跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 02:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳明裕
研究生(外文):Ming-Yu Chen
論文名稱:帶狀奈米石墨烯/氧化鐵/聚苯胺奈米複合材料之製備及作為超級電容器之電極其性質研究
論文名稱(外文):Preparation and Investigation of Graphene nanoribbons/Magnetite/Polyaniline Nanocomposites As a Supercapacitor Electrode
指導教授:吳宗明吳宗明引用關係
指導教授(外文):Tzong-Ming Wu
口試委員:蔡毓楨廖建勛
口試日期:2017-06-29
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:119
中文關鍵詞:聚苯胺帶狀奈米石墨烯親水氧化鐵奈米顆粒混合型電容器
外文關鍵詞:PolyanilinGraphene nanoribbonHydrophilic Fe3O4hybrid capacitors
相關次數:
  • 被引用被引用:0
  • 點閱點閱:353
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
本研究以原位聚合法方式製備帶狀奈米石墨烯/氧化鐵/聚苯胺形成混合型電容器電極材料,吾等藉由FTIR, Raman, XRD, SEM及TEM等研究其性質差異性,並以恆電位分析儀探討帶狀奈米石墨烯及不同尺寸之親水氧化鐵奈米顆粒在不同添加量下其電化學特性之差異。
首先在帶狀奈米石墨烯/聚苯胺二元奈米複合材料系統中,從充放電行為及庫倫效應之結果可得知,隨帶狀奈米石墨烯的添加量提升,整體二元奈米複合材料之電化學特性會逐漸轉由帶狀奈米石墨烯作為主導,經檢測結果發現在5wt%之帶狀奈米石墨烯的添加下可降低複合材料的尺寸,因此可降低離子擴散阻抗,提供較大的接觸面積與電解液進行氧化還原反應,使聚苯胺的比電容值由193.80 F/g提升至384.73 F/g (5mV/s),且在1000圈之循環壽命從原本純聚苯胺的59.6%提升至70.1%。
在引入不同尺寸之親水氧化鐵奈米顆粒與帶狀奈米石墨烯/聚苯胺所形成的三元奈米複合材料中,因親水改質後之氧化鐵奈米顆粒表面的羧酸官能基可進一步提供苯胺單體良好的活性反應點,故可進一步降低三元奈米複合材料之結構尺寸,於0.5wt%的6nm親水氧化鐵奈米顆粒添加下,其比電容值達最大為499.71 F/g (5mV/s),1000圈之循環壽命可提升至88.3%,顯示該電極材料具有更優異的電化學特性。
In this study, the GNR/Fe3O4/PANI hybrid capacitors were synthesized by in-situ polymerization. FTIR, Raman, XRD, SEM and TEM were applied to characterize the properties. Electrochemical properties of electrodes were studied by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy techniques, respectively.
The electrochemical performance of GNR/PANI binary composites with different amounts of GNR has been compared. It’s obvious that the capacitance performance of the binary composites gradually enhanced as the GNR amount increased. By adding 5wt% GNR to the composite (P-5G), it exhibited much higher specific capacitance of 384.73 F/g compared to 193.80 F/g of the pure PANI at a scan rate of 5 mV/s, and the cycle stability of the composite could be improved to 70.1% after 1000 times which is more than 10% higher than that of pure PANI (59.6%). The enhancement is due to the addition of 5wt% GNR to reduce the particle size. The lower particle size can decrease the the diffusion resistance of ions and provide a larger contact surface to react with electrolyte.
The different amount of 6 and 13nm hydrophilic Fe3O4 was added to the binary composite to fabricate the ternary composites. The P-5G-05H6 shows the hightest specific capacitance of 499.71 F/g at 5 mV/s, and the cycle stability was improved to 88.3% after 1000 times. The excellent performance is due to the carboxyl groups on the surface of the hydrophilic Fe3O4 colud further provide more active sites for aniline monomer, and more effectively reduce the particle sizes of the ternary composite.
摘要 i
Abstract ii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究方向及目的 3
第二章 文獻回顧 5
2.1 超級電容器 5
2.1.1 電雙層電容器 6
2.1.2 擬電容 9
2.1.3 混合型超級電容器 10
2.2 導電高分子 12
2.2.1 導電高分子簡介 12
2.2.2 導電高分子的導電原理 16
2.2.3 聚苯胺之簡介 19
2.2.4 聚苯胺之合成方式 22
2.2.5 聚苯胺之儲電原理 25
2.3 帶狀奈米石墨烯 26
2.4 氧化鐵 29
2.4.1 氧化鐵應用於超級電容器之電極研究 29
2.4.2 氧化鐵/碳材作為超級電容器之電極研究 33
2.4.3 氧化鐵/碳材/導電高分子電容性質研究 35
第三章 實驗方法與步驟 37
3.1 實驗材料 37
3.2 實驗儀器 40
3.3 實驗架構 41
3.4 實驗方法與步驟 42
3.4.1 帶狀奈米石墨烯之製備 42
3.4.2 帶狀奈米石墨烯/聚苯胺複合材料之製備 44
3.4.3 不同尺寸之奈米氧化鐵製備 46
3.4.4 Fe3O4/ GNR/ PANI三元複合材料之製備 52
3.5 實驗儀器分析原理 55
3.5.1 傅立葉轉換紅外線光譜儀(Fourier Transform Infrared Spectrometer,FTIR) 55
3.5.2 拉曼光譜儀(Raman Spectrometer) 55
3.5.3 X光繞射儀(X-ray diffractometer, XRD) 56
3.5.4 場發射式掃描電子顯微鏡(Field-emmision Scanning Electron Microscopy, FE-SEM) 57
3.5.5 高解析穿透式電子顯微鏡(HRTEM) 57
3.5.6 恆電位分析儀(Potentiostate/Gavanostat) 59
第四章 結果與討論 61
4.1 化學法製備帶狀奈米石墨烯及其性質分析 61
4.2 改變帶狀奈米石墨烯添加量與PANI形成二元複合材料 67
4.2.1 PANI/GNR二元奈米複合材料之性質分析 68
4.2.2 PANI/GNR二元奈米複合材料之電化學性質分析 77
4.3 氧化鐵奈米顆粒 85
4.3.1 不同粒徑之Fe3O4奈米顆粒製備 85
4.3.2 親水性Fe3O4奈米顆粒製備 90
4.4 改變H6及H13添加量與P-5G形成三元奈米複合材料 93
4.4.1 P-5G-H6及P-5G-H13三元奈米複合材料之性質分析 94
4.4.2 P-5G-H6及P-5G-H13三元奈米複合材料之電化學性質分析 101
第五章 結論 110
第六章 參考文獻 112
[1]黃熙凱,二氧化錳-聚?咯複合材料之形貌變化於超級電容之電化學性質影響,國立中興大學化學工程學系研究所碩士學位論文,2013年。
[2]http://www.materialsnet.com.tw/DocView.aspx?id=6896
[3]D. V. Kosynkin, A. L. Higginbotham1, A. Sinitskii, J. R. Lomeda1, A. Dimiev, B. K. Price1, J. M. Tour, “Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons”, Nature, 2009, 458, 872.
[4]K. Lu, R. Jiang, X. Gao, and H. Ma, “Fe3O4/carbon nanotubes/polyaniline ternary composites with synergistic effects for high performance supercapacitors”, RSC Advances, 2014, 4, 52393.
[5]M. Fathi, M. Saghafi, F. Mahboubi, S. Mohajerzadeh, “Synthesis and electrochemical investigation of polyaniline/unzippedcarbon nanotube composites as electrode material in supercapacitors”, Synthetic Metals, 2014, 198, 345.
[6]顏湘婕,聚?咯/氧化鐵/奈米碳管複合材料之製備及其電磁性研究,國立中興大學材料工程學系研究所碩士學位論文,2006年。
[7]莊宜靜,聚苯胺/氧化鐵/奈米碳管複合材料之製備及其電磁特性研究,國立中興大學材料工程學系研究所碩士學位論文,2008年。
[8]歐陽仁偉,聚偏二氟乙烯/氧化鐵奈米複合材料之製備與特性研究,國立中興大學材料工程學系研究所碩士學位論文,2013年。
[9]S. Sun, H. Zeng, D. B. Robinson, S. Raoux, Philip M. Rice, Shan X. Wang, and Guanxiong Li, “Monodisperse M Fe2O4 (M = Fe, Co, Mn) Nanoparticles”, J. Am. Chem. Soc., 2004, 126, 273.
[10]R. Kötz, M. Carlen, “Principles and applications of electrochemical capacitors”, Electrochim. Acta., 2000, 45, 2483.
[11]Y. B. Tan, J. M. Lee, “Graphene for supercapacitor applications”, J. Mater. Chem. A, 2013, 1, 14814.
[12]T. Chen, L. Dai, “Carbon nanomaters for high-performance supercapacitors”, Materials Today, 2013, 16,272.
[13]L. L. Zhang, R. Zhou, X. S. Zhao, “Graphene-based materials as supercapacitor electrodes”, J. Mater. Chem., 2010, 20, 5983.
[14]T. Qi, J. Jiang, H. Chen, H. Wan, L. Miao, Li Zhang, “Synergistic effect of Fe3O4/reduced graphene oxide nanocompositesfor supercapacitors with good cycling life.”, Electrochimica Acta, 2013, 114, 674.
[15]S. Ardizzone, G. Fregonara, S. Trasatti, “Inner and outer active surface of RuO2 electrodes”, Electrochim. Acta, 1990, 35, 263.
[16]F. Wang, S. Xiao, Y. Hou, C. Hu, L. Liu, Y. Wu, “Electrode materials for aqueous asymmetric supercapacitors”, RSC Advances, 2013, 3, 13059.
[17]G. Kaur, R. Adhikari, P. Cass, M. Bown and P. Gunatillake, “Electrically conductive polymers and compositesfor biomedical applications”, RSC Adv., 2015, 5, 37553.
[18]林彥文,磺酸化導電高分子/奈米碳管複合材料之製備與特性研究,國立中興大學材料科學與工程學系研究所博士學位論文,2010年。
[19]Y. S. Negiand, P.V.Adhyapak, “Development in polyaniline conducting polymers”, J. MACROMOL. SCI.—POLYMER REVIEWS, 2002, C42(1), 35.
[20]http://highscope.ch.ntu.edu.tw/wordpress/wp-content/uploads/2009/12/12.pdf
[21]B. Wessling, “Dispersion hypothesis and non-equilibrium thermodynamics: key elements for a materials science of conductive polymers. A key to understanding polymer blends or other multiphase polymer systems”, Synthetic Met., 1991, 45, 119.
[22]H. Letheby, “On the production of a blue substance by the electrolysis of sulphate of aniline”, J. Chem. Soc., 1862, 15, 161.
[23]A. G. Green, A. E. Woodhead, “Aniline-black and allied compounds”, J. Chem. Soc. Trans., 1910, 97, 2388.
[24]A. G. Macdiarmid , Jin-Chih Chiang , M. Halpern , Wu-Song Huang , Shao-Lin Mu , L. D Nanaxakkara , S. W. Wu & S. I. Yaniger, “ Polyaniline: Interconversion od metallic and insulating forms”, Mol. Cryst. Liq. Cryst,1985, 121, 173 .
[25]陳智永,添加氧化鋅對聚苯胺電性之影響,私立大同大學材料工程研究所碩士學位論文,98年。
[26]https://www.ch.ntu.edu.tw/~genchem99/doc/demonstration/conducting_polymer-polyaniline.pdf
[27]H. Shepherd, T. Faltens, P. C. Haussmann, R. B. Kaner and S. H. Tolbert, “Construction of a Polyaniline Nanofiber Gas Sensor”, J. Chem. Educ., 2008, 85, 1102.
[28]J. Bacon, R. N. Adams, “Anodic Oxidations of Aromatic Amines.Ⅲ. Substituted Anilines in Aqueous Media”, J. Am. Chem. Soc., 1968, 90, pp 6596.
[29]S. P. Armes, J. F. Miller, “Optimum reactions for the polymerization of aniline in aqueous solution by ammonium persulphate”, Synth. Met., 1988, 22, 385.
[30]A. G. MacDiarmid, A. J. Epstein, “Polyaniline: Interrelationships Between Molecular Wieght, Morophology, Donnan Potential and Conductivity”, Mater. Res. Soc. Symp. Proc., 1992, 247, 565.
[31]J. Stejskal, A. Riede, D. Hlavata, J. Prokes, M. Helmstedt, P. Holler, “The effect of polymerization temperatyre on molecular weight, crystallinity, and electrical conductivity of polyaniline”, Synth. Met., 1998, 96, 55.
[32]G. Yanhou, L. Ji, “Polymerization of aniline in an aqueous system containing organic solvents”, Synth. Met., 1998, 96, 1.
[33]B. E. Conway, “Electrochemical Supercapacitors”, Kluwer Academic Publishers, 1999, New York.
[34]林育潤,以新穎的聚苯胺植入法增進碳電極之電化學超電容,國立成功大學化學工程系碩士學位論文,2003。
[35]X. T. Jia, J. Campos-Delgado, M. Terrones, V. Meunier, M. S. Dresselhaus, “Graphene edges: a review of their fabrication and characterization”, Nanoscale, 2011, 3, 86.
[36]X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, H. Dai, “Highly conducting graphene sheets and Langmuir–Blodgett films”, Nat. Nanotechnol., 2008, 3, 538.
[37]J. Campos-Delgado, J. M. Romo-Herrera, X. Jia, D. A. Cullen, H. Muramatsu, Y. A. Kim, T. Hayashi, Z. Ren, D. J. Smith, Y. Okuno, T. Ohba, H. Kanoh, K. Kaneko, M. Endo, H. Terrones, M. S. Dresselhaus, M. Terrones, “Bulk production of a new form of sp2 carbon: Crystalline graphene nanoribbons”, Nano Lett, 2008, 8, 2773.
[38]Z. Chen, Y. M. Lin, M. J. Rooks, P. Avouris, “Graphene nano-ribbon electronics”, Physical E, 2007, 40, 228.
[39]J. Chen, K. Huang and S. Liu, “ Hydrothermal preparation of octadecahedron Fe3O4 thin film for use in an electrochemical supercapacitor”, Electrochim. Acta, 2009,55, 1.
[40]M.-S. Wu, R.-H. Lee, J.-J. Jow, W.-D. Yang, C.-Y. Hsieh and B.-J. Weng, “Nanostructured Iron Oxide Films Prepared by Electrochemical Method for Electrochemical Capacitors”, Electrochemical and Solid-State Letters, 2009, A1, 1, 12.
[41]S.-C. Pang, W.-H. Khoh and S.-F. Chin, “Nanoparticulate magnetite thin films as electrode materials for the fabrication of electrochemical capacitors”, J. Mater. Sci., 2012, 45, 5598.
[42]X. Du, C. Wang, M. Chen, Y. Jiao and J. Wang, “Electrochemical Performances of
Nanoparticle Fe3O4/Activated Carbon Supercapacitor Using KOH Electrolyte Solution”, J.Phys. Chem. C., 2009, 113, 2643.
[43]C. Yang, J. Wu and Y. Hou, “Fe3O4 nanostructures: synthesis, growth mechanism, properties and applications”,Chem. Commun., 2011, 47, 5130.
[44]Q. Wang, L. Jiao, H. Du, Y. Wang, H. Yuan,”Fe3O4 nanoparticles grown on graphene as advanced electrode materials for supercapacitors”, Journal of Power Sources, 2014, 245, 101.
[45]J. Mu, B. Chen, Z. Guo, M. Zhang, Z. Zhang, P. Zhang, C. Shao and Y. Liu,” Highly dispersed Fe3O4 nanosheets on one-dimensional carbon nanofibers: Synthesis, formation mechanism, and electrochemical performance as supercapacitor electrode materials”, Nanoscale, 2011, 3, 5034.
[46]W. Shi, J. Zhu, D. H. Sim, Y. Y. Tay, Z. Lu, X. Zhang, Y. Sharma, M. Srinivasan, H. Zhang, H. H. Hng and Q. Yan,” Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites”, J. Mater. Chem., 2011, 21, 3422.
[47]K. Karthikeyan, D. Kalpana, S. Amaresh and Y. S. Lee,” Microwave synthesis of graphene/magnetite composite electrode material for symmetric supercapacitor with superior rate performance”, RSC Adv., 2012, 2, 12322.
[48]L. Li, Y. Dou, L. Wang, M. Luo and J. Liang,” One-step synthesis of high-quality N-doped graphene/Fe3O4 hybrid nanocomposite and its improved supercapacitor performances”, RSC Adv., 2014, 4, 25658.
[49]MuniyandiRajkumar,C.Hsu,T. H. Wu, M. G. Chen, C. C. Hu, “Advanced materials for aqueous supercapacitors in the asymmetric design”, Progress in Natural Science: Materials International , 2015, 25, 527.
[50]http://www.me.ntut.edu.tw/introduction/teacher/such.pdf
[51]E. Asadian, S. Shahrokhian , A. I. zad, E. Jokar,”In-situ electro-polymerization of graphene nanoribbon/polyaniline composite film: Application to sensitive electrochemical detection of dobutamine”, Sensors and Actuators B ,2014, 196, 582.
[52]Estabraq T. Abdullah, Salma M. Hassan and Reem S. Ahmed,”Electrical Properties of Polyaniline/Functionalized Multi-Walled Carbon Nanotubes Nanocomposite”, International Journal of Current Engineering and Technology, 2016, 6, 617.
[53]M. Liu, Y.E. Miao, C. Zhang, W. W. Tjiu, Z. Yang, H. Peng and T. Liu,” Hierarchical composites of polyaniline–grapheme nanoribbons–carbon nanotubes as electrode materials in all-solid-state supercapacitors”, Nanoscale, 2013, 5, 7312.
[54]林彥文,聚苯胺/奈米碳管導電複合材料之製備與電性研究,國立中興大學材料科學與工程學系研究所碩士學位論文,2004年。
[55]許瑞庭,聚苯胺/奈米碳管複合材料之合成與性質研究,私立中原大學化學研究所碩士論文,2006。
[56]Z. Gao, F. Wang, J. Chang, D. Wu, X. Wang, X. Wang, F. Xu, S. Gao, K. Jiang,” Chemically grafted graphene-polyaniline composite for application insupercapacitor”, Electrochimica Acta 2014, 133, 325.
[57]M. Fathi, M. Saghafi, F. Mahboubi, S. Mohajerzadeh, “Synthesis and electrochemical investigation of polyaniline/unzipped carbon nanotube composites as electrode material in supercapacitors”, Synthetic Metals 2014, 198 , 345.
[58]黃俊維,聚?咯/帶狀奈米石墨烯製備與性質研究,中興大學材料科學與工程碩士學位論文,2014。
[59]I. Oh, M. Kim, J. Kim, “Fe3O4/carbon coated silicon ternary hybrid composite as supercapacitor electrodes”,Applied Surface Science, 2015, 328, 222.
[60]J. L. Zhang, R. S. Srivastava, R. F. K. Misra, “Core-shell magnetite nanoparticles surface encapsulated with smart stimuli-responsive polymer: synthesis, characterization, and LCST of viable drug- targeting delivery system”, Langmuir, 2007, 23, 6342.
[61]W. Chen, X. Li, G. Xue, Z. Wang, W. Zou, “Magnetic and conducting particles: preparation of polypyrrole layer on Fe3O4 nanospheres”, Applied Surface Science., 2003, 218,216.
[62]W. Wu, L. Yang, S. Chen, Y. Shao, L. Jing, G. Zhao, H. Wei, “Core–shell nanospherical polypyrrole/grapheneoxide composites for high performance supercapacitors”, RSC Adv., 2015, 5, 91645.
[63]H. Xu, X. Li, G. Wang,” Polyaniline nanofibers with a high specific surface area and an improved pore structure for supercapacitors”, Journal of Power Sources, 2015, 294, 16.
[64]C.C. Hu, J.Y. Lin,” Effects of the loading and polymerization temperature on the capacitive performance of polyaniline in NaNO3”, Electrochimica Acta, 2002, 47, 4055.
[65]G. Xu, N. Wang, J. Wei, L. Lv, J. Zhang, Z.Chen, Q. Xu,” Preparation of Graphene Oxide/Polyaniline Nanocomposite with Assistance of Supercritical Carbon Dioxide for Supercapacitor Electrodes”, Ind. Eng. Chem. Res, 2012, 51, 14390.
[66]Q.Wu, Y. Xu, Z. Yao, A. Liu, G. Shi,” Supercapacitors Based on Flexible Graphene/ Polyaniline Nanofiber Composite Films”, ACS Nano, 2010, 4, 1963.6
[67]Z. D. Huang, R. Liang, B. Zhang, Y. B. He, J. K. Kim,” Evolution of flexible 3D graphene oxide/carbon nanotube/polyaniline composite papers and their supercapacitive performance”, Composites Science and Technology, 2013, 88, 126.67
[68]J. Shen, C. Yang, X. Li, G. Wang,” High-Performance Asymmetric Supercapacitor Based on Nanoarchitectured Polyaniline/Graphene/Carbon Nanotube and Activated Graphene Electrodes”, ACS Appl. Mater. Interfaces, 2013, 5, 8467
[69]張允聰,奈米氧化鐵/聚苯胺/還原氧化石墨烯奈米混成材料之電化學超級電容器特性研究,大同大學材料工程研究所碩士論文,2015年。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊