng, Y., Gao, G. and Chien, S. (2010). Synthesis of c-axis preferred orientation ZnO:Al transparent conductive thin films using a novel solvent method. Thin Solid Films, 518(22), pp.6259-6263.
[2-15]Bhosle, V., Tiwari, A. and Narayan, J. (2006). Metallic conductivity and metal-semiconductor transition in Ga-doped ZnO. Applied Physics Letters, 88(3), p.032106.
[2-16]Fang, F., Futter, J., Markwitz, A. and Kennedy, J. (2009). UV and humidity sensing properties of ZnO nanorods prepared by the arc discharge method. Nanotechnology, 20(24), p.245502.
[2-17]Zhang, Y., Yu, K., Jiang, D., Zhu, Z., Geng, H. and Luo, L. (2005). Zinc oxide nanorod and nanowire for humidity sensor. Applied Surface Science, 242(1-2), pp.212-217.
[2-18]Oh, E., Choi, H., Jung, S., Cho, S., Kim, J., Lee, K., Kang, S., Kim, J., Yun, J. and Jeong, S. (2009). High-performance NO2 gas sensor based on ZnO nanorod grown by ultrasonic irradiation. Sensors and Actuators B: Chemical, 141(1), pp.239-243.
[2-19]Kohan, A., Ceder, G., Morgan, D. and Van de Walle, C. (2000). First-principles study of native point defects in ZnO. Physical Review B, 61(22), pp.15019-15027.
[2-20]Van de Walle, C. (2000). Hydrogen as a Cause of Doping in Zinc Oxide. Physical Review Letters, 85(5), pp.1012-1015.
[2-21]Zhao, J., Li, X., Bian, J., Yu, W. and Gao, X. (2005). Structural, optical and electrical properties of ZnO films grown by pulsed laser deposition (PLD). Journal of Crystal Growth, 276(3-4), pp.507-512.
[2-22]Kołodziejczak-Radzimska, A. and Jesionowski, T. (2014). Zinc Oxide—From Synthesis to Application: A Review. Materials, 7(4), pp.2833-2881.
[2-23]Ibarra, L., Marcos-Fernández, A. and Alzorriz, M. (2002). Mechanistic approach to the curing of carboxylated nitrile rubber (XNBR) by zinc peroxide/zinc oxide. Polymer, 43(5), pp.1649-1655.
[2-24]Liu, H., Yang, D., Yang, H., Zhang, H., Zhang, W., Fang, Y., Lin, Z., Tian, L., Lin, B., Yan, J. and Xi, Z. (2013). Comparative study of respiratory tract immune toxicity induced by three sterilisation nanoparticles: Silver, zinc oxide and titanium dioxide. Journal of Hazardous Materials, 248-249, pp.478-486.
[2-25]Mirhosseini, M. and Firouzabadi, F. (2012). Antibacterial activity of zinc oxide nanoparticle suspensions on food-borne pathogens. International Journal of Dairy Technology, 66(2), pp.291-295.
[2-26]Mason, Pamela. (2006). Physiological and medicinal zinc. Pharmaceutical journal, 276.7390, pp. 271-274.
[2-27]Cross, S., Innes, B., Roberts, M., Tsuzuki, T., Robertson, T. and McCormick, P. (2007). Human Skin Penetration of Sunscreen Nanoparticles: In-vitro Assessment of a Novel Micronized Zinc Oxide Formulation. Skin Pharmacology and Physiology, 20(3), pp.148-154.
[2-28]Yadav, A., Prasad, V., Kathe, A., Raj, S., Yadav, D., Sundaramoorthy, C. and Vigneshwaran, N. (2006). Functional finishing in cotton fabrics using zinc oxide nanoparticles. Bulletin of Materials Science, 29(6), pp.641-645.
[2-29]Xu, W., Ye, Z., Zeng, Y., Zhu, L., Zhao, B., Jiang, L., Lu, J., He, H. and Zhang, S. (2006). ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition. Applied Physics Letters, 88(17), p.173506.
[2-30]Wei, Z., Lu, Y., Shen, D., Zhang, Z., Yao, B., Li, B., Zhang, J., Zhao, D., Fan, X. and Tang, Z. (2007). Room temperature p-n ZnO blue-violet light-emitting diodes. Applied Physics Letters, 90(4), p.042113.
[2-31]Soci, C., Zhang, A., Xiang, B., Dayeh, S., Aplin, D., Park, J., Bao, X., Lo, Y. and Wang, D. (2007). ZnO Nanowire UV Photodetectors with High Internal Gain. Nano Letters, 7(4), pp.1003-1009.
[2-32]Baxter, J., Walker, A., Ommering, K. and Aydil, E. (2006). Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells. Nanotechnology, 17(11), pp.S304-S312.
[2-33]Hsueh, T. and Hsu, C. (2008). Fabrication of gas sensing devices with ZnO nanostructure by the low-temperature oxidation of zinc particles. Sensors and Actuators B: Chemical, 131(2), pp.572-576.
[2-34]Xu, T., Wu, G., Zhang, G. and Hao, Y. (2003). The compatibility of ZnO piezoelectric film with micromachining process. Sensors and Actuators A: Physical, 104(1), pp.61-67.
[2-35]Chaaya, A., Bechelany, M., Balme, S. and Miele, P. (2014). ZnO 1D nanostructures designed by combining atomic layer deposition and electrospinning for UV sensor applications. J. Mater. Chem. A, 2(48), pp.20650-20658.
[2-36]Zheng, K., Gu, L., Sun, D., Mo, X. and Chen, G. (2010). The properties of ethanol gas sensor based on Ti doped ZnO nanotetrapods. Materials Science and Engineering: B, 166(1), pp.104-107.
[2-37]Wang, J., Sun, X., Yang, Y. and Wu, C. (2009). N–P transition sensing behaviors of ZnO nanotubes exposed to NO2gas. Nanotechnology, 20(46), p.465501.
[2-38]Sberveglieri, G., Nelli, P., Groppelli, S., Quaranta, F., Valentini, A. and Vasanelli, L. (1990). Oxygen gas sensing characteristics at ambient pressure of undoped and lithium-doped ZnO-sputtered thin films. Materials Science and Engineering: B, 7(1-2), pp.63-68.
[2-39]Liu, F., Gao, S., Pei, S., Tseng, S. and Liu, C. (2009). ZnO nanorod gas sensor for NO2 detection. Journal of the Taiwan Institute of Chemical Engineers, 40(5), pp.528-532.
[2-40]Joshi, R., Hu, Q., Alvi, F., Joshi, N. and Kumar, A. (2009). Au Decorated Zinc Oxide Nanowires for CO Sensing. The Journal of Physical Chemistry C, 113(36), pp.16199-16202.
[2-41]Gong, H., Hu, J., Wang, J., Ong, C. and Zhu, F. (2006). Nano-crystalline Cu-doped ZnO thin film gas sensor for CO. Sensors and Actuators B: Chemical, 115(1), pp.247-251.
[2-42]Zhu, G., Xu, H., Liu, Y., Xu, X., Ji, Z., Shen, X. and Xu, Z. (2012). Enhanced gas sensing performance of Co-doped ZnO hierarchical microspheres to 1,2-dichloroethane. Sensors and Actuators B: Chemical, 166-167, pp.36-43.
[2-43]Wahab, R., Ansari, S., Kim, Y., Seo, H. and Shin, H. (2007). Room temperature synthesis of needle-shaped ZnO nanorods via sonochemical method. Applied Surface Science, 253(18), pp.7622-7626.
[2-44]Zhu, Y., Zhang, H., Sun, X., Feng, S., Xu, J., Zhao, Q., Xiang, B., Wang, R. and Yu, D. (2003). Efficient field emission from ZnO nanoneedle arrays. Applied Physics Letters, 83(1), pp.144-146.
[2-45]Gao, P., Ding, Y., Mai, W., Hughes, W., Lao, C. and Wang, Z. (2005). Conversion of Zinc Oxide Nanobelts into Superlattice-Structured Nanohelices. ChemInform, 36(49).
[2-46]Kong, X. (2004). Single-Crystal Nanorings Formed by Epitaxial Self-Coiling of Polar Nanobelts. Science, 303(5662), pp.1348-1351.
[2-47]Banerjee, D., Lao, J., Wang, D., Huang, J., Ren, Z., Steeves, D., Kimball, B. and Sennett, M. (2003). Large-quantity free-standing ZnO nanowires. Applied Physics Letters, 83(10), pp.2061-2063.
[2-48]Pan, Z. (2001). Nanobelts of Semiconducting Oxides. Science, 291(5510), pp.1947-1949.
[2-49]Wu, J., Liu, S., Wu, C., Chen, K. and Chen, L. (2002). Heterostructures of ZnO–Zn coaxial nanocables and ZnO nanotubes. Applied Physics Letters, 81(7), pp.1312-1314.
[2-50]Xu, T., Ji, P., He, M. and Li, J. (2012). Growth and Structure of Pure ZnO Micro/Nanocombs. Journal of Nanomaterials, 2012, pp.1-5.
[2-51]Illy, B., Shollock, B., MacManus-Driscoll, J. and Ryan, M. (2005). Electrochemical growth of ZnO nanoplates. Nanotechnology, 16(2), pp.320-324.
[2-52]Jing, Z. and Zhan, J. (2008). Fabrication and Gas-Sensing Properties of Porous ZnO Nanoplates. Advanced Materials, 20(23), pp.4547-4551.
[2-53]Chiu, W., Khiew, P., Cloke, M., Isa, D., Tan, T., Radiman, S., Abd-Shukor, R., Hamid, M., Huang, N. and Lim, H. (2010). Photocatalytic study of two-dimensional ZnO nanopellets in the decomposition of methylene blue. Chemical Engineering Journal, 158(2), pp.345-352.
[2-54]Polshettiwar, V., Baruwati, B. and Varma, R. (2009). Self-Assembly of Metal Oxides into Three-Dimensional Nanostructures: Synthesis and Application in Catalysis. ACS Nano, 3(3), pp.728-736.
[2-55]Xie, Q., Dai, Z., Liang, J., Xu, L., Yu, W. and Qian, Y. (2005). Synthesis of ZnO three-dimensional architectures and their optical properties. Solid State Communications, 136(5), pp.304-307.
[2-56]Yang, P., Yan, H., Mao, S., Russo, R., Johnson, J., Saykally, R., Morris, N., Pham, J., He, R. and Choi, H. (2002). Controlled Growth of ZnO Nanowires and Their Optical Properties. Advanced Functional Materials, 12(5), p.323.
[2-57]Ding, Y., Gao, P. and Wang, Z. (2004). Catalyst−Nanostructure Interfacial Lattice Mismatch in Determining the Shape of VLS Grown Nanowires and Nanobelts: A Case of Sn/ZnO. Journal of the American Chemical Society, 126(7), pp.2066-2072.
[2-58]Gao, P. and Wang, Z. (2004). Substrate Atomic-Termination-Induced Anisotropic Growth of ZnO Nanowires/Nanorods by the VLS Process. The Journal of Physical Chemistry B, 108(23), pp.7534-7537.
[2-59]Muthukumar, S., Haifeng Sheng, Jian Zhong, Zheng Zhang, Emanetoglu, N. and Yicheng Lu (2003). Selective MOCVD growth of ZnO nanotips. IEEE Transactions On Nanotechnology, 2(1), pp.50-54.
[2-60]Kong, Y., Yu, D., Zhang, B., Fang, W. and Feng, S. (2001). Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach. Applied Physics Letters, 78(4), pp.407-409.
[2-61]Liu, X., Wu, X., Cao, H. and Chang, R. (2004). Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition. Journal of Applied Physics, 95(6), pp.3141-3147.
[2-62]Fan, Z., Wang, D., Chang, P., Tseng, W. and Lu, J. (2004). ZnO nanowire field-effect transistor and oxygen sensing property. Applied Physics Letters, 85(24), pp.5923-5925.
[2-63]Son, J., Lim, S., Cho, J., Seong, W. and Kim, H. (2008). Synthesis of horizontally aligned ZnO nanowires localized at terrace edges and application for high sensitivity gas sensor. Applied Physics Letters, 93(5), p.053109.
[2-64]Zheng, M., Zhang, L., Li, G. and Shen, W. (2002). Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique. Chemical Physics Letters, 363(1-2), pp.123-128.
[2-65]Guo, M., Yang, C., Zhang, M., Zhang, Y., Ma, T., Wang, X. and Wang, X. (2008). Effects of preparing conditions on the electrodeposition of well-aligned ZnO nanorod arrays. Electrochimica Acta, 53(14), pp.4633-4641.
[2-66]Jung, S., Oh, E., Lee, K., Park, W. and Jeong, S. (2007). A Sonochemical Method for Fabricating Aligned ZnO Nanorods. Advanced Materials, 19(5), pp.749-753.
[2-67]Vayssieres, L. (2003). Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions. Advanced Materials, 15(5), pp.464-466.
[2-68]Zhang, W., Zhu, R., Nguyen, V. and Yang, R. (2014). Highly sensitive and flexible strain sensors based on vertical zinc oxide nanowire arrays. Sensors and Actuators A: Physical, 205, pp.164-169.
[2-69]Laudise, R. and Ballman, A. (1960). HYDROTHERMAL SYNTHESIS OF ZINC OXIDE AND ZINC SULFIDE1. The Journal of Physical Chemistry, 64(5), pp.688-691.
[2-70]Guo, M., Diao, P. and Cai, S. (2005). Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparing conditions. Journal of Solid State Chemistry, 178(6), pp.1864-1873.
[2-71]Tian, J., Hu, J., Li, S., Zhang, F., Liu, J., Shi, J., Li, X., Tian, Z. and Chen, Y. (2011). Improved seedless hydrothermal synthesis of dense and ultralong ZnO nanowires. Nanotechnology, 22(24), p.245601.
[2-72]Akgun, M., Kalay, Y. and Unalan, H. (2012). Hydrothermal zinc oxide nanowire growth using zinc acetate dihydrate salt. Journal of Materials Research, 27(11), pp.1445-1451.
[2-73]Zhang, Y., Ram, M., Stefanakos, E. and Goswami, D. (2012). Synthesis, Characterization, and Applications of ZnO Nanowires. Journal of Nanomaterials, 2012, pp.1-22.
[2-74]Das, S., Kar, J.,Choi, J., Lee, T., Moon, K., Myoung, J. (2010). Fabrication and Characterization of ZnO Single Nanowire-Based Hydrogen Sensor. The Journal of Physical Chemistry, 114, p.1689-1693.
[2-75]Das, S., Moon, K., Kar, J., Choi, J., Xiong, J., Myoing, M. (2010). ZnO single nanowire-based UV detectors. Journal of Applied Physics, 97, p.022103
[2-76]Zhou, J., Gu, Y., Hu, Y., Mai, W., Yeh, P., Bao, G., Sood, A., Polla, D. and Wang, Z. (2009). Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization. Applied Physics Letters, 94(19), p.191103.
[2-77]Lee, T., Choi, W., Kar, J., Kang, Y., Jeon, J., Park, J., Kim, Y., Baik, H. and Myoung, J. (2010). Electrical Contact Tunable Direct Printing Route for a ZnO Nanowire Schottky Diode. Nano Letters, 10(9), pp.3517-3523.
[2-78]Pethig, R. (2010). Review Article—Dielectrophoresis: Status of the theory, technology, and applications. Biomicrofluidics, 4(2), p.022811.
[2-79]Tiselius, A. (1937). A new apparatus for electrophoretic analysis of colloidal mixtures. Transactions of the Faraday Society, 33, p.524.
[2-80]Pohl, H. (1951). The Motion and Precipitation of Suspensoids in Divergent Electric Fields. Journal of Applied Physics, 22(7), pp.869-871.
[2-81]Hughes, M. (2000). AC electrokinetics: applications for nanotechnology. Nanotechnology, 11(2), pp.124-132.
[2-82]Kim, K., Moon, T., Lee, M., Kang, J., Jeon, Y. and Kim, S. (2011). Light-emitting diodes composed of n-ZnO and p-Si nanowires constructed on plastic substrates by dielectrophoresis. Solid State Sciences, 13(9), pp.1735-1739.
[2-83]Ding, H., Shao, J., Ding, Y., Liu, W., Tian, H. and Li, X. (2015). One-Dimensional Au–ZnO Heteronanostructures for Ultraviolet Light Detectors by a Two-Step Dielectrophoretic Assembly Method. ACS Applied Materials & Interfaces, 7(23), pp.12713-12718.
[2-84]Ding, H., Shao, J., Ding, Y., Liu, W., Tian, H. and Li, X. (2015). One-Dimensional Au–ZnO Heteronanostructures for Ultraviolet Light Detectors by a Two-Step Dielectrophoretic Assembly Method. ACS Applied Materials & Interfaces, 7(23), pp.12713-12718.
[2-85]Collet, M., Salomon, S., Klein, N., Seichepine, F., Vieu, C., Nicu, L. and Larrieu, G. (2015). Nanowires: Large-Scale Assembly of Single Nanowires through Capillary-Assisted Dielectrophoresis (Adv. Mater. 7/2015). Advanced Materials, 27(7), pp.1304-1304.
[4-1]蔡維哲 (2016) 以水熱法成長P-N同質接面氧化鋅奈米線應用於光電元件之研究。碩士論文,國立中興大學材料科學與工程學系。[4-2]Papadakis, S., Hoffmann, J., Deglau, D., Chen, A., Tyagi, P. and Gracias, D. (2011). Quantitative analysis of parallel nanowire array assembly by dielectrophoresis. Nanoscale, 3(3), pp.1059-1065.
[4-3]呂承翰 (2015) 以水熱法與介電泳法製備氧化鋅奈米線元件於氣體感測之應用。碩士論文,國立中興大學材料科學與工程學系。[4-4]何祥熙 (2016) 不對稱焦耳熱效應於矽奈米線元件之影響及其應用。碩士論文,國立中興大學材料科學與工程學系。[4-5]Harnack, O., Pacholski, C., Weller, H., Yasuda, A. and Wessels, J. (2003). Rectifying Behavior of Electrically Aligned ZnO Nanorods. Nano Letters, 3(8), pp.1097-1101.
[4-6]Lao, C., Liu, J., Gao, P., Zhang, L., Davidovic, D., Tummala, R. and Wang, Z. (2006). ZnO Nanobelt/Nanowire Schottky Diodes Formed by Dielectrophoresis Alignment across Au Electrodes. Nano Letters, 6(2), pp.263-266.
[4-7]García Núñez, C., García Marín, A., Nanterne, P., Piqueras, J., Kung, P. and Pau, J. (2013). Conducting properties of nearly depleted ZnO nanowire UV sensors fabricated by dielectrophoresis. Nanotechnology, 24(41), p.415702.
[4-8]Hwang, J., Lin, Y. and Kung, C. (2013). Enhancement of the Schottky barrier height of Au/ZnO nanocrystal by zinc vacancies using a hydrothermal seed layer. Nanotechnology, 24(11), p.115709.
[4-9]Yu, C., Yeh, P. and Chen, L. (2005). Directional nickel silicide-induced crystallization of amorphous silicon channel under high-density current stressing. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 237(1-2), pp.167-173.
[4-10]Das, S., Moon, K., Kar, J., Choi, J., Xiong, J., Lee, T. and Myoung, J. (2010). ZnO single nanowire-based UV detectors. Applied Physics Letters, 97(2), p.022103.
[4-11]Hu, Y., Zhou, J., Yeh, P., Li, Z., Wei, T. and Wang, Z. (2010). Supersensitive, Fast-Response Nanowire Sensors by Using Schottky Contacts. Advanced Materials, 22(30), pp.3327-3332.
[4-12]Khoang, N., Hong, H., Trung, D., Duy, N., Hoa, N., Thinh, D. and Hieu, N. (2013). On-chip growth of wafer-scale planar-type ZnO nanorod sensors for effective detection of CO gas. Sensors and Actuators B: Chemical, 181, pp.529-536
[4-13]Rai, P., Kim, Y., Song, H., Song, M. and Yu, Y. (2012). The role of gold catalyst on the sensing behavior of ZnO nanorods for CO and NO2 gases. Sensors and Actuators B: Chemical, 165(1), pp.133-142.
[4-14]Wang, J., Sun, X., Huang, H., Lee, Y., Tan, O., Yu, M., Lo, G. and Kwong, D. (2007). A two-step hydrothermally grown ZnO microtube array for CO gas sensing. Applied Physics A, 88(4), pp.611-615.
[4-15]Choi, S. and Kim, S. (2012). Room temperature CO sensing of selectively grown networked ZnO nanowires by Pd nanodot functionalization. Sensors and Actuators B: Chemical, 168, pp.8-13.
[4-16]Wei, T., Yeh, P., Lu, S. and Wang, Z. (2009). Gigantic Enhancement in Sensitivity Using Schottky Contacted Nanowire Nanosensor. Journal of the American Chemical Society, 131(48), pp.17690-17695.