跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/12 21:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:孫開亨
研究生(外文):Kai-Heng Sun
論文名稱:利用電場誘發排列氧化鋅奈米線製作整流性奈米感測元件
論文名稱(外文):Fabrication of Rectification Nanosensor Devices by Electric Field Assembly of ZnO Nanowires
指導教授:許薰丰
指導教授(外文):Hsun-Feng Hsu
口試委員:吳文偉呂明諺
口試日期:2017-07-24
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:88
中文關鍵詞:氧化鋅奈米線電場誘發光學感測氣體感測
外文關鍵詞:ZnO nanowireelectric field assemblyphotosensinggas sensing
相關次數:
  • 被引用被引用:2
  • 點閱點閱:160
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技的進步,對於各種電子產品朝向低成本、高效能、小體積等更卓越的表現同時,學者們也大量投入奈米尺度材料製程與控制的研究。近年來由於介電泳法的理論與技術的成熟,越來越多研究利用介電泳法來控制奈米尺度的材料,製作奈米元件,利用奈米尺度的高比表面積比優勢,進行感測實驗。
本實驗利用控制電壓大小及電流方向等參數,藉由直流電場誘發排列奈米線可製備出平行排列的奈米線元件,且由於不對稱焦耳熱效應讓奈米線兩端有著不同的蕭特基能障高度,使該元件具有整流特性。並且利用元件處於逆向偏壓具有強烈的內建電場時進行光學感測實驗,獲得良好的反應速度及靈敏度的感光特性。氣體感測方面則利用CO會使氧化鋅表面氧離子脫附造成電流上升的同時,介面處的氧離子脫附也會使蕭特基能障降低而有更大的電流提升,獲得更好的靈敏度。
In recent years, electronic devices have increasingly been made with smaller size, lower cost and higher performance and thus the fabrication of nano electronic devices have been paid great attention. Semiconductor ZnO nanowire has been used in ultraviolet (UV) photodetectors and air sensors because of its wide direct band gap (3.37 eV) and high surface to volume ratio.
In this study, ZnO nanowires (NWs) were synthesized on ZnO seed-layer substrate by hydrothermal method and subsequently used as building blocks for parallel ZnO nanowire-based devices using direct current (DC) dielectrophoresis alignment across Au electrodes. The role of ZnO nanowire/Au metal contacts and its effect on electrical and sensing properties of the devices were investigated.
The results show that the devices exhibited rectifying current-voltage characteristic as they fabricated by electric field assembly of ZnO nanowire at a 3V DC electric field applied. This phenomenon is because the Au atoms diffusing from electrode into ZnO nanowire on the high-temperature anode side causes the increasing of Schottky barrier height as the asymmetric Joule heating effect occurs instantly in the electric field alignment process.
The photosensing and gas sensing properties of the rectifying devices were further investigated. For the UV (365 nm) photosensing, when the increased Schottky barrier height in the reverse-biased mode is used high speed and photoresponse can be observed due to the efficient electron-hole separation by built-in electric field in the depletion region. For gas sensing, as expose the device to CO Schottky barrier high at the ZnO/Au interface decreased due to O desorbing form the interface. The current increased obviously and thus high sensitivity was achieved.
摘要 i
Abstract ii
表目錄 v
圖目錄 vi
第一章 前言 1
第二章 文獻回顧 2
2-1 氧化鋅簡介 2
2-1-1 氧化鋅的結構 2
2-1-2 氧化鋅的缺陷 3
2-1-3 氧化鋅的電性 4
2-2 氧化鋅材料的應用 5
2-2-1 橡膠領域應用 5
2-2-2 藥妝及紡織領域應用 6
2-2-3 光電領域應用 6
2-2-3-1 太陽能電池 6
2-2-3-2 紫外光感測 7
2-2-3-3 氣體感測 7
2-3 一維氧化鋅奈米結構的合成 7
2-3-1 氣相法 8
2-3-2 模板法 8
2-3-3 液相法 9
2-4 蕭特基接觸(Schottky contact) 10
2-5 電泳與介電泳 11
2-5-1 電泳(Electrophoresis, EP) 12
2-5-2 介電泳(Dielectrophorsis, DEP) 13
2-6 研究動機 14
第三章 實驗方法 16
3-1 實驗流程簡介 16
3-2 實驗步驟 16
3-2-1 晶種層製備 16
3-2-2 氧化鋅奈米線合成 17
3-2-3 元件製備 17
3-2-4 光學感測實驗 18
3-2-5 氣體感測實驗 18
3-3 分析儀器 18
3-3-1 冷場發射掃描式電子顯微鏡 18
3-3-2 場發射穿透式電子顯微鏡 18
3-3-3 X光繞射儀 18
3-3-4 奈米元件測試分析系統 19
3-3-5 任意波形產生器 19
3-3-6 3W UV 365 nm LED光源 19
第四章 結果與討論 20
4-1 合成本質氧化鋅奈米線結構 20
4-1-1 微結構分析 20
4-1-2 X光繞射分析 20
4-1-3 TEM分析 21
4-2 電場誘發氧化鋅奈米線排列 21
4-2-1 交流電場誘發氧化鋅奈米線排列 21
4-2-2 直流電場誘發氧化鋅奈米線排列 23
4-3 氧化鋅奈米元件整流機制與原因 25
4-4 光學感測實驗 26
4-4 氣體感測實驗 28
第五章 結論 31
第六章 參考文獻 77
[2-1]Chen, Y., Bagnall, D., Koh, H., Park, K., Hiraga, K., Zhu, Z. and Yao, T. (1998). Plasma assisted molecular beam epitaxy of ZnO on c -plane sapphire: Growth and characterization. Journal of Applied Physics, 84(7), pp.3912-3918.
[2-2]Lao, C., Liu, J., Gao, P., Zhang, L., Davidovic, D., Tummala, R. and Wang, Z. (2006). ZnO Nanobelt/Nanowire Schottky Diodes Formed by Dielectrophoresis Alignment across Au Electrodes. Nano Letters, 6(2), pp.263-266.
[2-3]Pyshkin, S. and Ballato, J. (2013). Optoelectronics - Advanced Materials and Devices.
[2-4]Hsu, C., Chen, K., Tsai, T. and Hsueh, T. (2013). Fabrication of gas sensor based on p-type ZnO nanoparticles and n-type ZnO nanowires. Sensors and Actuators B: Chemical, 182, pp.190-196.
[2-5]Zadeh, K., Trinchi, A., Wlodarski, W. and Holland, A. (2002). A novel Love-mode device based on a ZnO/ST-cut quartz crystal structure for sensing applications. Sensors and Actuators A: Physical, 100(2-3), pp.135-143.
[2-6]Callister, W. (2009). Materials science and engineering. 8th ed.
[2-7]Zeng, H., Duan, G., Li, Y., Yang, S., Xu, X. and Cai, W. (2010). Blue Luminescence of ZnO Nanoparticles Based on Non-Equilibrium Processes: Defect Origins and Emission Controls. Advanced Functional Materials, 20(4), pp.561-572.
[2-8]Schmidt-Mende, L. and MacManus-Driscoll, J. (2007). ZnO – nanostructures, defects, and devices. Materials Today, 10(5), pp.40-48.
[2-9]Hagemark, K. (1976). Defect structure of Zn-doped ZnO. Journal of Solid State Chemistry, 16(3-4), pp.293-299.
[2-10]Liu, D., Lv, Y., Zhang, M., Liu, Y., Zhu, Y., Zong, R. and Zhu, Y. (2014). Defect-related photoluminescence and photocatalytic properties of porous ZnO nanosheets. Journal of Materials Chemistry A, 2(37), p.15377.
[2-11]Kumar, V., Swart, H., Ntwaeaborwa, O., Kroon, R., Terblans, J., Shaat, S., Yousif, A. and Duvenhage, M. (2013). Origin of the red emission in zinc oxide nanophosphors. Materials Letters, 101, pp.57-60.
[2-12]Djurišić, A., Leung, Y., Tam, K., Ding, L., Ge, W., Chen, H. and Gwo, S. (2006). Green, yellow, and orange defect emission from ZnO nanostructures: Influence of excitation wavelength. Applied Physics Letters, 88(10), p.103107.
[2-13]Pawar, B., Jadkar, S. and Takwale, M. (2005). Deposition and characterization of transparent and conductive sprayed ZnO:B thin films. Journal of Physics and Chemistry of Solids, 66(10), pp.1779-1782.
[2-14]Tseng, Y., Gao, G. and Chien, S. (2010). Synthesis of c-axis preferred orientation ZnO:Al transparent conductive thin films using a novel solvent method. Thin Solid Films, 518(22), pp.6259-6263.
[2-15]Bhosle, V., Tiwari, A. and Narayan, J. (2006). Metallic conductivity and metal-semiconductor transition in Ga-doped ZnO. Applied Physics Letters, 88(3), p.032106.
[2-16]Fang, F., Futter, J., Markwitz, A. and Kennedy, J. (2009). UV and humidity sensing properties of ZnO nanorods prepared by the arc discharge method. Nanotechnology, 20(24), p.245502.
[2-17]Zhang, Y., Yu, K., Jiang, D., Zhu, Z., Geng, H. and Luo, L. (2005). Zinc oxide nanorod and nanowire for humidity sensor. Applied Surface Science, 242(1-2), pp.212-217.
[2-18]Oh, E., Choi, H., Jung, S., Cho, S., Kim, J., Lee, K., Kang, S., Kim, J., Yun, J. and Jeong, S. (2009). High-performance NO2 gas sensor based on ZnO nanorod grown by ultrasonic irradiation. Sensors and Actuators B: Chemical, 141(1), pp.239-243.
[2-19]Kohan, A., Ceder, G., Morgan, D. and Van de Walle, C. (2000). First-principles study of native point defects in ZnO. Physical Review B, 61(22), pp.15019-15027.
[2-20]Van de Walle, C. (2000). Hydrogen as a Cause of Doping in Zinc Oxide. Physical Review Letters, 85(5), pp.1012-1015.
[2-21]Zhao, J., Li, X., Bian, J., Yu, W. and Gao, X. (2005). Structural, optical and electrical properties of ZnO films grown by pulsed laser deposition (PLD). Journal of Crystal Growth, 276(3-4), pp.507-512.
[2-22]Kołodziejczak-Radzimska, A. and Jesionowski, T. (2014). Zinc Oxide—From Synthesis to Application: A Review. Materials, 7(4), pp.2833-2881.
[2-23]Ibarra, L., Marcos-Fernández, A. and Alzorriz, M. (2002). Mechanistic approach to the curing of carboxylated nitrile rubber (XNBR) by zinc peroxide/zinc oxide. Polymer, 43(5), pp.1649-1655.
[2-24]Liu, H., Yang, D., Yang, H., Zhang, H., Zhang, W., Fang, Y., Lin, Z., Tian, L., Lin, B., Yan, J. and Xi, Z. (2013). Comparative study of respiratory tract immune toxicity induced by three sterilisation nanoparticles: Silver, zinc oxide and titanium dioxide. Journal of Hazardous Materials, 248-249, pp.478-486.
[2-25]Mirhosseini, M. and Firouzabadi, F. (2012). Antibacterial activity of zinc oxide nanoparticle suspensions on food-borne pathogens. International Journal of Dairy Technology, 66(2), pp.291-295.
[2-26]Mason, Pamela. (2006). Physiological and medicinal zinc. Pharmaceutical journal, 276.7390, pp. 271-274.
[2-27]Cross, S., Innes, B., Roberts, M., Tsuzuki, T., Robertson, T. and McCormick, P. (2007). Human Skin Penetration of Sunscreen Nanoparticles: In-vitro Assessment of a Novel Micronized Zinc Oxide Formulation. Skin Pharmacology and Physiology, 20(3), pp.148-154.
[2-28]Yadav, A., Prasad, V., Kathe, A., Raj, S., Yadav, D., Sundaramoorthy, C. and Vigneshwaran, N. (2006). Functional finishing in cotton fabrics using zinc oxide nanoparticles. Bulletin of Materials Science, 29(6), pp.641-645.
[2-29]Xu, W., Ye, Z., Zeng, Y., Zhu, L., Zhao, B., Jiang, L., Lu, J., He, H. and Zhang, S. (2006). ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition. Applied Physics Letters, 88(17), p.173506.
[2-30]Wei, Z., Lu, Y., Shen, D., Zhang, Z., Yao, B., Li, B., Zhang, J., Zhao, D., Fan, X. and Tang, Z. (2007). Room temperature p-n ZnO blue-violet light-emitting diodes. Applied Physics Letters, 90(4), p.042113.
[2-31]Soci, C., Zhang, A., Xiang, B., Dayeh, S., Aplin, D., Park, J., Bao, X., Lo, Y. and Wang, D. (2007). ZnO Nanowire UV Photodetectors with High Internal Gain. Nano Letters, 7(4), pp.1003-1009.
[2-32]Baxter, J., Walker, A., Ommering, K. and Aydil, E. (2006). Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells. Nanotechnology, 17(11), pp.S304-S312.
[2-33]Hsueh, T. and Hsu, C. (2008). Fabrication of gas sensing devices with ZnO nanostructure by the low-temperature oxidation of zinc particles. Sensors and Actuators B: Chemical, 131(2), pp.572-576.
[2-34]Xu, T., Wu, G., Zhang, G. and Hao, Y. (2003). The compatibility of ZnO piezoelectric film with micromachining process. Sensors and Actuators A: Physical, 104(1), pp.61-67.
[2-35]Chaaya, A., Bechelany, M., Balme, S. and Miele, P. (2014). ZnO 1D nanostructures designed by combining atomic layer deposition and electrospinning for UV sensor applications. J. Mater. Chem. A, 2(48), pp.20650-20658.
[2-36]Zheng, K., Gu, L., Sun, D., Mo, X. and Chen, G. (2010). The properties of ethanol gas sensor based on Ti doped ZnO nanotetrapods. Materials Science and Engineering: B, 166(1), pp.104-107.
[2-37]Wang, J., Sun, X., Yang, Y. and Wu, C. (2009). N–P transition sensing behaviors of ZnO nanotubes exposed to NO2gas. Nanotechnology, 20(46), p.465501.
[2-38]Sberveglieri, G., Nelli, P., Groppelli, S., Quaranta, F., Valentini, A. and Vasanelli, L. (1990). Oxygen gas sensing characteristics at ambient pressure of undoped and lithium-doped ZnO-sputtered thin films. Materials Science and Engineering: B, 7(1-2), pp.63-68.
[2-39]Liu, F., Gao, S., Pei, S., Tseng, S. and Liu, C. (2009). ZnO nanorod gas sensor for NO2 detection. Journal of the Taiwan Institute of Chemical Engineers, 40(5), pp.528-532.
[2-40]Joshi, R., Hu, Q., Alvi, F., Joshi, N. and Kumar, A. (2009). Au Decorated Zinc Oxide Nanowires for CO Sensing. The Journal of Physical Chemistry C, 113(36), pp.16199-16202.
[2-41]Gong, H., Hu, J., Wang, J., Ong, C. and Zhu, F. (2006). Nano-crystalline Cu-doped ZnO thin film gas sensor for CO. Sensors and Actuators B: Chemical, 115(1), pp.247-251.
[2-42]Zhu, G., Xu, H., Liu, Y., Xu, X., Ji, Z., Shen, X. and Xu, Z. (2012). Enhanced gas sensing performance of Co-doped ZnO hierarchical microspheres to 1,2-dichloroethane. Sensors and Actuators B: Chemical, 166-167, pp.36-43.
[2-43]Wahab, R., Ansari, S., Kim, Y., Seo, H. and Shin, H. (2007). Room temperature synthesis of needle-shaped ZnO nanorods via sonochemical method. Applied Surface Science, 253(18), pp.7622-7626.
[2-44]Zhu, Y., Zhang, H., Sun, X., Feng, S., Xu, J., Zhao, Q., Xiang, B., Wang, R. and Yu, D. (2003). Efficient field emission from ZnO nanoneedle arrays. Applied Physics Letters, 83(1), pp.144-146.
[2-45]Gao, P., Ding, Y., Mai, W., Hughes, W., Lao, C. and Wang, Z. (2005). Conversion of Zinc Oxide Nanobelts into Superlattice-Structured Nanohelices. ChemInform, 36(49).
[2-46]Kong, X. (2004). Single-Crystal Nanorings Formed by Epitaxial Self-Coiling of Polar Nanobelts. Science, 303(5662), pp.1348-1351.
[2-47]Banerjee, D., Lao, J., Wang, D., Huang, J., Ren, Z., Steeves, D., Kimball, B. and Sennett, M. (2003). Large-quantity free-standing ZnO nanowires. Applied Physics Letters, 83(10), pp.2061-2063.
[2-48]Pan, Z. (2001). Nanobelts of Semiconducting Oxides. Science, 291(5510), pp.1947-1949.
[2-49]Wu, J., Liu, S., Wu, C., Chen, K. and Chen, L. (2002). Heterostructures of ZnO–Zn coaxial nanocables and ZnO nanotubes. Applied Physics Letters, 81(7), pp.1312-1314.
[2-50]Xu, T., Ji, P., He, M. and Li, J. (2012). Growth and Structure of Pure ZnO Micro/Nanocombs. Journal of Nanomaterials, 2012, pp.1-5.
[2-51]Illy, B., Shollock, B., MacManus-Driscoll, J. and Ryan, M. (2005). Electrochemical growth of ZnO nanoplates. Nanotechnology, 16(2), pp.320-324.
[2-52]Jing, Z. and Zhan, J. (2008). Fabrication and Gas-Sensing Properties of Porous ZnO Nanoplates. Advanced Materials, 20(23), pp.4547-4551.
[2-53]Chiu, W., Khiew, P., Cloke, M., Isa, D., Tan, T., Radiman, S., Abd-Shukor, R., Hamid, M., Huang, N. and Lim, H. (2010). Photocatalytic study of two-dimensional ZnO nanopellets in the decomposition of methylene blue. Chemical Engineering Journal, 158(2), pp.345-352.
[2-54]Polshettiwar, V., Baruwati, B. and Varma, R. (2009). Self-Assembly of Metal Oxides into Three-Dimensional Nanostructures: Synthesis and Application in Catalysis. ACS Nano, 3(3), pp.728-736.
[2-55]Xie, Q., Dai, Z., Liang, J., Xu, L., Yu, W. and Qian, Y. (2005). Synthesis of ZnO three-dimensional architectures and their optical properties. Solid State Communications, 136(5), pp.304-307.
[2-56]Yang, P., Yan, H., Mao, S., Russo, R., Johnson, J., Saykally, R., Morris, N., Pham, J., He, R. and Choi, H. (2002). Controlled Growth of ZnO Nanowires and Their Optical Properties. Advanced Functional Materials, 12(5), p.323.
[2-57]Ding, Y., Gao, P. and Wang, Z. (2004). Catalyst−Nanostructure Interfacial Lattice Mismatch in Determining the Shape of VLS Grown Nanowires and Nanobelts: A Case of Sn/ZnO. Journal of the American Chemical Society, 126(7), pp.2066-2072.
[2-58]Gao, P. and Wang, Z. (2004). Substrate Atomic-Termination-Induced Anisotropic Growth of ZnO Nanowires/Nanorods by the VLS Process. The Journal of Physical Chemistry B, 108(23), pp.7534-7537.
[2-59]Muthukumar, S., Haifeng Sheng, Jian Zhong, Zheng Zhang, Emanetoglu, N. and Yicheng Lu (2003). Selective MOCVD growth of ZnO nanotips. IEEE Transactions On Nanotechnology, 2(1), pp.50-54.
[2-60]Kong, Y., Yu, D., Zhang, B., Fang, W. and Feng, S. (2001). Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach. Applied Physics Letters, 78(4), pp.407-409.
[2-61]Liu, X., Wu, X., Cao, H. and Chang, R. (2004). Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition. Journal of Applied Physics, 95(6), pp.3141-3147.
[2-62]Fan, Z., Wang, D., Chang, P., Tseng, W. and Lu, J. (2004). ZnO nanowire field-effect transistor and oxygen sensing property. Applied Physics Letters, 85(24), pp.5923-5925.
[2-63]Son, J., Lim, S., Cho, J., Seong, W. and Kim, H. (2008). Synthesis of horizontally aligned ZnO nanowires localized at terrace edges and application for high sensitivity gas sensor. Applied Physics Letters, 93(5), p.053109.
[2-64]Zheng, M., Zhang, L., Li, G. and Shen, W. (2002). Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique. Chemical Physics Letters, 363(1-2), pp.123-128.
[2-65]Guo, M., Yang, C., Zhang, M., Zhang, Y., Ma, T., Wang, X. and Wang, X. (2008). Effects of preparing conditions on the electrodeposition of well-aligned ZnO nanorod arrays. Electrochimica Acta, 53(14), pp.4633-4641.
[2-66]Jung, S., Oh, E., Lee, K., Park, W. and Jeong, S. (2007). A Sonochemical Method for Fabricating Aligned ZnO Nanorods. Advanced Materials, 19(5), pp.749-753.
[2-67]Vayssieres, L. (2003). Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions. Advanced Materials, 15(5), pp.464-466.
[2-68]Zhang, W., Zhu, R., Nguyen, V. and Yang, R. (2014). Highly sensitive and flexible strain sensors based on vertical zinc oxide nanowire arrays. Sensors and Actuators A: Physical, 205, pp.164-169.
[2-69]Laudise, R. and Ballman, A. (1960). HYDROTHERMAL SYNTHESIS OF ZINC OXIDE AND ZINC SULFIDE1. The Journal of Physical Chemistry, 64(5), pp.688-691.
[2-70]Guo, M., Diao, P. and Cai, S. (2005). Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparing conditions. Journal of Solid State Chemistry, 178(6), pp.1864-1873.
[2-71]Tian, J., Hu, J., Li, S., Zhang, F., Liu, J., Shi, J., Li, X., Tian, Z. and Chen, Y. (2011). Improved seedless hydrothermal synthesis of dense and ultralong ZnO nanowires. Nanotechnology, 22(24), p.245601.
[2-72]Akgun, M., Kalay, Y. and Unalan, H. (2012). Hydrothermal zinc oxide nanowire growth using zinc acetate dihydrate salt. Journal of Materials Research, 27(11), pp.1445-1451.
[2-73]Zhang, Y., Ram, M., Stefanakos, E. and Goswami, D. (2012). Synthesis, Characterization, and Applications of ZnO Nanowires. Journal of Nanomaterials, 2012, pp.1-22.
[2-74]Das, S., Kar, J.,Choi, J., Lee, T., Moon, K., Myoung, J. (2010). Fabrication and Characterization of ZnO Single Nanowire-Based Hydrogen Sensor. The Journal of Physical Chemistry, 114, p.1689-1693.
[2-75]Das, S., Moon, K., Kar, J., Choi, J., Xiong, J., Myoing, M. (2010). ZnO single nanowire-based UV detectors. Journal of Applied Physics, 97, p.022103
[2-76]Zhou, J., Gu, Y., Hu, Y., Mai, W., Yeh, P., Bao, G., Sood, A., Polla, D. and Wang, Z. (2009). Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization. Applied Physics Letters, 94(19), p.191103.
[2-77]Lee, T., Choi, W., Kar, J., Kang, Y., Jeon, J., Park, J., Kim, Y., Baik, H. and Myoung, J. (2010). Electrical Contact Tunable Direct Printing Route for a ZnO Nanowire Schottky Diode. Nano Letters, 10(9), pp.3517-3523.
[2-78]Pethig, R. (2010). Review Article—Dielectrophoresis: Status of the theory, technology, and applications. Biomicrofluidics, 4(2), p.022811.
[2-79]Tiselius, A. (1937). A new apparatus for electrophoretic analysis of colloidal mixtures. Transactions of the Faraday Society, 33, p.524.
[2-80]Pohl, H. (1951). The Motion and Precipitation of Suspensoids in Divergent Electric Fields. Journal of Applied Physics, 22(7), pp.869-871.
[2-81]Hughes, M. (2000). AC electrokinetics: applications for nanotechnology. Nanotechnology, 11(2), pp.124-132.
[2-82]Kim, K., Moon, T., Lee, M., Kang, J., Jeon, Y. and Kim, S. (2011). Light-emitting diodes composed of n-ZnO and p-Si nanowires constructed on plastic substrates by dielectrophoresis. Solid State Sciences, 13(9), pp.1735-1739.
[2-83]Ding, H., Shao, J., Ding, Y., Liu, W., Tian, H. and Li, X. (2015). One-Dimensional Au–ZnO Heteronanostructures for Ultraviolet Light Detectors by a Two-Step Dielectrophoretic Assembly Method. ACS Applied Materials & Interfaces, 7(23), pp.12713-12718.
[2-84]Ding, H., Shao, J., Ding, Y., Liu, W., Tian, H. and Li, X. (2015). One-Dimensional Au–ZnO Heteronanostructures for Ultraviolet Light Detectors by a Two-Step Dielectrophoretic Assembly Method. ACS Applied Materials & Interfaces, 7(23), pp.12713-12718.
[2-85]Collet, M., Salomon, S., Klein, N., Seichepine, F., Vieu, C., Nicu, L. and Larrieu, G. (2015). Nanowires: Large-Scale Assembly of Single Nanowires through Capillary-Assisted Dielectrophoresis (Adv. Mater. 7/2015). Advanced Materials, 27(7), pp.1304-1304.
[4-1]蔡維哲 (2016) 以水熱法成長P-N同質接面氧化鋅奈米線應用於光電元件之研究。碩士論文,國立中興大學材料科學與工程學系。
[4-2]Papadakis, S., Hoffmann, J., Deglau, D., Chen, A., Tyagi, P. and Gracias, D. (2011). Quantitative analysis of parallel nanowire array assembly by dielectrophoresis. Nanoscale, 3(3), pp.1059-1065.
[4-3]呂承翰 (2015) 以水熱法與介電泳法製備氧化鋅奈米線元件於氣體感測之應用。碩士論文,國立中興大學材料科學與工程學系。
[4-4]何祥熙 (2016) 不對稱焦耳熱效應於矽奈米線元件之影響及其應用。碩士論文,國立中興大學材料科學與工程學系。
[4-5]Harnack, O., Pacholski, C., Weller, H., Yasuda, A. and Wessels, J. (2003). Rectifying Behavior of Electrically Aligned ZnO Nanorods. Nano Letters, 3(8), pp.1097-1101.
[4-6]Lao, C., Liu, J., Gao, P., Zhang, L., Davidovic, D., Tummala, R. and Wang, Z. (2006). ZnO Nanobelt/Nanowire Schottky Diodes Formed by Dielectrophoresis Alignment across Au Electrodes. Nano Letters, 6(2), pp.263-266.
[4-7]García Núñez, C., García Marín, A., Nanterne, P., Piqueras, J., Kung, P. and Pau, J. (2013). Conducting properties of nearly depleted ZnO nanowire UV sensors fabricated by dielectrophoresis. Nanotechnology, 24(41), p.415702.
[4-8]Hwang, J., Lin, Y. and Kung, C. (2013). Enhancement of the Schottky barrier height of Au/ZnO nanocrystal by zinc vacancies using a hydrothermal seed layer. Nanotechnology, 24(11), p.115709.
[4-9]Yu, C., Yeh, P. and Chen, L. (2005). Directional nickel silicide-induced crystallization of amorphous silicon channel under high-density current stressing. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 237(1-2), pp.167-173.
[4-10]Das, S., Moon, K., Kar, J., Choi, J., Xiong, J., Lee, T. and Myoung, J. (2010). ZnO single nanowire-based UV detectors. Applied Physics Letters, 97(2), p.022103.
[4-11]Hu, Y., Zhou, J., Yeh, P., Li, Z., Wei, T. and Wang, Z. (2010). Supersensitive, Fast-Response Nanowire Sensors by Using Schottky Contacts. Advanced Materials, 22(30), pp.3327-3332.
[4-12]Khoang, N., Hong, H., Trung, D., Duy, N., Hoa, N., Thinh, D. and Hieu, N. (2013). On-chip growth of wafer-scale planar-type ZnO nanorod sensors for effective detection of CO gas. Sensors and Actuators B: Chemical, 181, pp.529-536
[4-13]Rai, P., Kim, Y., Song, H., Song, M. and Yu, Y. (2012). The role of gold catalyst on the sensing behavior of ZnO nanorods for CO and NO2 gases. Sensors and Actuators B: Chemical, 165(1), pp.133-142.
[4-14]Wang, J., Sun, X., Huang, H., Lee, Y., Tan, O., Yu, M., Lo, G. and Kwong, D. (2007). A two-step hydrothermally grown ZnO microtube array for CO gas sensing. Applied Physics A, 88(4), pp.611-615.
[4-15]Choi, S. and Kim, S. (2012). Room temperature CO sensing of selectively grown networked ZnO nanowires by Pd nanodot functionalization. Sensors and Actuators B: Chemical, 168, pp.8-13.
[4-16]Wei, T., Yeh, P., Lu, S. and Wang, Z. (2009). Gigantic Enhancement in Sensitivity Using Schottky Contacted Nanowire Nanosensor. Journal of the American Chemical Society, 131(48), pp.17690-17695.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊