跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:1fb:e713:2b67:6e79) 您好!臺灣時間:2024/12/12 16:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黎旭康
研究生(外文):Hsu-Kang Li
論文名稱:雙層中間層MoC與TiCO及MoC與MgTiON對於FePt磁性質與微結構之影響
論文名稱(外文):Magnetic properties and microstructure of FePt films with MoC/TiCO and MoC/MgTiON dual-intermediate layers
指導教授:蔡佳霖蔡佳霖引用關係
口試委員:劉恒睿張晃暐
口試日期:2017-07-06
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:98
中文關鍵詞:雙層中間層L10-FePtMgTiONTiCOMoC
外文關鍵詞:Dual-intermediate layerL10-FePtMgTiONTiCOMoC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗主要分為兩大部分,第一部分為利用單層中間層TiCO及雙中間層MoC/TiCO對於FePt產生的影響進行探討與比較。第二部分則藉由Ti元素加入於MgO靶材中,在沉積薄膜過程可以利用直流電源供應器取代射頻電源供應器,因此使用MgTiON作為單層中間層,以及在FePt與MgTiON之間鍍上厚度較薄的MoC穿插層形成雙層中間層,改變其與FePt之間的沉積成長。
第一部分中利用單層TiCO作為中間層時,隨著溫度提升,其垂直矯頑力逐漸增加,但水平膜面磁滯曲線開口尺寸較大,垂直異向性較差。當使用MoC/TiCO作為雙層中間層時,溫度在410 oC的條件下,垂直矯頑力可以達到7.3 kOe,有良好的垂直異向性,水平膜面磁滯曲線也趨於一直線,並且經由MoC中過多的C擴散至FePt薄膜當中幫助了FePt晶粒間的分隔,FePt晶粒也由連續薄膜變為島狀晶結構。
第二部分實驗中使用單層MgTiON作為中間層時,垂直膜面矯頑力為3.6 kOe,然而隨著穿插層MoC膜厚的增加,L10-FePt序化度逐漸提升,但在Rocking Curve分析中卻發現MoC穿插層的加入使FePt(001)的半高寬增加為8.8o,當MoC膜厚為3 nm時,垂直膜面矯頑力提升為12 kOe,至於MoC中過多的C在高溫條件下擴散至FePt膜層當中,使得FePt的晶粒尺寸下降且被分隔開來,在TEM橫截面圖中可以觀察到FePt結構由一連續薄膜變為島狀晶結構。此外降低頂層FePt膜厚為6 nm時,垂直膜面矯頑力達到最佳值為15 kOe。最後由XPS縱深分析以Ti元素價態分析為主,可以發現MgTiON膜層中以TiO2、TiN以及TiON三種成分組成,所佔的莫耳百分比分別為6.8%、27.6%、65.6%。
This study mostly consists of two parts. The first part of this study was the discussion of FePt films with single intermediate layer TiCO and dual-intermediate layer MoC/TiCO. In the second part, we added Ti element to the MgO target and expected to deposite the film by the DC power supply.
In the first part, the out-of plane coercivity increased with the temperature increasing when TiCO was used as the single intermediate layer, but the larger in plane hysteresis loops was obtained. However, MoC/TiCO dual-intermediate layer showed perpendicular magnetic anisotropy and the out-of-plane coercivity of 7.3 kOe at 410 °C. It suggested that the excess carbon of MoC promoted to separate between the FePt grains.
In the second part, when MgTiON was deposited as single intermediate layer, the FePt showed perpendicular magnetization with out-of-plane coercivity of 3.62 kOe. Smaller FePt out-of-plane coercivity may come from lower ordering degree and continuous layer structure. To promote the ordering of FePt film, the thinner MoC inserted layer was capped on MgTiON layer during sputtering process. The island structure was obtained due to the excess carbon diffused from MoC layer to separate of FePt grains. Furthermore, FePt layer with the thickness of 6 nm showed good perpendicular magnetic anisotropy with large out-of-plane coercivities of 15 kOe. Finally, XPS analysis shows that the MgTiON film consists of TiO2, TiN and TiON with the molar ratio of were 6.8%, 27.6% and 65.6%, respectively.
致謝 i
摘要 ii
Abstract iii
目錄 iv
表目錄 viii
圖目錄 ix
符號說明 xiii
第一章 緒論 1
1-1 前言 1
1-2 硬式磁碟機的簡介與發展 2
1-3 熱輔助磁紀錄媒體(HAMR) 6
1-4 背景及研究動機 8
第二章 基礎理論與文獻回顧 10
2-1理論基礎 10
2-1-1磁性材料 10
2-1-2磁異向性 11
2-1-2-1立方晶體磁晶異向性 12
2-1-2-2六方晶體磁晶異向性 14
2-1-3表面能與接觸角關係 15
2-1-4薄膜成長機制 18
2-1-4-1薄膜沉積階段 18
2-1-4-2薄膜成長方式 20
2-1-4-3薄膜成長模式與基板的影響 21
2-1-5濺鍍原理 22
2-1-5-1直流濺鍍原理 23
2-1-5-2磁控濺鍍 24
2-2材料的晶體結構 26
2-2-1 FePt合金結構與磁性 26
2-2-2序化與非序化 28
2-2-3 序化度(S)計算 29
2-2-4 MoC化合物結構 34
2-2-5 TiCO氧化物結構 36
2-2-6 MgTiON氧化物結構 36
2-2-7 CrRu合金結構 37
2-3文獻回顧 38
2-3-1 CrRu薄膜晶種層之文獻回顧 38
2-3-2 MoC薄膜中間層之文獻回顧 42
2-3-3 TiCO薄膜中間層之文獻回顧 45
2-3-4 MgTiON薄膜中間層之文獻回顧 47
第三章 實驗流程與儀器原理 51
3-1 實驗流程 51
3-2 靶材選擇 52
3-3 基板選用和清洗 52
3-4 薄膜濺鍍系統與樣品製備 54
3-4-1 磁控濺鍍系統 54
3-4-2 薄膜樣品製備 56
3-4-3 膜層厚度樣品製備 57
3-4-4 穿透式電子顯微鏡樣品製備 57
3-5 設備介紹與分析方法 58
3-5-1 膜層厚度量測 58
3-5-2 晶體結構分析 59
3-5-3 磁性量測 62
3-5-4 樣品成分分析 64
3-5-5 樣品打薄 66
3-5-6 樣品橫截面 66
3-5-7 微結構觀察 67
3-5-7-1 穿透式電子顯微鏡原理 67
3-5-7-2 選區繞射之晶面計算 69
3-5-8 溫度校正 70
第四章 結果與討論 71
4-1 MoC與TiCO雙層中間層之實驗成果探討 72
4-1-1 TiCO單層中間層溫度變化之X-ray繞射分析 72
4-1-2 TiCO單層中間層溫度變化之VSM磁性分析 73
4-1-3 MoC/TiCO雙層中間層溫度變化之X-ray繞射分析 75
4-1-4 MoC/TiCO雙層中間層溫度變化之VSM磁性分析 76
4-1-5 FePt沉積於TiCO與MoC/TiCO上之TEM微結構分析 77
4-2 MoC與MgTiON雙層中間層之實驗成果探討 79
4-2-1 改變MoC穿插層膜厚之X-ray繞射分析 80
4-2-2 改變MoC穿插層膜厚之搖擺曲線分析 81
4-2-3 改變MoC穿插層膜厚之SQUID磁性分析 82
4-2-4 改變MoC穿插層膜厚之TEM微結構分析 83
4-2-5 改變MoC穿插層膜厚之AFM表面粗糙度分析 85
4-2-6 FePt膜厚變化之X-ray繞射分析 86
4-2-7 FePt膜厚變化之SQUID磁性分析 87
4-2-8 MgTiO與MgTiON薄膜之XPS元素價態分析 89
第五章 結論 91
參考文獻 92
[1]E. D. Daniel, C. D. Mee, M. H. Clark, “Magnetic Recording: The First 100 Years, ” (New York: IEEE Press), (1998).
[2]A.Moser et al., “Magnetic recording: advancing into the future,” J. Phys. D. Appl. Phys., vol. 35, no. 19, pp. R157–R167, 2002.
[3]R.Wood, “Future hard disk drive systems,” J. Magn. Magn. Mater., vol. 321, no. 6, pp. 555–561, 2009.
[4]B. D.Terris andT.Thomson, “Nanofabricated and self-assembled magnetic structures as data storage media,” J. Phys. D. Appl. Phys., vol. 38, no. 12, pp. R199–R222, 2005.
[5]M.Alex, A.Tselikov, T.McDaniel, N.Deeman, T.Valet, andD.Chen, “Characteristics of thermally assisted magnetic recording,” IEEE Trans. Magn., vol. 37, no. 4 I, pp. 1244–1249, 2001.
[6]S. H.Charap, Pu-Ling Lu, andYanjun He, “Thermal stability of recorded information at high densities,” IEEE Trans. Magn., vol. 33, no. 1, pp. 978–983, 1997.
[7]S.Iwasaki andK.Takemura, “An analysis for the circular mode of magnetization in short wavelength recording,” IEEE Trans. Magn., vol. 11, no. 5, pp. 1173–1175, 1975.
[8]引用資料來源網址“http://www.hgst.com/.”
[9]D.Weller, O.Mosendz, G.Parker, S.Pisana, andT. S.Santos, “L10 FePtX-Y media for heat-assisted magnetic recording,” Phys. Status Solidi Appl. Mater. Sci., vol. 210, no. 7, pp. 1245–1260, 2013.
[10]Y.Shiroishi et al., “Future options for HDD storage,” IEEE Trans. Magn., vol. 45, no. 10, pp. 3816–3822, 2009.
[11]引用資料來源網址“http://www.seagate.com. ”.
[12]引用資料來源網址“http://www.seagate.com/tw/zh/about-seagate/seagate-history/.” .
[13]T.Rausch, E.Gage, andJ.Dykes, “Heat assisted magnetic recording,” Springer Proc. Phys., vol. 159, no. 11, pp. 200–202, 2015.
[14]J. S.Chen, B. C.Lim, J. F.Hu, Y. K.Lim, B.Liu, andG. M.Chow, “High coercivity L 10 FePt films with perpendicular anisotropy deposited on glass substrate at reduced temperature,” Appl. Phys. Lett., vol. 90, no. 4, pp. 1–4, 2007.
[15]K. F.Dong et al., “Control of microstructure and magnetic properties of fept films with TiN intermediate layer,” IEEE Trans. Magn., vol. 49, no. 2, pp. 668–674, 2013.
[16]K. F.Dong, F.Jin, W. Q.Mo, J. L.Song, andW. M.Cheng, “Improvement of isolation and grain size of FePt-SiNx-C films with TiON intermediate layer,” J. Alloys Compd., vol. 662, pp. 138–142, 2016.
[17]C. C.Tripathi, M.Kumar, andD.Kumar, “Atom beam sputtered Mo2C films as a diffusion barrier for copper metallization,” Appl. Surf. Sci., vol. 255, no. 6, pp. 3518–3522, 2009.
[18]金重勳、李景明、張慶瑞,“磁性技術手冊”,中華民國磁性技術協會,(2002).
[19]C.Law, “杜怡君、張毓娟、翁乙壬、蘇怡帆、陳世毓、梁哲銘、葉巧雯、吳信璋、卓育泯,‘磁性基本特性及磁性材料應用’,國立台灣大學化學系,” no. 1.
[20]Soshin Chikazumi 著,張煦、李學養合譯,“磁性物理學.” .
[21]B. D. Cullity, “Introduction to magnetic materials, ” Ch7, Wesley (1972). .
[22]D. E.Gray, “American Institute of Physics Handbook,” Am. Inst. Phys. Handb., vol. 389, 1957.
[23]Berkeley; andE. F.King, “M. J. Clerk,‘Atreatise on Electicity and magnetism,’ Articles 437 and 438, vol.2, 1006 (1954),” Oxford Univ., vol. XXX, p. 352, 1859.
[24]王怡婷、張豐志,“超疏水表面之製備及其學理研究”,國立交通大學,(2006).
[25]B.Marchon et al., “Head – Disk Interface Materials Issues in Heat-Assisted Magnetic Recording,” vol. 50, no. 3, 2014.
[26]H. W.Hugosson, O.Eriksson, U.Jansson, A.V.Ruban, P.Souvatzis, andI. A.Abrikosov, “Surface energies and work functions of the transition metal carbides,” Surf. Sci., vol. 557, no. 1–3, pp. 243–254, 2004.
[27]T. J.Zhou, K. M.Cher, J. F.Hu, B. C.Lim, P. W.Lwin, andJ. Z.Shi, “T. J. Zhou, K. M. Cher, J. F. Hu, B. C. Lim, P. W. Lwin, J. Z. Shi,‘Enhanced exchange coupling in TiO -doped FePt-C nanocomposite thin films induced by surfactant mediated growth,’ IEEE Transactions on Magnetics, vol.47(10), pp.3300-3303 (2011),” Magn. IEEE Trans., vol. 47, no. 10, pp. 3300–3303, 2011.
[28]P. B. Barna, M. Adamik, “Growth mechanisms of polycrystalline thin films, ” Science and technology of thin films, pp.4 (1995).
[29]M. Ohring, “Materials science of thin films, ” (2001).
[30]M.Thesis, S.Substrate, D.Designs, andC.Chang, “張智文,‘直流磁控濺鍍機之仿真系統及均勻度改善探討’,國立中山大學,(2012),” no. July, 2012.
[31]江政忠,“真空技術與應用”,國家實驗研究院儀器科技研究中心,第十三章,(2001).
[32]田民波、顏怡文,“薄膜技術與薄膜材料”,五南圖書,第六章,(2007).
[33]D.Goll andT.Bublat, “Large-area hard magnetic L10-FePt and composite L1 0-FePt based nanopatterns,” Phys. Status Solidi Appl. Mater. Sci., vol. 210, no. 7, pp. 1261–1271, 2013.
[34]U.Kawald, W.Zemke, H.Bach, J.Pelzl, andG. A.Saunders, “Elastic constants and martensitic phase transitions in FePt and FeNiPt invar alloys,” Phys. B Phys. Condens. Matter, vol. 161, no. 1–3, pp. 72–74, 1989.
[35]許仁華, and 孫安正. “奈米儲存發展與前景. ” 物理雙月刊 30.2 (2008): pp. 152-159.
[36]B. Warren, “X-ray Diffraction, ” Dover, New York, pp.227, (1990).
[37]J. S.Chen, B. C.Lim, andT. J.Zhou, “Effect of ultrahigh vacuum on ordering temperature, crystallographic and magnetic properties of L1(0) FePt(001) film on a CrRu underlayer,” J. Vac. Sci. Technol. A, vol. 23, no. 1, pp. 184–189, 2005.
[38]E.Yang, D. E.Laughlin, andJ. G.Zhu, “Correction of order parameter calculations for FePt perpendicular thin films,” IEEE Trans. Magn., vol. 48, no. 1, pp. 7–12, 2012.
[39]H. W.Hugosson et al., “Theory of phase stabilities and bonding mechanisms in stoichiometric and substoichiometric molybdenum carbide,” J. Appl. Phys., vol. 86, no. 1999, pp. 3758–3767, 1999.
[40]Y.Liu, Y.Jiang, J.Feng, andR.Zhou, “Elasticity, electronic properties and hardness of MoC investigated by first principles calculations,” Phys. B Condens. Matter, vol. 419, pp. 45–50, 2013.
[41]Y. K.Takahashi, K.Hono, T.Shima, andK.Takanashi, “Microstructure and magnetic properties of FePt thin films epitaxially grown on MgO (0 0 1) substrates,” J. Magn. Magn. Mater., vol. 267, no. 2, pp. 248–255, 2003.
[42]B. S. D. C. S.Varaprasad, Y. K.Takahashi, A.Ajan, andK.Hono, “Electrically conductive (Mg0.2Ti0.8)O underlayer to grow FePt-based perpendicular recording media on glass substrates,” J. Appl. Phys., vol. 113, no. 20, pp. 1–6, 2013.
[43]Y.Xu, J. S.Chen, andJ. P.Wang, “In situ ordering of FePt thin films with face-centered-tetragonal (001) texture on Cr100-xRux underlayer at low substrate temperature,” Appl. Phys. Lett., vol. 80, no. 18, pp. 3325–3327, 2002.
[44]Y. C.Feng, D. E.Laughlin, andD. N.Lambeth, “Formation of crystallographic texture in rf sputter-deposited Cr thin films,” J. Appl. Phys., vol. 76, no. 11, pp. 7311–7316, 1994.
[45]J. L.Tsai, Y. T.Tseng, C. R.Li, andS. C.Fu, “FePtC magnetic recording media with (200) textured MoC intermediate layer,” J. Appl. Phys., vol. 117, no. 17, pp. 3–7, 2015.
[46]J.-L.Tsai, K.-C.Hu, andJ.-L.Tzeng, “Magnetic properties and microstructure of FePtC films with TiOC/MoC combined intermediate layer,” Surf. Coatings Technol., vol. 303, pp. 141–147, 2016.
[47]H.Li, K.Dong, Y.Peng, G.Ju, G. M.Chow, andJ. S.Chen, “Microstructures and magnetic properties of FePt thin films on TiON intermediate layer,” IEEE Trans. Magn., vol. 50, no. 3, pp. 89–95, 2014.
[48]J. S.Chen, B. C.Lim, Y. F.Ding, andG. M.Chow, “Low-temperature deposition of L10 FePt films for ultra-high density magnetic recording,” J. Magn. Magn. Mater., vol. 303, no. 2 SPEC. ISS., pp. 309–317, 2006.
[49]T.Shima, K.Takanashi, Y. K.Takahashi, and K.Hono, “Formation of octahedral FePt nanoparticles by alternate deposition of FePt and MgO,” Appl. Phys. Lett., vol. 88, no. 6, pp. 1–4, 2006.
[50]J. Y.Deng et al., “Effect of TiON-MgO intermediate layer on microstructure and magnetic properties of L10 FePt-C-SiO2 films,” J. Magn. Magn. Mater., vol. 417, pp. 203–207, 2016.
[51]引用資料來源網址“http://www.seagate.com/tw/zh/.”
[52]圖片來源“國立中興大學奈米中心.”
[53]引用資料來源網址“http://web1.knvs.tp.edu.tw/AFM/ch4.htm.”
[54]圖片來源“國立中興大學材料系公用儀器.”
[55]C.Rontgen, H.Bragg, L.Bragg, andM.Laue,引用資料來源網址“http://www.lcis.com.tw/paper_store/paper_store/CH3-2015517201832562.pdf,” pp. 17–35, 1913.
[56]圖片來源“國立中正大學物理系張文成老師實驗室.”
[57]圖片來源“國立交通大學電物系貴重儀器.”
[58]B. D. Cullity, C. D. Graham, “Introduction to Magnetic Materials, ” second edition, 2.11.2 , pp.68 (2009).
[59]圖片來源“http://www.rikendenshi.co.jp/bh.files/VSMTOP.html. ”
[60]引用資料來源網址“http://teachlab.phys.ncku.edu.tw/media/course_pdf/SQUID101.pdf,” pp. 1–10, 1973.
[61]圖片來源“http://www.wikiwand.com/en/SQUID”.
[62]圖片來源“國立中興大學材料系貴重儀器.”
[63]引用資料來源網址“https://zh.wikipedia.org/wiki/X%E5%B0%84%E7%BA%BF%E5%85%89%E7%94%B5%E5%AD%90%E8%83%BD%E8%B0%B1%E5%AD%A6.”
[64]S.Chemical andA.Techniques,張立信。“表面化學分析技術”。奈米通訊。19卷 4。第17-23頁。, no. 4, pp. 17–23.
[65]D. B.Williams andC. B.Carter, “The Transmission Electron Microscope,” Transm. Electron Microsc., pp. 3–17, 1996.
[66]S.Andersson et al., “Identification of Titanium Oxides by X-Ray Powder Patterns.,” Acta Chemica Scandinavica, vol. 11. pp. 1653–1657, 1957.
[67]B.Avasarala andP.Haldar, “Electrochemical oxidation behavior of titanium nitride based electrocatalysts under PEM fuel cell conditions,” Electrochim. Acta, vol. 55, no. 28, pp. 9024–9034, 2010.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top